Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Water Mediated Green Method Synthesis of Bioactive Heterocyclic Reported Between 2012-2021 Accelerated by Microwave Irradiation: A Decennary Update

Author(s): Kantharaju Kamanna* and Yamanappagouda Amaregouda

Volume 10, Issue 3, 2023

Published on: 10 August, 2023

Page: [160 - 179] Pages: 20

DOI: 10.2174/2213337210666230626105521

Price: $65

conference banner
Abstract

The diverse field of chemistry demands various greener pathways in our quest to maintain sustainability. The utilization of energy inputs (mechanochemistry, ultrasound, or microwave irradiation), photochemistry, and greener reaction media being applied to organic synthesis are the key trends in the greener and sustainable process development in the current synthetic chemistry. These strategic methods aim to address the majority of the green chemistry principles, developing functional chemicals with less amount of waste production. In the synthesis of biologically potential heterocyclic molecules, green chemistry is a topic of great interest. It encompasses all branches of chemistry and is found in the notion of conducting chemical reactions while also conserving the environment through pollution-free chemical synthesis. Water as a solvent media is an excellent choice of solvent in organic synthesis development in the present day, as it is highly abundant, nontoxic, and non-combustible. Medicinal chemists have recently focused their attention on environmentally friendly procedures that use greener solvent media. Using water as a solvent, several studies on the process of optimization and selectivity have been reported, and the combination with microwave irradiation has emerged as a green chemistry protocol to produce high atom economy and yields. In this review, we have compiled microwave-assisted organic synthesis in aqueous media, including examples of the most cutting-edge methodologies employed for the heterocyclic scaffolds used in medicinal chemistry. It covers the most valuable advanced synthetics taking place in the area of heterocyclic molecule synthesis, between the decennary period of 2012 to 2021. The reported work discusses both synthetic and pharmacological applications.

Graphical Abstract

[1]
Lindström, U.M. Stereoselective organic reactions in water. Chem. Rev., 2002, 102(8), 2751-2772.
[http://dx.doi.org/10.1021/cr010122p] [PMID: 12175267]
[2]
Shanab, K.; Neudorfer, C.; Schirmer, E.; Spreitzer, H. Green solvents in organic synthesis: An overview. Curr. Org. Chem., 2013, 17(11), 1179-1187.
[http://dx.doi.org/10.2174/1385272811317110005]
[3]
Sheldon, R.A. Metrics of green chemistry and sustainability: Past, present, and future. ACS Sustain. Chem. Eng., 2018, 6(1), 32-48.
[http://dx.doi.org/10.1021/acssuschemeng.7b03505]
[4]
Polshettiwar, V.; Nadagouda, M.N.; Varma, R.S. Microwave-assisted chemistry: A rapid and sustainable route to synthesis of organics and nanomaterials. Aust. J. Chem., 2009, 62(1), 16-26.
[http://dx.doi.org/10.1071/CH08404]
[5]
Kerton, F.M.; Marriott, R. Alternative solvents for green chemistry. In: Soc. Chem; 2nd ed, 2013.
[http://dx.doi.org/10.1039/9781849736824]
[6]
Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[7]
Chen, X.; Liu, X.; Burgers, M.A.; Huang, Y.; Bazan, G.C. Green-solvent-processed molecular solar cells. Angew. Chem. Int. Ed., 2014, 53(52), 14378-14381.
[http://dx.doi.org/10.1002/anie.201409208] [PMID: 25389005]
[8]
Mohammad, A. Inamuddin, Green Solvents II: Properties and applications of ionic liquids; Springer, 2012.
[http://dx.doi.org/10.1007/978-94-007-2891-2]
[9]
Watanabe, K. The toxicological assessment of cyclopentyl methyl ether (CPME) as a green solvent. Molecules, 2013, 18(3), 3183-3194.
[http://dx.doi.org/10.3390/molecules18033183] [PMID: 23478516]
[10]
Choi, Y.H.; Verpoorte, R. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr. Opin. Food Sci., 2019, 26, 87-93.
[http://dx.doi.org/10.1016/j.cofs.2019.04.003]
[11]
Vafaeezadeh, M.; Hashemi, M.M. Polyethylene glycol (PEG) as a green solvent for carbon-carbon bond formation reactions. J. Mol. Liq., 2015, 207, 73-79.
[http://dx.doi.org/10.1016/j.molliq.2015.03.003]
[12]
Díaz-Álvarez, A.E.; Francos, J.; Croche, P.; Cadierno, V. Recent advances in the use of glycerol as green solvent for synthetic organic chemistry. Curr. Green Chem., 2013, 1(1), 51-65.
[http://dx.doi.org/10.2174/221334610101131218094907]
[13]
Malolan, R.; Gopinath, K.P.; Vo, D.V.N.; Jayaraman, R.S.; Adithya, S.; Ajay, P.S.; Arun, J. Green ionic liquids and deep eutectic solvents for desulphurization, denitrification, biomass, biodiesel, bioethanol and hydrogen fuels: A review. Environ. Chem. Lett., 2021, 19(2), 1001-1023.
[http://dx.doi.org/10.1007/s10311-020-01113-7]
[14]
Lim, W.L.; Gunny, A.A.N.; Kasim, F.H.; AlNashef, I.M.; Arbain, D. Alkaline deep eutectic solvent: A novel green solvent for lignocellulose pulping. Cellulose, 2019, 26(6), 4085-4098.
[http://dx.doi.org/10.1007/s10570-019-02346-8]
[15]
Paul, S.; Pradhan, K.; Das, R.A. ethyl lactate as a green solvent: A promising bio-compatible media for organic synthesis. Curr. Green Chem., 2015, 3(1), 111-118.
[http://dx.doi.org/10.2174/2213346103666151203203139]
[16]
Kong, D.; Dolzhenko, A.V. Cyrene: A bio-based sustainable solvent for organic synthesis. Sustain. Chem. Pharm., 2022, 25, 100591.
[http://dx.doi.org/10.1016/j.scp.2021.100591]
[17]
Sarmah, M.; Mondal, M.; Bora, U. Agro-waste extract based solvents: Emergence of novel green solvent for the design of sustainable processes in catalysis and organic chemistry. ChemistrySelect, 2017, 2(18), 5180-5188.
[http://dx.doi.org/10.1002/slct.201700580]
[18]
Akiya, N.; Savage, P.E. Roles of water for chemical reactions in high-temperature water. Chem. Rev., 2002, 102(8), 2725-2750.
[http://dx.doi.org/10.1021/cr000668w] [PMID: 12175266]
[19]
Walsh, P.J.; Kozlowski, M.C. Fundamentals of asymmetric catalysis. In: Univ. Sci. Book, 2009, 48(14)
[http://dx.doi.org/10.1002/anie.200900669]
[20]
Hashiguchi, B.G.; Steven, M.; Bischof, S.M.; Konnick, M.; Roy, A.P. Designing catalysts for functionalization of unactivated C-H bonds based on the CH activation reaction. Chem. Res., 2012, 6(45), 885-898.
[http://dx.doi.org/10.1021/ar200250r] [PMID: 22482496]
[21]
Amara, Z.; Bellamy, J.F.B; Horvath, R.; Miller, S.J.; Beeby, A.; Burgard, A.; Rossen, K.; Poliakoff, M.; George, M.W. Applying green chemistry to the photochemical route to artemisinin. Nat. Chem., 2021, 7(6), 489-495.
[http://dx.doi.org/10.1038/nchem.2261]
[22]
Sun, K.; Lv, Q.Y.; Chen, X.L.; Qu, L.B.; Yu, B. Recent advances in visible-light-mediated organic transformations in water. Green Chem., 2021, 23(1), 232-248.
[http://dx.doi.org/10.1039/D0GC03447A]
[23]
Sheldon, R.A. Green solvents for sustainable organic synthesis: state of the art. Green Chem., 2005, 7(5), 267-278.
[http://dx.doi.org/10.1039/b418069k]
[24]
Breslow, R.; Guo, T. Diels-Alder reactions in nonaqueous polar solvents. Kinetic effects of chaotropic and antichaotropic agents and of β.-cyclodextrin. J. Am. Chem. Soc., 1988, 110(17), 5613-5617.
[http://dx.doi.org/10.1021/ja00225a003]
[25]
Kool, E.T.; Breslow, R. Dichotomous salt effects in the hydrophobic acceleration of the benzoin condensation. J. Am. Chem. Soc., 1988, 110(5), 1596-1597.
[http://dx.doi.org/10.1021/ja00213a036]
[26]
Li, C.J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev., 2006, 35(1), 68-82.
[http://dx.doi.org/10.1039/B507207G] [PMID: 16365643]
[27]
Wang, J. Organic reactions in the presence of water baran group meeting. Inorg. Chem., 1993, 138(9), 4302-4305.
[28]
Harry, N.A.; Radhika, S.; Neetha, M.; Anilkumar, G. Recent advances and prospects of organic reactions “on water”. ChemistrySelect, 2019, 4(42), 12337-12355.
[http://dx.doi.org/10.1002/slct.201903360]
[29]
Cortes-Clerget, M.; Yu, J.; Kincaid, J.R.A.; Walde, P.; Gallou, F.; Lipshutz, B.H. Water as the reaction medium in organic chemistry: From our worst enemy to our best friend. Chem. Sci., 2021, 12(12), 4237-4266.
[http://dx.doi.org/10.1039/D0SC06000C] [PMID: 34163692]
[30]
Kitanosono, T.; Masuda, K.; Xu, P.; Kobayashi, S. Catalytic organic reactions in water toward sustainable society. Chem. Rev., 2018, 118(2), 679-746.
[http://dx.doi.org/10.1021/acs.chemrev.7b00417] [PMID: 29218984]
[31]
Chanda, A.; Fokin, V.V. Organic synthesis “on water”. Chem. Rev., 2009, 109(2), 725-748.
[http://dx.doi.org/10.1021/cr800448q] [PMID: 19209944]
[32]
Kamanna, K.; Amaregouda, Y. Synthesis of bioactive scaffolds catalyzed by agro-waste-based solvent medium. In: Synthesis of Bioactive Scaffolds; , 2022; p. 287-330.
[http://dx.doi.org/10.1515/9783110797428-008]
[33]
Jessop, P.G. Searching for green solvents. Green Chem., 2011, 13(6), 1391-1398.
[http://dx.doi.org/10.1039/c0gc00797h]
[34]
Amaregouda, Y.; Kamanna, K. Physico-chemical, in-vitro cytotoxicity and antimicrobial evaluation of L-valine functionalised CuO NPs on polyvinyl alcohol and blended carboxymethyl cellulose films. Indian Chem. Engineer, 2022, 0(0), 1-10.
[http://dx.doi.org/10.1080/00194506.2022.2046511]
[35]
Amaregouda, Y.; Gasti, T.; Kamanna, K. Optoelectronic, microstructural, ecofriendly and photo-catalytic evaluation of aspartic acid cross-linked poly (Vinyl Alcohol)/Copper oxidenanotubescomposite films. IOP Conf. Ser.: Mater. Sci. Eng., 2022, 012008.
[http://dx.doi.org/10.1088/1757-899X/1221/1/012008]
[36]
Sahoo, B. M.; Banik, B. K. Solvent-less reactions: Green and sustainable approaches in medicinal chemistry Green. Appr. Med. Chem. Sustain. Drug Des., 2020, 523-548.
[http://dx.doi.org/10.1016/B978-0-12-817592-7.00014-9]
[37]
Banerjee, B. Microwave-assisted carbon-carbon and carbon-heteroatom bond forming reactions: Part 2B. Curr. Microw. Chem., 2021, 8(3), 138-139.
[http://dx.doi.org/10.2174/221333560803211230153553]
[38]
Amaregouda, Y.; Kamanna, K.; Gasti, T. Biodegradable polyvinyl alcohol/carboxymethyl cellulose composite incorporated with l-alanine functionalized mgo nanoplates: Physico-chemical and food packaging features. J. Inorg. Organomet. Polym. Mater., 2022, 32(6), 2040-2055.
[http://dx.doi.org/10.1007/s10904-022-02261-9]
[39]
Amaregouda, Y.; Kamanna, K.; Gasti, T.; Kumbar, V. Enhanced functional properties of biodegradable polyvinyl alcohol/carboxymethyl cellulose (pva/cmc) composite films reinforced with l-alanine surface modified cuo nanorods. J. Polym. Environ., 2022, 30(6), 2559-2578.
[http://dx.doi.org/10.1007/s10924-022-02377-6]
[40]
Kamanna, K.; Amaregouda, Y. Microwave-assisted organo-catalyzed c-c and c-x (heteroatom) bondforming reactions: An overview. Curr. Microw. Chem., 2021, 8(3), 173-203.
[http://dx.doi.org/10.2174/2213335608666210922155503]
[41]
Azar, P.A.; Tehrani, M.S.; Hosain, S.W.; Khalilzadeh, M.A.; Zanousi, M.B.P. Solvent-free microwave extraction of essential oil of artemisia tschernieviana. Asian J. Chem., 2012, 24(11), 5388-5390.
[42]
Tehrani, M.S.; Azar, P.A.; Hosain, S.W.; Khalilzadeh, M.A.; Zanousi, M.B.P. Composition of essential oil of artemisia absinthium by three different extraction methods: Hydrodistillation, solvent-free microwave extraction & headspace solid-phase microextraction. Asian J. Chem., 2012, 24(11), 5371-5376.
[43]
Keipour, H.; Hosseini, A.; Khalilzadeh, A.M.; Ollevier, T. Ultrasound-promoted knoevenagel condensation catalyzed by KF-clinoptilolite. Lett. Org. Chem., 2015, 12(9), 645-650.
[http://dx.doi.org/10.2174/1570178612666150722234148]
[44]
Poor Heravi, M.R.; Hemmati, S.; Nami, N.; Khalilzadeh, M.A. Synthesis of novel biologically important 5-Amino-2-Oxo-7-Aryl-3,7-Dihydro-2 H -Pyrano[2,3-d]Thiazole-6-carbonitriles in trifluoroethanol (TFE) under ultrasound irradiation condition and their antimicrobial activity. Polycycl. Aromat. Compd., 2021, 41(10), 2263-2273.
[http://dx.doi.org/10.1080/10406638.2019.1711432]
[45]
Sharafian, S.; Hossaini, Z.; Rostami-Charati, F.; Khalilzadeh, M.A. Ultrasound-promoted green synthesis of pyrido[2,1-a]isoquinoline derivatives and studies on their antioxidant activity. Comb. Chem., 2021, 24(1), 119-128.
[PMID: 32504497]
[46]
Sharafian, S.; Hossaini, Z.; Rostami-Charati, F.; Khalilzadeh, M. A. Green synthesis of novel phosphonate derivatives using ultrasonic irradiation. Chem. heterocycl., 2020, 56(10), 1283-1291.
[http://dx.doi.org/10.1007/s10593-020-02812-3]
[47]
Amirsoleimani, M.; Khalilzadeh, M.A.; Zareyee, D. Nano-sized clinoptilolite as a green catalyst for the rapid and chemoselective N-formylation of amines. React. Kinet. Mech. Catal., 2020, 131(2), 859-873.
[http://dx.doi.org/10.1007/s11144-020-01886-6]
[48]
Ghanaat, J.; Khalilzadeh, M.A.; Zareyee, D. Molecular docking studies, biological evaluation and synthesis of novel 3-mercapto-1,2,4-triazole derivatives. Mol. Divers., 2021, 25(1), 223-232.
[http://dx.doi.org/10.1007/s11030-020-10050-0] [PMID: 32067134]
[49]
Oladee, R.; Zareyee, D.; Khalilzadeh, M.A. KF/clinoptilolite nanoparticles as an efficient nanocatalyst for the Strecker synthesis of α-aminonitriles. Monatsh. Chem., 2020, 151(4), 611-615.
[http://dx.doi.org/10.1007/s00706-020-02574-w]
[50]
Ghanaat, J.; Khalilzadeh, M.A.; Zareyee, D.; Shokouhimehr, M.; Varma, R.S. Cell cycle inhibition, apoptosis, and molecular docking studies of the novel anticancer bioactive 1,2,4-triazole derivatives. Struct. Chem., 2020, 31(2), 691-699.
[http://dx.doi.org/10.1007/s11224-019-01453-3]
[51]
Dastoorani, P.; Khalilzadeh, M.A.; Khaleghi, F.; Maghsoodlou, M.T.; Kaminsky, W.; Shokuhi Rad, A. Experimental and computational studies on the synthesis of diastereoselective natural-based Meldrum spiro dibenzofuran derivatives. New J. Chem., 2019, 43(17), 6615-6621.
[http://dx.doi.org/10.1039/C9NJ00766K]
[52]
Ghanaat, J.; Khalilzadeh, M.A.; Zareyee, D. KF/CP NPs as an efficient nanocatalyst for the synthesis of 1, 2, 4-triazoles: study of antioxidant and antimicrobial activity. J. Chem. Soc. Chem. Commun., 2020, 2(2), 2020-2212.
[53]
Urinda, S.; Kundu, D.; Majee, A. In water indium triflate-catalyzed one-pot synthesis Of. Heteroatom Chem., 2009, 20(4), 232-234.
[http://dx.doi.org/10.1002/hc.20539]
[54]
Dastoorani, P.; Maghsoodlou, M.T.; Khalilzadeh, M.A.; Sarina, E. Synthesis of new dibenzofuran derivatives via Diels-Alder reaction of euparin with activated acetylenic esters. Tetrahedron Lett., 2016, 57(3), 314-316.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.021]
[55]
Ibanez, J.G.; Rincón, M.E.; Gutierrez-Granados, S.; Chahma, M.; Jaramillo-Quintero, O.A.; Frontana-Uribe, B.A. Conducting polymers in the fields of energy, environmental remediation, and chemical-chiral sensors. Chem. Rev., 2018, 118(9), 4731-4816.
[http://dx.doi.org/10.1021/acs.chemrev.7b00482] [PMID: 29630346]
[56]
Brostow, W.; Lobland, H.E.H. Materials: Introduction and applications; John Wiley & Sons, 2016.
[57]
Chaudhari, B.R. Microwave assisted knoevenagel condensation: A review article. World J. Pharm. Res., 2016, 5(11), 1644-1658.
[http://dx.doi.org/10.20959/wjpr201611-7382]
[58]
Phukan, M. Development of green methodologies for selected organic reactions using solventless techniques or aqueous medium as green solvent. 2010.
[59]
Baig, R.B.N.; Varma, R.S. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev., 2012, 41(4), 1559-1584.
[http://dx.doi.org/10.1039/C1CS15204A] [PMID: 22076552]
[60]
Baxendale, I.R. The integration of flow reactors into synthetic organic chemistry. J. Chem. Technol. Biotechnol., 2013, 88(4), 519-552.
[http://dx.doi.org/10.1002/jctb.4012]
[61]
Krištofíková, D.; Modrocká, V. Mečiarová, M.; Šebesta, R. Green asymmetric organocatalysis. ChemSusChem, 2020, 13(11), 2828-2858.
[http://dx.doi.org/10.1002/cssc.202000137] [PMID: 32141177]
[62]
Masi, F.; Rizzo, A.; Regelsberger, M. The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. J. Environ. Manage., 2018, 216, 275-284.
[http://dx.doi.org/10.1016/j.jenvman.2017.11.086] [PMID: 29224716]
[63]
Mehrotra, P.; Chatterjee, B.; Sen, S. EM-wave biosensors: A review of RF, microwave, mm-wave and optical sensing. Sensors, 2019, 19(5), 1013.
[http://dx.doi.org/10.3390/s19051013] [PMID: 30818865]
[64]
Kaur, N. Microwave-assisted synthesis of seven-membered s -heterocycles. Synth. Commun., 2014, 44(22), 3201-3228.
[http://dx.doi.org/10.1080/00397911.2013.798665]
[65]
Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev., 2007, 107(6), 2563-2591.
[http://dx.doi.org/10.1021/cr0509410] [PMID: 17451275]
[66]
Rathi, A.K.; Gawande, M.B.; Zboril, R.; Varma, R.S. Microwave-assisted synthesis - Catalytic applications in aqueous media. Coord. Chem. Rev., 2015, 291, 68-94.
[http://dx.doi.org/10.1016/j.ccr.2015.01.011]
[67]
Zangade, S.; Patil, P. A review on solvent-free methods in organic synthesis. Curr. Org. Chem., 2020, 23(21), 2295-2318.
[http://dx.doi.org/10.2174/1385272823666191016165532]
[68]
Baharfar, R.; Azimi, R.; Asdollahpour, Z. Efficient microwave-assisted diastereoselective synthesis of indole-based 4,5-dihydrofurans via a one-pot, three-component reaction in water. Environ. Chem. Lett., 2018, 16(2), 677-682.
[http://dx.doi.org/10.1007/s10311-017-0686-3]
[69]
El-Adl, K.; El-Helby, A.A.; Sakr, H.; Eissa, I.H.; El-Hddad, S.S.A.; M I A Shoman, F. Design, F. Design, synthesis, molecular docking and anticancer evaluations of 5-benzylidenethiazolidine-2,4-dione derivatives targeting VEGFR-2 enzyme. Bioorg. Chem., 2020, 102, 104059.
[http://dx.doi.org/10.1016/j.bioorg.2020.104059] [PMID: 32653608]
[70]
Ma, L.; Xie, C.; Ma, Y.; Liu, J.; Xiang, M.; Ye, X.; Zheng, H.; Chen, Z.; Xu, Q.; Chen, T.; Chen, J.; Yang, J.; Qiu, N.; Wang, G.; Liang, X.; Peng, A.; Yang, S.; Wei, Y.; Chen, L. Synthesis and biological evaluation of novel 5-benzylidenethiazolidine-2,4-dione derivatives for the treatment of inflammatory diseases. J. Med. Chem., 2011, 54(7), 2060-2068.
[http://dx.doi.org/10.1021/jm1011534] [PMID: 21381754]
[71]
Ma, L.; Pei, H.; Lei, L.; He, L.; Chen, J.; Liang, X.; Peng, A.; Ye, H.; Xiang, M.; Chen, L. Structural exploration, synthesis and pharmacological evaluation of novel 5-benzylidenethiazolidine-2,4-dione derivatives as iNOS inhibitors against inflammatory diseases. Eur. J. Med. Chem., 2015, 92, 178-190.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.036] [PMID: 25555141]
[72]
Mangasuli, S.N. Synthesis of novel coumarin-thiazolidine-2,4-dione derivatives: An approach to computational studies and biological evaluation. Results Chem., 2021, 3(3), 100105.
[http://dx.doi.org/10.1016/j.rechem.2021.100105]
[73]
Likhar, P.R.; Reddy, G.N.; Reddy, M.R. Microwave-assisted, water-mediated Michael addition for synthesis of kojic acid derivatives. Res. Chem. Intermed., 2016, 42(6), 5983-5989.
[http://dx.doi.org/10.1007/s11164-015-2419-1]
[74]
Liu, X.; Xia, W.; Jiang, Q.; Xu, Y.; Yu, P. Synthesis, characterization, and antimicrobial activity of kojic acid grafted chitosan oligosaccharide. J. Agric. Food Chem., 2014, 62(1), 297-303.
[http://dx.doi.org/10.1021/jf404026f] [PMID: 24364425]
[75]
Nageswara Rao, N.; Meshram, H.M. Microwave assisted water mediated benzylic C-H functionalization of methyl aza-arenes and nucleophilic addition to aromatic aldehydes. Tetrahedron Lett., 2013, 54(37), 5087-5090.
[http://dx.doi.org/10.1016/j.tetlet.2013.07.053]
[76]
Dar, U.A.; Salunke-Gawali, S.; Shinde, D.; Bhand, S.; Satpute, S. Thermal and spectral studies of transition metal complexes of 2-bromo-3-hydroxynaphthalene-1,4-dione: Evaluation of antibacterial activity against six bacterial strains. Engineered Sci., 2021, 15, 105-115.
[http://dx.doi.org/10.30919/es8d492]
[77]
Kumar, M.; Sribalan, R.; Padmini, V. Er(OTf)3 assisted efficient synthesis of 3-hydroxynaphthalene-1, 4-dione derivatives via pseudo four-component reactions and their biological evaluation. ChemistrySelect, 2017, 2(1), 489-493.
[http://dx.doi.org/10.1002/slct.201601340]
[78]
Wang, S.L.; Ding, J.; Shi, F.; Liu, Y.P.; Jiang, B.; Ma, N.; Tu, S.J. Green synthesis of 3-hydroxynaphthalene-1,4-dione derivatives via microwave-assisted three-component reactions in neat water. J. Heterocycl. Chem., 2012, 49(3), 521-525.
[http://dx.doi.org/10.1002/jhet.798]
[79]
Fisher, L.M.; Kim, E.E.; Moskalev, N.V.; Gribble, G.W. Asymmetric syntheses of potential anti-malarial drugs designed from Fieser’s 2-hydroxy-3-(2-methyloctyl)naphthalene-1,4-dione. ARKIVOC, 2020, 2020(7), 56-66.
[http://dx.doi.org/10.24820/ark.5550190.p011.206]
[80]
Thakur, P.B.; Sirisha, K.; Sarma, A.V.S.; Meshram, H.M. Microwave assisted rapid, catalyst-free, and efficient synthesis of a new class of diversely functionalized 3-hydroxy-2-oxindole scaffolds under aqueous reaction media. Tetrahedron Lett., 2014, 55(15), 2459-2462.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.008]
[81]
Peddibhotla, S. 3-Substituted-3-hydroxy-2-oxindole, an emerging new scaffold for drug discovery with potential anti-cancer and other biological activities. Curr. Bioact. Compd., 2009, 5(1), 20-38.
[http://dx.doi.org/10.2174/157340709787580900]
[82]
Gawande, M.B.; Bonifácio, V.D.B.; Luque, R.; Branco, P.S.; Varma, R.S. Benign by design: Catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev., 2013, 42(12), 5522-5551.
[http://dx.doi.org/10.1039/c3cs60025d] [PMID: 23529409]
[83]
Aksenov, A.V.; Aksenov, D.A.; Arutiunov, N.A.; Aksenov, N.A.; Aleksandrova, E.V.; Zhao, Z.; Du, L.; Kornienko, A.; Rubin, M. Synthesis of spiro[indole-3,5′-isoxazoles] with anticancer activity via a formal [4 + 1]-spirocyclization of nitroalkenes to indoles. J. Org. Chem., 2019, 84(11), 7123-7137.
[http://dx.doi.org/10.1021/acs.joc.9b00808] [PMID: 31070030]
[84]
Zaheer, Z.; Khan, F.A.K.; Sangshetti, J.N.; Patil, R.H. Expeditious synthesis, antileishmanial and antioxidant activities of novel 3-substituted-4-hydroxycoumarin derivatives. Chin. Chem. Lett., 2016, 27(2), 287-294.
[http://dx.doi.org/10.1016/j.cclet.2015.10.028]
[85]
Elgareib, M.S.A.; Mahdy, A.R.E.; Al-saleem, M.S. NMR spectra investigation of some new prepared tetrasubstituted coumarin derivatives. Mens Agitat., 2018, 13, 1-5.
[86]
Biswal, S.; Sahoo, U.; Sethy, S.; Kumar, H.K.S.; Banerjee, M. Indole: The molecule of diverse biological activities. Asian J. Pharm. Clin. Res., 2012, 5(1), 1-6.
[87]
Joshi, G. G. Microwave assisted organic synthesis: A green chemical approach. Asian J. Pharm. Res. Dev., 2013, 165-177.
[88]
Kandhavelu, M.; Paturu, L.; Mizar, A.; Mahmudov, K.T.; Kopylovich, M.N.; Karp, M.; Yli-Harja, O.; Pombeiro, A.J.L.; Ribeiro, A.S. Synthesis, characterization and antimicrobial activity of arylhydrazones of methylene active compounds. Pharm. Chem. J., 2012, 46(3), 157-164.
[http://dx.doi.org/10.1007/s11094-012-0751-y]
[89]
Blaser, H.U.; Indolese, A.; Naud, F.; Nettekoven, U.; Schnyder, A. Industrial R&D on catalytic C & C and C & N coupling reactions: A personal account on goals, approaches and results. Adv. Synth. Catal., 2004, 346(13-15), 1583-1598.
[http://dx.doi.org/10.1002/adsc.200404156]
[90]
Corbet, J.P.; Mignani, G. Selected patented cross-coupling reaction technologies. Chem. Rev., 2006, 106(7), 2651-2710.
[http://dx.doi.org/10.1021/cr0505268] [PMID: 16836296]
[91]
Evano, G.; Blanchard, N.; Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev., 2008, 108(8), 3054-3131.
[http://dx.doi.org/10.1021/cr8002505] [PMID: 18698737]
[92]
Nicolaou, K.C.; Natarajan, S.; Li, H.; Jain, N.F.; Hughes, R.; Solomon, M.E.; Ramanjulu, J.M.; Boddy, C.N.C.; Takayanagi, M. Total synthesis of vancomycin aglycon—part 1: Synthesis of amino acids 4-7 and construction of the ab-cod ring skeleton. Angew. Chem. Int. Ed., 1998, 37(19), 2708-2714.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19981016)37:19<2708:AID-ANIE2708>3.0.CO;2-E] [PMID: 29711605]
[93]
Deng, H.; Jung, J.K.; Liu, T.; Kuntz, K.W.; Snapper, M.L.; Hoveyda, A.H. Total synthesis of anti-HIV agent chloropeptin I. J. Am. Chem. Soc., 2003, 125(30), 9032-9034.
[http://dx.doi.org/10.1021/ja030249r] [PMID: 15369357]
[94]
De Martino, G.; La Regina, G.; Coluccia, A.; Edler, M.C.; Barbera, M.C.; Brancale, A.; Wilcox, E.; Hamel, E.; Artico, M.; Silvestri, R. Arylthioindoles, potent inhibitors of tubulin polymerization J. Med. Chem., 2004, 47(25), 6120-6123.
[http://dx.doi.org/10.1021/jm049360d] [PMID: 15566282]
[95]
Matsui, J.; Yamamoto, Y.; Funahashi, Y.; Tsuruoka, A.; Watanabe, T.; Wakabayashi, T.; Uenaka, T.; Asada, M. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int. J. Cancer, 2008, 122(3), 664-671.
[http://dx.doi.org/10.1002/ijc.23131] [PMID: 17943726]
[96]
Correa, A.; García Mancheño, O.; Bolm, C. Iron-catalysed carbon-heteroatom and heteroatom-heteroatom bond forming processes. Chem. Soc. Rev., 2008, 37(6), 1108-1117.
[http://dx.doi.org/10.1039/b801794h] [PMID: 18497924]
[97]
Ley, S.V.; Thomas, A.W. Modern synthetic methods for copper-mediated C(aryl)[bond]O, C(aryl)[bond]N, and C(aryl)[bond]S bond formation. Angew. Chem. Int. Ed., 2003, 42(44), 5400-5449.
[http://dx.doi.org/10.1002/anie.200300594] [PMID: 14618572]
[98]
Küçükbay, H.; Part, I. Microwave-assisted synthesis of benzimidazoles: An overview (Until 2013). J. Turkish Chem. Soc., 2016, 4(1), 1-22.
[http://dx.doi.org/10.18596/jotcsa.91217]
[99]
Singh, N.; Pandurangan, A.; Rana, K.; Anand, P.; Ahamad, A.; Tiwari, A.K. Benzimidazole: A short review of their antimicrobial activities. Int. Curr. Pharm. J., 2012, 1(5), 110-118.
[http://dx.doi.org/10.3329/icpj.v1i5.10284]
[100]
Alamgir, M.; Black, D.S.C.; Kumar, N. Synthesis, reactivity and biological activity of benzimidazoles. Top. Heterocycl. Chem., 2007, 87-118.
[http://dx.doi.org/10.1007/7081_2007_088]
[101]
Kokel, A.; Schäfer, C.; Török, B. Microwave-assisted reactions in green chemistry.Encyclopedia of Sustainability Science and Technology Series; Springer Science+Business Media, LLC, 2019, p. 573-612.
[http://dx.doi.org/10.1007/978-1-4939-9060-3_1008]
[102]
Bashiri, M.; Jarrahpour, A.; Rastegari, B.; Iraji, A.; Irajie, C.; Amirghofran, Z.; Malek-Hosseini, S.; Motamedifar, M.; Haddadi, M.; Zomorodian, K.; Zareshahrabadi, Z.; Turos, E. Synthesis and evaluation of biological activities of tripodal imines and β-lactams attached to the 1,3,5-triazine nucleus. Monatsh. Chem., 2020, 151(5), 821-835.
[http://dx.doi.org/10.1007/s00706-020-02592-8]
[103]
Zakia Messasma , Djouhra Aggoun , Selma Houchi , Ali Ourari , Yasmina Ouennoughi , Fatah Keffous , Rachid Mahdadi Biological activities, dft calculations and docking of imines tetradentates ligands, derived from salicylaldehydic compounds as metallo-beta-lactamase inhibitors. J. Mol. Struct., 2021, 1228(129463)
[http://dx.doi.org/10.1016/j.molstruc.2020.129463]
[104]
Majumder, A.; Gupta, R.; Jain, A. Microwave-assisted synthesis of nitrogen-containing heterocycles. Green Chem. Lett. Rev., 2013, 6(2), 151-182.
[http://dx.doi.org/10.1080/17518253.2012.733032]
[105]
Shedid, S.A. Synthesis, characterization and antimicrobial evaluation of some hitherto unknown 4-oxo-thiazoles and thiazolo. Azhar Bull. Sci, 2018, 29(2), 91-104. [ 3, 2-A ].
[106]
Huang, L.H.; Li, Y.; Xu, H.D.; Zheng, Y.F.; Liu, H.M. Synthesis and biological evaluation of novel C6-cyclo secondary amine substituted purine steroid-nucleosides analogues. Steroids, 2014, 85, 13-17.
[http://dx.doi.org/10.1016/j.steroids.2014.03.017] [PMID: 24726440]
[107]
Henary, M.; Kananda, C.; Rotolo, L.; Savino, B.; Owens, E.A.; Cravotto, G. Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry. RSC Advances, 2020, 10(24), 14170-14197.
[http://dx.doi.org/10.1039/D0RA01378A] [PMID: 35498463]
[108]
Tankam, T.; Srisa, J.; Sukwattanasinitt, M.; Wacharasindhu, S. Microwave-enhanced on-water amination of 2-mercaptobenzoxazoles to prepare 2-aminobenzoxazoles. J. Org. Chem., 2018, 83(19), 11936-11943.
[http://dx.doi.org/10.1021/acs.joc.8b01824] [PMID: 30192148]
[109]
Fan, L.; Luo, Z.; Yang, C.; Guo, B.; Miao, J.; Chen, Y.; Tang, L.; Li, Y. Design and synthesis of small molecular 2-aminobenzoxazoles as potential antifungal agents against phytopathogenic fungi. Mol. Divers., 2021, 26, 981-992.
[http://dx.doi.org/10.1007/s11030-021-10213-7] [PMID: 33811571]
[110]
Raj, I.; Shrivastava, D.S.M. Synthesis of transition metal ion complex of 2- aminobenzoxazole and antifungal activity and role in pharmaceutical chemistry. Int. J. Eng. Tech. Manag. Res., 2020, 4(12), 60-64.
[http://dx.doi.org/10.29121/ijetmr.v4.i12.2017.592]
[111]
Rajyalakshmi, G.; Rama Narsimha Reddy, A.; Sarangapani, M. Synthesis and biological activities of some novel 2-amino-(5 or 7-substituted- 2-oxoindolin-3-ylidene) benzoxazole-5-carbohydrazide derivatives. Lett. Drug Des. Discov., 2012, 9(6), 625-632.
[http://dx.doi.org/10.2174/157018012800673029]
[112]
Panda, S.S. Aqua mediated synthesis of bio-active compounds. Mini Rev. Med. Chem., 2013, 13(6), 784-801.
[http://dx.doi.org/10.2174/1389557511313060002] [PMID: 23544463]
[113]
Li, X.Y.; Liu, Y.; Chen, X.L.; Lu, X.Y.; Liang, X.X.; Zhu, S.S.; Wei, C.W.; Qu, L.B.; Yu, B. 6π-Electrocyclization in water: Microwave-assisted synthesis of polyheterocyclic-fused quinoline-2-thiones. Green Chem., 2020, 22(14), 4445-4449.
[http://dx.doi.org/10.1039/C9GC04445K]
[114]
Hussein, A.E.M.; El-Adasy, A.A.; Hafi, I.S.A.; Ishak, E.A.; Gawish, E.H.; El-Gaby, M.S.A. Biological evaluation of some novel thiazole, thiazolo [3, 2-a] pyridine and thiazolo [3′, 2′: 1, 6] pyridine rerivatives containing diphenyl moiety as antimicrobial agents. J. App. Pharm., 2014, 6(3), 296-307.
[115]
Bayat, M.; Safari, F.; Nasri, S.; Hosseini, F.S. A chemoselective synthesis and biological evaluation of novel benzo[g]thiazolo[3,2-a]quinolone derivatives. Monatsh. Chem., 2019, 150(4), 703-710.
[http://dx.doi.org/10.1007/s00706-018-2337-1]
[116]
El-Maghraby, A.A.; Ali, G.A.M.E.H.; Ahmed, A.H.A.; El-Gaby, M.S.A. Studies on thiazolopyridines. Part 1: Antimicrobial activity of some novel fluorinated thiazolo[3,2-a]pyridines and thiazolo[2′3′1,6]pyrido[2,3-d]pyrimidines. Phosphorus Sulfur Silicon Relat. Elem., 2002, 177(2), 293-302.
[http://dx.doi.org/10.1080/10426500210240]
[117]
Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res., 2014, 47(4), 1338-1348.
[http://dx.doi.org/10.1021/ar400309b] [PMID: 24666323]
[118]
La Regina, G.; Bai, R.; Coluccia, A.; Famiglini, V.; Pelliccia, S.; Passacantilli, S.; Mazzoccoli, C.; Ruggieri, V.; Sisinni, L.; Bolognesi, A.; Rensen, W.M.; Miele, A.; Nalli, M.; Alfonsi, R.; Di Marcotullio, L.; Gulino, A.; Brancale, A.; Novellino, E.; Dondio, G.; Vultaggio, S.; Varasi, M.; Mercurio, C.; Hamel, E.; Lavia, P.; Silvestri, R. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer. J. Med. Chem., 2014, 57(15), 6531-6552.
[http://dx.doi.org/10.1021/jm500561a] [PMID: 25025991]
[119]
Iswatun Hasanah, A.R.; Roslan, N.; Norshahimi, N.S.; Salleh, S.S.M.; Bunnori, N.M.; Ngah, N. Synthesis and molecular docking of 2,4,5-trisubstituted-1,3-thiazole derivatives as antibacterial agents. Malays. J. Anal. Sci., 2019, 23(2), 237-246.
[http://dx.doi.org/10.17576/mjas-2019-2302-08]
[120]
Reddy, G.M.; Garcia, J.R.; Reddy, V.H.; de Andrade, A.M.; Camilo, A., Jr; Pontes Ribeiro, R.A.; de Lazaro, S.R. Synthesis, antimicrobial activity and advances in structure-activity relationships (SARs) of novel tri-substituted thiazole derivatives. Eur. J. Med. Chem., 2016, 123, 508-513.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.062] [PMID: 27494167]
[121]
Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem., 2015, 97(1), 699-718.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.015] [PMID: 25934508]
[122]
Karamthulla, S.; Pal, S.; Khan, M.N.; Choudhury, L.H. “On-water” synthesis of novel trisubstituted 1,3-thiazoles via microwave-assisted catalyst-free domino reactions. RSC Advances, 2014, 4(71), 37889-37899.
[http://dx.doi.org/10.1039/C4RA06239F]
[123]
Pavlovska, T.L.; Redkin, R.G.; Lipson, V.V.; Atamanuk, D.V. Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol. Divers., 2016, 20(1), 299-344.
[http://dx.doi.org/10.1007/s11030-015-9629-8] [PMID: 26419598]
[124]
Yang, J.; Liu, X.W.; Wang, D.D.; Tian, M.Y.; Han, S.N.; Feng, T.T.; Liu, X.L.; Mei, R.Q.; Zhou, Y. Diversity-oriented one-pot multicomponent synthesis of spirooxindole derivatives and their biological evaluation for anticancer activities. Tetrahedron, 2016, 72(52), 8523-8536.
[http://dx.doi.org/10.1016/j.tet.2016.10.050]
[125]
Gupta, N.; Bhojani, G.; Tak, R.; Jakhar, A.; Khan, N.H.; Chatterjee, S.; Kureshy, R.I. Highly diastereoselective syntheses of spiro-oxindole dihydrofuran derivatives in aqueous media and their antibacterial activity. ChemistrySelect, 2017, 2(33), 10902-10907.
[http://dx.doi.org/10.1002/slct.201702314]
[126]
Bhaskar, G.; Arun, Y.; Balachandran, C.; Saikumar, C.; Perumal, P.T. Synthesis of novel spirooxindole derivatives by one pot multicomponent reaction and their antimicrobial activity. Eur. J. Med. Chem., 2012, 51, 79-91.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.024] [PMID: 22405285]
[127]
Parthasarathy, K.; Praveen, C.; Jeyaveeran, J.C.; Prince, A.A.M. Gold catalyzed double condensation reaction: Synthesis, antimicrobial and cytotoxicity of spirooxindole derivatives. Bioorg. Med. Chem. Lett., 2016, 26(17), 4310-4317.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.036] [PMID: 27476145]
[128]
Lotfy, G.; Said, M.M.; El Ashry, E.S.H.; El Tamany, E.S.H.; Al-Dhfyan, A.; Abdel Aziz, Y.M.; Barakat, A. Synthesis of new spirooxindole-pyrrolothiazole derivatives: Anti-cancer activity and molecular docking. Bioorg. Med. Chem., 2017, 25(4), 1514-1523.
[http://dx.doi.org/10.1016/j.bmc.2017.01.014] [PMID: 28126436]
[129]
Yu, B.; Yu, D.Q.; Liu, H.M. Spirooxindoles: Promising scaffolds for anticancer agents. Eur. J. Med. Chem., 2015, 97(1), 673-698.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.056] [PMID: 24994707]
[130]
Saraev, V.E.; Zviagin, I.M.; Melik-Oganjanyan, R.G.; Sen’ko, Y.V.; Desenko, S.M.; Chebanov, V.A. Green microwave-assisted multicomponent route to the formation of 5,8-Dihydropyrido[2,3- d]pyrimidine skeleton in aqueous media. J. Heterocycl. Chem., 2017, 54(1), 318-324.
[http://dx.doi.org/10.1002/jhet.2586]
[131]
Mangasuli, S.N.; Managutti, P.B.; Hosamani, K.M. Anti-inflammatory activity of novel (5Z)-3-(2-(2-oxo-2H-chromen-4-yloxy)ethyl)-5-benzylidenethiazolidine-2,4 dione derivatives: An approach to microwave synthesis. Chem. Data Collec., 2020, 30, 100555.
[http://dx.doi.org/10.1016/j.cdc.2020.100555]
[132]
Baharfar, R.; Asghari, S.; Kiani, M. Regioselective synthesis and antibacterial activity of 3-(cyanoacetyl)indole-based kojic acid derivatives. Monatsh. Chem., 2015, 146(2), 335-343.
[http://dx.doi.org/10.1007/s00706-014-1310-x]
[133]
Lobato, C.C.; Ordoñez, M.E.; Queiroz, R.L.; Santos, C.B.R.; Borges, R.S. A comparative study between kojic acid and its methylated derivatives as antioxidant related to maltol and alomaltol. Chem. Data Collec., 2020, 28, 100464.
[http://dx.doi.org/10.1016/j.cdc.2020.100464]
[134]
Karakaya, G.; Ercan, A.; Oncul, S.; Aytemir, M.D. Synthesis and cytotoxic evaluation of kojic acid derivatives with inhibitory activity on melanogenesis in human melanoma cells. Anticancer. Agents Med. Chem., 2019, 18(15), 2137-2148.
[http://dx.doi.org/10.2174/1871520618666180402141714] [PMID: 29607787]
[135]
Devineni, S. R.; Madduri, T. R.; Chamarthi, N. R. An efficient microwave-promoted three-component synthesis and antimicrobial activity evaluation. Chem. heterocycl., 2019, 55(3), 266-274.
[http://dx.doi.org/10.1007/s10593-019-02452-2]
[136]
Behalo, M. S. Synthesis of some novel thiazolo [ 3 , 2-a ] Pyrimidine and pyrimido [ 2 , 1-b ] [ 1 , 3 ] Thiazine derivatives and their antimicrobial evaluation. Chem. heterocycl., 2018, 4, 1391-1397.
[http://dx.doi.org/10.1002/jhet.3174]
[137]
Mohamed; Al-qalawi, H.R.M.; Germoush, M.O.; Al-omar, M.A. Anticancer activities of some new synthesized thiazolo[3,2-a]Pyrido[4,3-d]Pyrimidine derivatives. Am. J. Biochem. Biotechnol., 2011, 7(2), 43-54. [ 4, 3- d ].
[http://dx.doi.org/10.3844/ajbbsp.2011.43.54]
[138]
Sayed, H.H.; Shamroukh, A.H.; Rashad, A.E. Synthesis and biological evaluation of some pyrimidine, pyrimido[2,1-b][1,3]thiazine and thiazolo[3,2-a]pyrimidine derivatives. Acta Pharm., 2006, 56(2), 231-244.
[PMID: 16613728]
[139]
Baburajeev, C.P.; Mohan, C.D.; Pandey, V.; Rangappa, S.; Shivalingegowda, N.; Kalash, L.; Devaraja, S.; Bender, A.; Lobie, P.E.; Rangappa, K.S. Basappa, Synthesis of C C, C N coupled novel substituted dibutyl benzothiazepinone derivatives and evaluation of their thrombin inhibitory activity. Bioorg. Chem., 2019, 87, 142-154.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.004] [PMID: 30884308]
[140]
Sharma, A.; Kishore, D.; Singh, B. An expedient method for the synthesis of 1,2,4-triazolo-fused 1,5-benzodiazepine, 1,5-benzoxazepine, and 1,5-benzothiazepine scaffolds: A novel seven-membered ring system of biological interest. J. Heterocycl. Chem., 2018, 55(3), 586-592.
[http://dx.doi.org/10.1002/jhet.3060]
[141]
Tu, S.J.; Zhang, X.H.; Han, Z.G.; Cao, X.D.; Wu, S.S.; Yan, S.; Hao, W.J.; Zhang, G.; Ma, N. Synthesis of isoxazolo[5,4-b]pyridines by microwave-assisted multi-component reactions in water. J. Comb. Chem., 2009, 11(3), 428-432.
[http://dx.doi.org/10.1021/cc800212v] [PMID: 19364093]
[142]
Dolati, H.; Habibi, A.; Ayatollahi, S.A.M.; Mahdavi, S.M.; Valizadeh, Y. Simple synthesis of polyfunctionalized indoline-spiro fused pyran derivatives via an aqueous multicomponent reaction. J. Chem. Soc. Pak., 2016, 38(3)
[143]
Khanna, P.; Khanna, L.; Thomas, S.J.; Asiri, A.M.; Panda, S.S. Microwave assisted synthesis of spiro heterocyclic systems: A review. Curr. Org. Chem., 2018, 22(1), 67-84.
[http://dx.doi.org/10.2174/1385272821666170818161517]
[144]
Chebanov, V.A.; Sakhno, Y.I.; Desenko, S.M.; Chernenko, V.N.; Musatov, V.I.; Shishkina, S.V.; Shishkin, O.V.; Kappe, C.O. Cyclocondensation reactions of 5-aminopyrazoles, pyruvic acids and aldehydes. Multicomponent approaches to pyrazolopyridines and related products. Tetrahedron, 2007, 63(5), 1229-1242.
[http://dx.doi.org/10.1016/j.tet.2006.11.048]
[145]
Jiao, J.; Xiao, F.; Wang, C.; Zhang, Z. Iodine-promoted metal-free cyclization and o/s exchange of acrylamides with thiuram: One-step synthesis of quinolino-2-thiones. J. Org. Chem., 2022, 87(7), 4965-4970.
[http://dx.doi.org/10.1021/acs.joc.1c03030] [PMID: 35285633]
[146]
Gui, Q.W.; Teng, F.; Li, Z.C.; Jin, X.F.; Zhang, M.; Dai, J.N.; Lin, Y.W.; Cao, Z.; He, W.M. Molecular iodine-catalyzed multicomponent synthesis of α-cyanopyrrolines with ambient air as the oxidant under neat conditions. Org. Chem. Front., 2020, 7(24), 4026-4030.
[http://dx.doi.org/10.1039/D0QO01113D]
[147]
Cotinguiba, F.; Regasini, L.O.; da Silva Bolzani, V.; Debonsi, H.M.; Duó Passerini, G.; Cicarelli, R.M.B.; Kato, M.J.; Furlan, M. Piperamides and their derivatives as potential anti-trypanosomal agents. Med. Chem. Res., 2009, 18(9), 703-711.
[http://dx.doi.org/10.1007/s00044-008-9161-9]
[148]
Lobo, P.L.; Poojary, B.; Kumsi, M.; Chandra, V.; Kumari, N.S.; Chandrashekar, K.R. Synthesis, antimicrobial and antioxidant activities of 2-[1-{3,5-Diaryl-4, 5-Dihydro-1H-Pyrazolenyl}]-4-(4-Nitrophenyl)-[1,3]-. Thiazoles. Med. Chem. Res., 2013, 22(4), 1689-1699.
[http://dx.doi.org/10.1007/s00044-012-0154-3]
[149]
Vdovina, S.V.; Mamedov, V.A. New potential of the classical Biginelli reaction. Russ. Chem. Rev., 2008, 77(12), 1017-1053.
[http://dx.doi.org/10.1070/RC2008v077n12ABEH003894]
[150]
Joseph, J.; Kim, J.Y.; Chang, S. A metal-free route to 2-aminooxazoles by taking advantage of the unique ring opening of benzoxazoles and oxadiazoles with secondary amines. Chemistry, 2011, 17(30), 8294-8298.
[http://dx.doi.org/10.1002/chem.201100910] [PMID: 21656592]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy