Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Mini-Review Article

Organocatalytic C-H Bond Functionalizations for the Synthesis of Heterocycles

Author(s): Biswajit Panda*

Volume 10, Issue 3, 2023

Published on: 31 March, 2023

Page: [134 - 146] Pages: 13

DOI: 10.2174/2213337210666230213120833

Price: $65

Abstract

Organocatalysis is an important and rapidly growing area for the synthesis of various organic molecules. Because of the inherent non-metal properties, mild reaction conditions, and broad functional group tolerance, the use of small organic compounds encoding and converting another organic component has developed into a remarkable process. C-H activation reactions, on the other hand, have already emerged as a powerful strategy for forming C-C and C-X (X= N, O, S) bonds. Combining organocatalysis and C-H bond functionalization is highly rational as two coexisting and rapidly growing research fields in modern synthetic chemistry, and the cooperative strength along this consistent has proven to be a successful way of making C-H bond functionalization much more feasible, reliable, and specific. At the same time, the synthesis of heterocyclic compounds is an important field in organic chemistry due to the vast application of heterocycles in pharmaceuticals, polymers, and material science. This mini-review describes the recent developments in the synthesis of heterocyclic compounds through the alliance of organocatalysis and C-H bond functionalizations.

Graphical Abstract

[1]
van der Helm, M.P.; Klemm, B.; Eelkema, R. Organocatalysis in aqueous media. Nat. Rev. Chem., 2019, 3(8), 491-508.
[http://dx.doi.org/10.1038/s41570-019-0116-0]
[2]
List, B. Introduction: Organocatalysis. Chem. Rev., 2007, 107(12), 5413-5415.
[http://dx.doi.org/10.1021/cr078412e]
[3]
List, B.; Lerner, R.A.; Barbas, C.F., III Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc., 2000, 122(10), 2395-2396.
[http://dx.doi.org/10.1021/ja994280y]
[4]
Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. New strategies for organic synthesis: The first highly enantioselective organocatalytic Diels-Alder reaction. J. Am. Chem. Soc., 2000, 122(17), 4243-4244.
[http://dx.doi.org/10.1021/ja000092s]
[5]
Dalko, P.I.; Moisan, L. In the golden age of organocatalysis. Angew. Chem. Int. Ed., 2004, 43(39), 5138-5175.
[http://dx.doi.org/10.1002/anie.200400650] [PMID: 15455437]
[6]
List, B.; Yang, J.W. Chemistry. The organic approach to asymmetric catalysis. Science, 2006, 313(5793), 1584-1586.
[http://dx.doi.org/10.1126/science.1131945] [PMID: 16973867]
[7]
MacMillan, D.W.C. The advent and development of organocatalysis. Nature, 2008, 455(7211), 304-308.
[http://dx.doi.org/10.1038/nature07367] [PMID: 18800128]
[8]
Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Oxidative coupling between two hydrocarbons: An update of recent c-h functionalizations. Chem. Rev., 2015, 115(22), 12138-12204.
[http://dx.doi.org/10.1021/cr500431s] [PMID: 26558751]
[9]
Panda, B. Joy and challenges of alkynylation of arenes and heteroarenes through double c−h functionalizations. Asian J. Org. Chem., 2020, 9(4), 492-507.
[http://dx.doi.org/10.1002/ajoc.201900733]
[10]
Díaz-Requejo, M.M.; Pérez, P.J. Coinage metal catalyzed C-H bond functionalization of hydrocarbons. Chem. Rev., 2008, 108(8), 3379-3394.
[http://dx.doi.org/10.1021/cr078364y] [PMID: 18698739]
[11]
Godula, K.; Sames, D. C-H bond functionalization in complex organic synthesis. Science, 2006, 312(5770), 67-72.
[http://dx.doi.org/10.1126/science.1114731] [PMID: 16601184]
[12]
Lewis, J.C.; Coelho, P.S.; Arnold, F.H. Enzymatic functionalization of carbon-hydrogen bonds. Chem. Soc. Rev., 2011, 40(4), 2003-2021.
[http://dx.doi.org/10.1039/C0CS00067A] [PMID: 21079862]
[13]
Schramm, V.L. Introduction: Principles of enzymatic catalysis. Chem. Rev., 2006, 106(8), 3029-3030.
[http://dx.doi.org/10.1021/cr050246s]
[14]
Ramos, M.J.; Fernandes, P.A. Computational enzymatic catalysis. Acc. Chem. Res., 2008, 41(6), 689-698.
[http://dx.doi.org/10.1021/ar7001045] [PMID: 18465885]
[15]
Callender, R.; Dyer, R.B. The dynamical nature of enzymatic catalysis. Acc. Chem. Res., 2015, 48(2), 407-413.
[http://dx.doi.org/10.1021/ar5002928] [PMID: 25539144]
[16]
Davies, H.M.L.; Morton, D. Recent advances in C-H functionalization. J. Org. Chem., 2016, 81(2), 343-350.
[http://dx.doi.org/10.1021/acs.joc.5b02818] [PMID: 26769355]
[17]
Yu, J-Q.; Shi, Z. C-H activation. Springerlink: New York, 2010, 292, xi-xiii.
[http://dx.doi.org/10.1007/978-3-642-12356-6] [PMID: 21500400]
[18]
Crabtree, R.H. Introduction to selective functionalization of C-H bonds. Chem. Rev., 2010, 110(2), 575-1211.
[http://dx.doi.org/10.1021/cr900388d] [PMID: 20143875]
[19]
Davies, H.M.L.; Du Bois, J.; Yu, J.Q. C-H Functionalization in organic synthesis. Chem. Soc. Rev., 2011, 40(4), 1855-1856.
[http://dx.doi.org/10.1039/c1cs90010b] [PMID: 21390392]
[20]
Pan, S.C. Organocatalytic C-H activation reactions. Beilstein J. Org. Chem., 2012, 8, 1374-1384.
[http://dx.doi.org/10.3762/bjoc.8.159] [PMID: 23019474]
[21]
Gensch, T.; James, M.J.; Dalton, T.; Glorius, F. Increasing catalyst efficiency in c−h activation catalysis. Angew. Chem. Int. Ed., 2018, 57(9), 2296-2306.
[http://dx.doi.org/10.1002/anie.201710377] [PMID: 29205745]
[22]
Xue, X.S.; Ji, P.; Zhou, B.; Cheng, J.P. The essential role of bond energetics in c-h activation/functionalization. Chem. Rev., 2017, 117(13), 8622-8648.
[http://dx.doi.org/10.1021/acs.chemrev.6b00664] [PMID: 28281752]
[23]
Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev., 2013, 113(7), 5322-5363.
[http://dx.doi.org/10.1021/cr300503r] [PMID: 23509883]
[24]
Panda, B. Total synthesis of xyloketals and related natural product alboatrin: Strategies and tactics. ChemistrySelect, 2019, 4(31), 9143-9164.
[http://dx.doi.org/10.1002/slct.201900779]
[25]
Panda, B. Total synthesis of Bruguierols: Strategies and tactics. Arkivoc, 2019, 2019(1), 293-303.
[http://dx.doi.org/10.24820/ark.5550190.p010.966]
[26]
Panda, B.; Gooyee, A.K. Bioactivity of marine natural product xyloketals. Lett. Org. Chem., 2021, 18(7), 507-512.
[http://dx.doi.org/10.2174/1570178617999200909114431]
[27]
Panda, B. Synthetic studies directed towards (-)-chrysanthone a: facile synthesis of a tricyclic lactone intermediate. J. Indian Chem. Soc., 2019, 96, 231-239.
[28]
Panda, B.; Sarkar, T.K. Gold catalysis: Regio- and stereoselective total synthesis of xyloketals D and G and the related natural product alboatrin. J. Org. Chem., 2013, 78(6), 2413-2421.
[http://dx.doi.org/10.1021/jo302545n] [PMID: 23428314]
[29]
Peng, J.J.; Panda, B.; Satyanarayana, K.; Yang, H.R.; Huang, S.L.; Huang, M.; Chen, C.H.; Lai, G.; Lai, Y.Y.; Luh, T.Y. Stereospecific synthesis of poly(methylene-e-vinylene) by ring opening metathesis polymerization (romp) of substituted cyclopropene using grubbs catalysts. Macromolecules, 2019, 52, 7749-7755.
[http://dx.doi.org/10.1021/acs.macromol.9b01956]
[30]
Panda, B.; Albano, G. Synthetic methods for the preparation of conformationally restricted analogues of nicotine. Molecules, 2021, 26(24), 7544.
[http://dx.doi.org/10.3390/molecules26247544] [PMID: 34946630]
[31]
Sarkar, R.; Mukhopadhyay, C. Organocatalytic synthesis of heterocycles: A brief overview covering recent aspects. Curr. Organocatal., 2021, 8(1), 93-108.
[http://dx.doi.org/10.2174/2213337207999201029234021]
[32]
Meth-Cohn, O. The t-amino effect: Heterocycles formed by ring closure of ortho-substituted t-anilines**dedicated to my evergreen friend and mentor, professor hans suschitzky, on his 80th birthday. Adv. Heterocycl. Chem., 1996, 65, 1-37.
[http://dx.doi.org/10.1016/S0065-2725(08)60294-9]
[33]
Quintela, J.M. New aspects of the “tert-amino effect” on the synthesis of heterocycles. Recent Res. Dev. Org. Chem, 2003, 7, 259-278.
[34]
Mátyus, P.; Éliás, O.; Tapolcsányi, P.; Polonka-Bálint, Á.; Halász-Dajka, B. Ring-closure reactions of ortho- vinyl -tert- anilines and (di)aza-heterocyclic analogues via the tert -amino effect: Recent developments. Synthesis, 2006, 2006(16), 2625-2639.
[http://dx.doi.org/10.1055/s-2006-942490]
[35]
Zhang, C.; Murarka, S.; Seidel, D. Facile formation of cyclic aminals through a Brønsted acid-promoted redox process. J. Org. Chem., 2009, 74(1), 419-422.
[http://dx.doi.org/10.1021/jo802325x] [PMID: 19053590]
[36]
Mori, K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Expeditious construction of quinazolines via brønsted acid-induced c-h activation: further extension of “ tert -amino effect. Chem. Lett., 2009, 38(6), 524-525.
[http://dx.doi.org/10.1246/cl.2009.524]
[37]
Haibach, M.C.; Deb, I.; De, C.K.; Seidel, D. Redox-neutral indole annulation cascades. J. Am. Chem. Soc., 2011, 133(7), 2100-2103.
[http://dx.doi.org/10.1021/ja110713k] [PMID: 21280625]
[38]
Panda, B. Microwave-assisted homogeneous gold catalyzed organic transformations. Curr. Microw. Chem., 2020, 7(3), 166-182.
[http://dx.doi.org/10.2174/2213335607999200811130113]
[39]
Sun, C.L.; Li, H.; Yu, D.G.; Yu, M.; Zhou, X.; Lu, X.Y.; Huang, K.; Zheng, S.F.; Li, B.J.; Shi, Z.J. An efficient organocatalytic method for constructing biaryls through aromatic C-H activation. Nat. Chem., 2010, 2(12), 1044-1049.
[http://dx.doi.org/10.1038/nchem.862] [PMID: 21107368]
[40]
Panda, B.; Sarkar, T.K. A one-pot tandem oxidation-reduction protocol for the synthesis of cyclic ethers from their diols. Tetrahedron Lett., 2008, 49(47), 6701-6703.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.046]
[41]
Kaur, M.; Choi, D.H. Diketopyrrolopyrrole: Brilliant red pigment dye-based fluorescent probes and their applications. Chem. Soc. Rev., 2015, 44(1), 58-77.
[http://dx.doi.org/10.1039/C4CS00248B] [PMID: 25186723]
[42]
Zhou, L.; An, X.D.; Yang, S.; Li, X.J.; Shao, C.L.; Liu, Q.; Xiao, J. Organocatalytic cascade β-functionalization/aromatization of pyrrolidines via double hydride transfer. Org. Lett., 2020, 22(3), 776-780.
[http://dx.doi.org/10.1021/acs.orglett.9b03918] [PMID: 31965804]
[43]
Li, S.S.; Zhou, L.; Wang, L.; Zhao, H.; Yu, L.; Xiao, J. Organocatalytic c(sp3)-h functionalization via carbocation-initiated cascade [1,5]-hydride transfer/cyclization: Synthesis of dihydrodibenzo[ b, e]azepines. Org. Lett., 2018, 20(1), 138-141.
[http://dx.doi.org/10.1021/acs.orglett.7b03492] [PMID: 29239184]
[44]
Wang, S.; Shen, Y.B.; Li, L.F.; Qiu, B.; Yu, L.; Liu, Q.; Xiao, J. N -Alkylation-initiated redox-neutral [5 + 2] annulation of 3-alkylindoles with o -aminobenzaldehydes: Access to indole-1,2-fused 1,4-benzodiazepines. Org. Lett., 2019, 21(22), 8904-8908.
[http://dx.doi.org/10.1021/acs.orglett.9b03011] [PMID: 31697087]
[45]
Yang, X.; Hu, F.; Wang, L.; Xu, L.; Li, S.S. Hydrogen-bonding-assisted redox-neutral construction of tetrahydroquinolines via hydride transfer. Org. Biomol. Chem., 2020, 18(22), 4267-4271.
[http://dx.doi.org/10.1039/D0OB00521E] [PMID: 32441733]
[46]
Houk, K.N.; Benjamin, L. Asymmetric organocatalysis. Acc. Chem. Res., 2004, 37(8), 487.
[http://dx.doi.org/10.1021/ar040216w]
[47]
Panda, B.; Basak, S.; Hazra, A.; Sarkar, T.K. A domino michael-dieckmann-peterson approach to the synthesis of substituted hydroxyquinolines and hydroxyisoquinolines. J. Chem. Res., 2010, 34(2), 109-113.
[http://dx.doi.org/10.3184/030823410X12659067482702]
[48]
Sarkar, T.; Panda, B.; Bhadra, J. An approach to highly functionalized quinolines and isoquinolines via a gold-catalyzed benzannulation. Synlett, 2011, 2011(5), 689-693.
[http://dx.doi.org/10.1055/s-0030-1259555]
[49]
Sarkar, T.; Panda, B. Gold-catalyzed benzannulation of electronically rich/rich and deficient/deficient oxoalkynes with alkynes. Synthesis, 2013, 45(9), 1227-1234.
[http://dx.doi.org/10.1055/s-0032-1318454]
[50]
Kang, Y.K.; Kim, S.M.; Kim, D.Y. Enantioselective organocatalytic C-H bond functionalization via tandem 1,5-hydride transfer/ring closure: asymmetric synthesis of tetrahydroquinolines. J. Am. Chem. Soc., 2010, 132(34), 11847-11849.
[http://dx.doi.org/10.1021/ja103786c] [PMID: 20701277]
[51]
Mori, K.; Ehara, K.; Kurihara, K.; Akiyama, T. Selective activation of enantiotopic C(sp3)-hydrogen by means of chiral phosphoric acid: asymmetric synthesis of tetrahydroquinoline derivatives. J. Am. Chem. Soc., 2011, 133(16), 6166-6169.
[http://dx.doi.org/10.1021/ja2014955] [PMID: 21466211]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy