Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Recent Progress in Palladium Catalysed Sustainable Synthesis of Heterocycles

Author(s): Debasree Saha* and Chhanda Mukhopadhyay*

Volume 10, Issue 3, 2023

Published on: 15 February, 2023

Page: [147 - 159] Pages: 13

DOI: 10.2174/2213337210666221208142224

Price: $65

conference banner
Abstract

Background: Palladium metal has been extensively used in the synthesis of organic molecules for the last few decades. Heterocyclic ring synthesis being a significant part of organic synthesis, transition metal catalysis, especially catalysis by palladium, has been actively employed in heterocyclic synthesis. However, since palladium is an expensive metal, there has always been an urge to reuse or recycle the palladium catalyst to make the process economically viable. Modern synthetic chemists are also in constant search for newer sustainable strategies for molecular synthesis, which will lead to eco-friendly synthetic protocols. Thus, in the last few years, palladium catalysed green synthesis of heterocycles has gained importance as these aim to make the synthetic organic chemical world slightly more sustainable.

Methods: This review comprises palladium catalysed synthetic strategies that proceed in a sustainable fashion. A few protocols included here involve either organic solvent-free or greener solvents as reaction medium, which is one of the modes adopted towards sustainability. Other modes of sustainability included in this review are recyclability of the palladium catalyst, one pot tandem reaction strategy, use of air as oxidant, etc. All these modes aim at achieving one or the other green chemistry principles like reduction of waste and by-products, increasing atom economy, reduction of cost and use of safer solvents.

Results: The review aims to reflect the scope of sustainability in palladium catalysed synthesis of heterocycles so that economically and environmentally viable synthetic methodologies may be selectively identified and applied in academia and industries.

Conclusion: Keeping the principles of green chemistry in mind, in this review, we aim to compile the recent advancements in palladium catalysed sustainable synthesis of heterocycles in a single platter that may serve as a piece of reliable literature for further research in this area.

Graphical Abstract

[1]
Talley, J.J.; Bertenshaw, S.R.; Brown, D.L.; Carter, J.S.; Graneto, M.J.; Koboldt, C.M.; Masferrer, J.L.; Norman, B.H.; Rogier, D.J., Jr; Zweifel, B.S.; Seibert, K. 4,5-Diaryloxazole inhibitors of cyclooxygenase-2 (COX-2). Med. Res. Rev., 1999, 19(3), 199-208.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199905)19:3<199:AID-MED1>3.0.CO;2-7] [PMID: 10232649]
[2]
Almansa, C.; Alfón, J.; de Arriba, A.F.; Cavalcanti, F.L.; Escamilla, I.; Gómez, L.A.; Miralles, A.; Soliva, R.; Bartrolí, J.; Carceller, E.; Merlos, M.; García-Rafanell, J. Synthesis and structure-activity relationship of a new series of COX-2 selective inhibitors: 1,5-diarylimidazoles. J. Med. Chem., 2003, 46(16), 3463-3475.
[http://dx.doi.org/10.1021/jm030765s] [PMID: 12877584]
[3]
Qadir, T.; Amin, A.; Sharma, P.K.; Jeelani, I.; Abe, H. A review on medicinally important heterocyclic compounds. Open Med. Chem. J., 2022, 16(1), e187410452202280.
[http://dx.doi.org/10.2174/18741045-v16-e2202280]
[4]
Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: A review. Int. J. Pharma Sci., 2012, 3, 2947-2954.
[5]
Sharma, P.K.; Singh, P. Antibacterial and antifungal activity of piperazinylbenzothiazine. Der Pharma Chem., 2016, 8, 191-193.
[6]
Makkar, R.; Sharma, P.K. Antibacterial, antifungal and antioxidant activities of substituted 4H-1, 4-benzothiazines. Der Pharma Chem., 2016, 8, 156-159.
[7]
Jeelani, I.; Itaya, K.; Abe, H. Total synthesis of hyalodendriol C. Heterocycles, 2021, 102(8), 1570-1578.
[http://dx.doi.org/10.3987/COM-21-14480]
[8]
Sharma, P.K. Antifungal, antibacterial and antioxidant activities of substituted morpholinylbenzothiazine. Pharm. Lett., 2016, 8, 140-142.
[9]
Ahmed, K.; Jeelani, I. Synthesis and in vitro antimicrobial screening of 3-acetyl-4-hydroxycoumarin hydrazones. Int. J. Pharm. Biol. Sci., 2019, 9, 1000-1005.
[10]
Khan, A.; Jasinski, J.P.; Smolenski, V.A.; Hotchkiss, E.P.; Kelley, P.T.; Shalit, Z.A.; Kaur, M.; Paul, K.; Sharma, R. Enhancement in anti-tubercular activity of indole based thiosemicarbazones on complexation with copper(I) and silver(I) halides: Structure elucidation, evaluation and molecular modelling. Bioorg. Chem., 2018, 80, 303-318.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.027] [PMID: 29986180]
[11]
Qadir, T.; Amin, A.; Sarkar, D.; Sharma, P.K. A review on recent advances in the synthesis of aziridines and their applications in organic synthesis. Curr. Org. Chem., 2021, 25(16), 1868-1893.
[http://dx.doi.org/10.2174/1385272825666210728100022]
[12]
Sharma, P.K.; Kumar, M. Antimicrobial and antioxidant activities of substituted 4H-1, 4-benzothiazines. Med. Chem. Res., 2012, 21, 2072-2078.
[http://dx.doi.org/10.1007/s00044-011-9732-z]
[13]
Sapra, R.; Patel, D.; Meshram, D. A mini-review: Recent developments of heterocyclic chemistry in some drug discovery scaffolds synthesis. J. Med. Chem. Sci., 2020, 3, 71-78.
[14]
Mahmood, R.M.U.; Aljamali, N.M. Synthesis, spectral investigation, and microbial studying of pyridine-heterocyclic compounds. Eur. J. Mol. Clin. Med., 2020, 7, 4444-4453.
[15]
Panchal, N.B.; Patel, P.H.; Chhipa, N.M.; Parmar, R.S. Acridine a versatile heterocyclic moiety as anticancer agent. Int. J. Pharm. Sci. Res., 2020, 11, 4739-4748.
[16]
Thigulla, Y.; Kumar, T.U.; Trivedi, P.; Ghosh, B.; Bhattacharya, A. One-step synthesis of fused chromeno[4,3-b]pyrrolo[3,2-h]quinolin-7(1H)-one compounds and their anticancer activity evaluation. ChemistrySelect, 2017, 2(9), 2718-2721.
[http://dx.doi.org/10.1002/slct.201700129]
[17]
Wang, M.; Gao, M.; Mock, B.H.; Miller, K.D.; Sledge, G.W.; Hutchins, G.D.; Zheng, Q.H. Synthesis of carbon-11 labeled fluorinated 2-arylbenzothiazoles as novel potential PET cancer imaging agents. Bioorg. Med. Chem., 2006, 14(24), 8599-8607.
[http://dx.doi.org/10.1016/j.bmc.2006.08.026] [PMID: 16962783]
[18]
Sondhi, S.M.; Goyal, R.N.; Lahoti, A.M.; Singh, N.; Shukla, R.; Raghubir, R. Synthesis and biological evaluation of 2-thiopyrimidine derivatives. Bioorg. Med. Chem., 2005, 13(9), 3185-3195.
[http://dx.doi.org/10.1016/j.bmc.2005.02.047] [PMID: 15809154]
[19]
Amir, M.; Khan, M.S.Y.; Zaman, M.S. Synthesis, characterization, and biological activities of substituted oxadiazole, triazole, thiadiazole, and 4- thiazolidinone derivatives. Indian J. Chem., 2004, 43, 2189-2194.
[20]
Kumar, D.; Kumar, R.R.; Pathania, S.; Singh, P.K.; Kalra, S.; Kumar, B. Investigation of indole functionalized pyrazoles and oxadiazoles as anti-inflammatory agents: Synthesis, in-vivo, in-vitro and in-silico analysis. Bioorg. Chem., 2021, 114, 105068-105078.
[http://dx.doi.org/10.1016/j.bioorg.2021.105068] [PMID: 34130110]
[21]
Held, F.E.; Guryev, A.A.; Fröhlich, T.; Hampel, F.; Kahnt, A.; Hutterer, C.; Steingruber, M.; Bahsi, H. von Bojničić-Kninski, C.; Mattes, D.S.; Foertsch, T.C.; Nesterov-Mueller, A.; Marschall, M.; Tsogoeva, S.B. Facile access to potent antiviral quinazoline heterocycles with fluorescence properties via merging metal-free domino reactions. Nat. Commun., 2017, 8(1), 15071-15079.
[http://dx.doi.org/10.1038/ncomms15071] [PMID: 28462939]
[22]
Xu, Y.B.; Yang, L.; Wang, G.F.; Tong, X.K.; Wang, Y.J.; Yu, Y.; Jing, J.F.; Feng, C.L.; He, P.L.; Lu, W.; Tang, W.; Zuo, J.P. Benzimidazole derivative, BM601, a novel inhibitor of hepatitis B virus and HBsAg secretion. Antiviral Res., 2014, 107, 6-15.
[http://dx.doi.org/10.1016/j.antiviral.2014.04.002] [PMID: 24746457]
[23]
Shin, Y.S.; Jarhad, D.B.; Jang, M.H.; Kovacikova, K.; Kim, G.; Yoon, J.; Kim, H.R.; Hyun, Y.E.; Tipnis, A.S.; Chang, T.S.; van Hemert, M.J.; Jeong, L.S. Identification of 6′-β-fluoro-homoaristeromycin as a potent inhibitor of chikungunya virus replication. Eur. J. Med. Chem., 2020, 187, 111956-111965.
[http://dx.doi.org/10.1016/j.ejmech.2019.111956] [PMID: 31841728]
[24]
Santosh, R.; Selvam, M.K.; Kanekar, S.U.; Nagaraja, G.K. Synthesis, characterization, antibacterial and antioxidant studies of some heterocyclic compounds from triazole-linked chalcone derivatives. ChemistrySelect, 2018, 3(23), 6338-6343.
[http://dx.doi.org/10.1002/slct.201800905]
[25]
Rastegari, A.; Nadri, H.; Mahdavi, M.; Moradi, A.; Mirfazli, S.S.; Edraki, N.; Moghadam, F.H.; Larijani, B.; Akbarzadeh, T.; Saeedi, M. Design, synthesis and anti-Alzheimer’s activity of novel 1,2,3-triazole-chromenone carboxamide derivatives. Bioorg. Chem., 2019, 83, 391-401.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.065] [PMID: 30412794]
[26]
Hamed, A.A.; Abdelhamid, I.A.; Saad, G.R.; Elkady, N.A.; Elsabee, M.Z. Synthesis, characterization and antimicrobial activity of a novel chitosan Schiff bases based on heterocyclic moieties. Int. J. Biol. Macromol., 2020, 153, 492-501.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.302] [PMID: 32112843]
[27]
Zhao, S.; Zhang, X.; Wei, P.; Su, X.; Zhao, L.; Wu, M.; Hao, C.; Liu, C.; Zhao, D.; Cheng, M. Design, synthesis and evaluation of aromatic heterocyclic derivatives as potent antifungal agents. Eur. J. Med. Chem., 2017, 137, 96-107.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.043] [PMID: 28558334]
[28]
Mori, A.; Sekiguchi, A.; Masui, K.; Shimada, T.; Horie, M.; Osakada, K.; Kawamoto, M.; Ikeda, T. Facile synthesis of 2,5-diarylthiazoles via palladium-catalyzed tandem C-H substitutions. Design of tunable light emission and liquid crystalline characteristics. J. Am. Chem. Soc., 2003, 125(7), 1700-1701.
[http://dx.doi.org/10.1021/ja0289189] [PMID: 12580586]
[29]
Platon, M.; Amardeil, R.; Djakovitch, L.; Hierso, J.C. Progress in palladium-based catalytic systems for the sustainable synthesis of annulated heterocycles: A focus on indole backbones. Chem. Soc. Rev., 2012, 41(10), 3929-3968.
[http://dx.doi.org/10.1039/c2cs15350e] [PMID: 22447100]
[30]
Inamoto, K. Synthesis of heterocyclic compounds through palladium-catalyzed C-H cyclization processes. Chem. Pharm. Bull. (Tokyo), 2013, 61(10), 987-996.
[http://dx.doi.org/10.1248/cpb.c13-00420] [PMID: 24088691]
[31]
Yu, J-Q.; Mei, T-S.; Kou, L.; Ma, S.; Engle, K. Heterocycle formation via palladium-catalyzed C-H functionalization. Synthesis, 2012, 44(12), 1778-1791.
[http://dx.doi.org/10.1055/s-0031-1289766] [PMID: 27397938]
[32]
Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev., 2002, 102(5), 1359-1470.
[http://dx.doi.org/10.1021/cr000664r] [PMID: 11996540]
[33]
Seregin, I.V.; Gevorgyan, V. Direct transition metal-catalyzed functionalization of heteroaromatic compounds. Chem. Soc. Rev., 2007, 36(7), 1173-1193.
[http://dx.doi.org/10.1039/b606984n] [PMID: 17576484]
[34]
Ackermann, L.; Vicente, R.; Kapdi, A.R. Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage. Angew. Chem. Int. Ed., 2009, 48(52), 9792-9826.
[http://dx.doi.org/10.1002/anie.200902996] [PMID: 19998294]
[35]
Chen, R.; Jalili, Z.; Tayebee, R. UV-visible light-induced photochemical synthesis of benzimidazoles by coomassie brilliant blue coated on W–ZnO@NH2 nanoparticles. RSC Advances, 2021, 11(27), 16359-16375.
[http://dx.doi.org/10.1039/D0RA10843J] [PMID: 35479136]
[36]
Saha, D.; Dey, R.; Ranu, B.C. A simple and efficient one-pot synthesis of substituted benzo[b]furans by sonogashira coupling–5-endo-dig cyclization catalyzed by palladium nanoparticles in water under ligand- and copper-free aerobic conditions. Eur. J. Org. Chem., 2010, 2010(31), 6067-6071.
[http://dx.doi.org/10.1002/ejoc.201000980]
[37]
Vlaar, T.; Cioc, R.C.; Mampuys, P.; Maes, B.U.W.; Orru, R.V.A.; Ruijter, E. Sustainable synthesis of diverse privileged heterocycles by palladium-catalyzed aerobic oxidative isocyanide insertion. Angew. Chem. Int. Ed., 2012, 51(52), 13058-13061.
[http://dx.doi.org/10.1002/anie.201207410] [PMID: 23161862]
[38]
Janssens, F.; Torremans, J.; Janssen, M.; Stokbroekx, R.A.; Luyckx, M.; Janssen, P.A.J. New antihistaminic N-heterocyclic 4-piperidinamines. 2. Synthesis and antihistaminic activity of 1-[(4-fluorophenyl)methyl]-N-(4-piperidinyl)-1H-benzimidazol-2-amines. J. Med. Chem., 1985, 28(12), 1934-1943.
[http://dx.doi.org/10.1021/jm00150a029] [PMID: 3934386]
[39]
Pal, R.; Chatterjee, N.; Roy, M.; Nouh, E.S.A.; Sarkar, S.; Jaisankar, P.; Sarkar, S.; Sen, A.K. Reusable palladium nanoparticles in one-pot domino Sonogashira-cyclization: regio- and stereo-selective syntheses of (Z)-3-methyleneisoindoline-1-ones and furo[3,2- h]quinolines in water. Tetrahedron Lett., 2016, 57(1), 43-47.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.059]
[40]
Duan, Z.; Zhang, L.; Zhang, W.; Lu, L.; Zeng, L.; Shi, R.; Lei, A. Palladium-catalyzed electrooxidative C–H amination towards the synthesis of pyrido[1,2-a]benzimidazoles with hydrogen evolution. ACS Catal., 2020, 10(6), 3828-3831.
[http://dx.doi.org/10.1021/acscatal.0c00103]
[41]
Ramesh, K.; Satyanarayana, G. Propargyl alcohols as alkyne sources: Synthesis of heterocyclic compounds under microwave irradiation. J. Organomet. Chem., 2020, 922, 121350-121357.
[http://dx.doi.org/10.1016/j.jorganchem.2020.121350]
[42]
Sharma, U.; Kancherla, R.; Naveen, T.; Agasti, S.; Maiti, D. Palladium-catalyzed annulation of diarylamines with olefins through C-H activation: direct access to N-arylindoles. Angew. Chem. Int. Ed., 2014, 53(44), 11895-11899.
[http://dx.doi.org/10.1002/anie.201406284] [PMID: 25204895]
[43]
Sujeevan Reddy, G.; Sandeep Kumar, J.; Thirupataiah, B.; Amirul Hossain, K.; Babu Nallapati, S.; Bhat Giliyaru, V.; Chandrashekhar Hariharapura, R.; Gautham Shenoy, G.; Pal, M. Propargylamines in Pd/Cu-catalyzed tandem coupling-cyclization-N-deprotection in a single pot: Construction of N-unsubstituted vs. N-sulfonyl indole ring. Tetrahedron Lett., 2021, 77, 153213-153218.
[http://dx.doi.org/10.1016/j.tetlet.2021.153213]
[44]
Zhou, F.; Li, C.; Li, M.; Jin, Y.; Jiang, H.; Zhang, Y.; Wu, W. Synthesis of 2-isoxazolyl-2,3-dihydrobenzofurans via palladium-catalyzed cascade cyclization of alkenyl ethers. Chem. Commun. (Camb.), 2021, 57(39), 4799-4802.
[http://dx.doi.org/10.1039/D1CC00709B] [PMID: 33982707]
[45]
Sun, M.; Chen, W.; Xia, X.; Shen, G.; Ma, Y.; Yang, J.; Ding, H.; Wang, Z. Palladium-catalyzed tandem dehydrogenative (4 + 2) annulation of terminal olefins with N-sulfonyl amides via C−H Activations. Org. Lett., 2020, 22(8), 3229-3233.
[http://dx.doi.org/10.1021/acs.orglett.0c01011] [PMID: 32216363]
[46]
Steingruber, H.S.; Mendioroz, P.; Diez, A.S.; Gerbino, D.C. A green nanopalladium-supported catalyst for the microwave assisted direct synthesis of xanthones. Synthesis, 2020, 52(4), 619-628.
[http://dx.doi.org/10.1055/s-0039-1691069]
[47]
Zhang, Y.; Xiong, W.; Chen, L.; Shao, Y.; Li, R.; Chen, Z.; Ge, J.; Lv, N.; Chen, J. Palladium-catalyzed cascade reactions in aqueous media: Synthesis and photophysical properties of pyrazino-fused quinazolinones. Org. Chem. Front., 2021, 8(2), 304-309.
[http://dx.doi.org/10.1039/D0QO01244K]
[48]
Arya, A.; Mahajan, A.; Chundawat, T.S. Microwave-assisted one-pot synthesis of 2-substituted quinolines by using palladium nanoparticles as a catalyst developed from green alga Botryococcus braunii. Curr. Organocatal., 2020, 7(2), 82-88.
[http://dx.doi.org/10.2174/2213337206666190625112833]
[49]
Sun, W.W.; Cao, P.; Mei, R.Q.; Li, Y.; Ma, Y.L.; Wu, B. Palladium-catalyzed unactivated C(sp3)-H bond activation and intramolecular amination of carboxamides: A new approach to β-lactams. Org. Lett., 2014, 16(2), 480-483.
[http://dx.doi.org/10.1021/ol403364k] [PMID: 24341538]
[50]
Liang, Z.; Ju, L.; Xie, Y.; Huang, L.; Zhang, Y. Free-amine-directed alkenylation of C(sp2)-H and cycloamination by palladium catalysis. Chemistry, 2012, 18(49), 15816-15821.
[http://dx.doi.org/10.1002/chem.201202672] [PMID: 23055185]
[51]
Roy, N.; Paira, P. Combined palladium/eosin Y-catalysed direct synthesis of anticancer biarylquinolinooxazocino-quinoxaline-1-ones under visible light in one-pot sequence: A revisited proof of concept. Monatsh. Chem., 2020, 151(7), 1163-1172.
[http://dx.doi.org/10.1007/s00706-020-02641-2]
[52]
Wu, X.F.; Neumann, H.; Beller, M. Synthesis of heterocycles via palladium-catalyzed carbonylations. Chem. Rev., 2013, 113(1), 1-35.
[http://dx.doi.org/10.1021/cr300100s] [PMID: 23039127]
[53]
Gabriele, B.; Mancuso, R.; Salerno, G.; Ruffolo, G.; Costa, M.; Dibenedetto, A. A novel and efficient method for the catalytic direct oxidative carbonylation of 1,2- and 1,3-diols to 5-membered and 6-membered cyclic carbonates. Tetrahedron Lett., 2009, 50(52), 7330-7332.
[http://dx.doi.org/10.1016/j.tetlet.2009.10.054]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy