Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Advances in Biological Active Sulfonamide based Hybrid Compounds Part C: Multicomponent Sulfonamide Hybrids

Author(s): Reihane Ghomashi, Shakila Ghomashi, Hamidreza Aghaei, Samineh Massah and Ahmad Reza Massah*

Volume 30, Issue 37, 2023

Published on: 11 January, 2023

Page: [4181 - 4255] Pages: 75

DOI: 10.2174/0929867330666221128142730

Price: $65

Abstract

Sulfonamides, with the general formula R-SO2NR1R2, have attracted great attention since the early discovery of sulfonamide-containing antibacterial drugs. The combinations of certain sulfonamides and other drug molecules to form sulfonamide hybrids are being used to develop novel formulations with greater effectiveness and in a huge range of therapeutic applications such as antimicrobial, antifungal, anti-inflammatory, antitubercular, antiviral, antidiabetic, antiproliferative, carbonic anhydrase inhibitor, antimalarial, anticancer and other medicinal agents. Part C of this review presents recent advances in designing and developing multicomponent sulfonamide hybrids containing more than one biologically active heterocycle, such as coumarin, indole, pyridine, pyrimidine, pyrazole, triazole, oxazole, oxadiazole, triazine, quinazoline, and thiadiazol. This review aims to highlight the status of the hybridization technique in synthesizing biological and computational studies of novel sulfonamide hybrids that were designed and presented between 2016 and 2020.

[1]
Sunil, R.; Pal, S.; Jayashree, A. Molecular hybridization-an emanating tool in drug design. Med. Chem., 2019, 9(6), 93-95.
[2]
Bosquesi, P.L.; Melo, T.R.F.; Vizioli, E.O.; Santos, J.L.; Chung, M.C. Anti-inflammatory drug design using a molecular hybridization approach. Pharmaceuticals (Basel), 2011, 4(11), 1450-1474.
[http://dx.doi.org/10.3390/ph4111450] [PMID: 27721332]
[3]
Fershtat, L.L.; Makhova, N.N. Molecular hybridization tools in the development of furoxan‐based NO‐donor prodrugs. ChemMedChem, 2017, 12(9), 622-638.
[http://dx.doi.org/10.1002/cmdc.201700113] [PMID: 28371340]
[4]
Bérubé, G. An overview of molecular hybrids in drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 281-305.
[http://dx.doi.org/10.1517/17460441.2016.1135125] [PMID: 26727036]
[5]
Chen, J.; Xie, S. Overview of sulfonamide biodegradation and the relevant pathways and microorganisms. Sci. Total Environ., 2018, 640-641, 1465-1477.
[http://dx.doi.org/10.1016/j.scitotenv.2018.06.016] [PMID: 30021313]
[6]
Elgemeie, G.H.; Azzam, R.A.; Elsayed, R.E. Sulfa drug analogs: new classes of N-sulfonyl aminated azines and their biological and preclinical importance in medicinal chemistry (2000-2018). Med. Chem. Res., 2019, 28(8), 1099-1131.
[http://dx.doi.org/10.1007/s00044-019-02378-6]
[7]
Swain, S.S.; Paidesetty, S.K.; Padhy, R.N. Phytochemical conjugation as a potential semisynthetic approach toward reactive and reuse of obsolete sulfonamides against pathogenic bacteria. Drug Dev. Res., 2021, 82(2), 149-166.
[http://dx.doi.org/10.1002/ddr.21746] [PMID: 33025605]
[8]
Gulçin, İ.; Taslimi, P. Sulfonamide inhibitors: a patent review 2013-present. Expert Opin. Ther. Pat., 2018, 28(7), 541-549.
[http://dx.doi.org/10.1080/13543776.2018.1487400] [PMID: 29886770]
[9]
Meşeli, T.; Doğan, Ş.D.; Gündüz, M.G.; Kökbudak, Z.; Skaro Bogojevic, S.; Noonan, T.; Vojnovic, S.; Wolber, G.; Nikodinovic-Runic, J. Design, synthesis, antibacterial activity evaluation and molecular modeling studies of new sulfonamides containing a sulfathiazole moiety. New J. Chem., 2021, 45(18), 8166-8177.
[http://dx.doi.org/10.1039/D1NJ00150G]
[10]
Abdeen, S.; Kunkle, T.; Salim, N.; Ray, A.M.; Mammadova, N.; Summers, C.; Stevens, M.; Ambrose, A.J.; Park, Y.; Schultz, P.G.; Horwich, A.L.; Hoang, Q.Q.; Chapman, E.; Johnson, S.M. Sulfonamido-2-arylbenzoxazole GroEL/ES inhibitors as potent antibacterials against methicillin-resistant Staphylococcus aureus (MRSA). J. Med. Chem., 2018, 61(16), 7345-7357.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00989] [PMID: 30060666]
[11]
Heiran, R.; Jarrahpour, A.; Riazimontazer, E.; Gholami, A.; Troudi, A.; Digiorgio, C.; Brunel, J.M.; Turos, E. Sulfonamide‐β‐lactam hybrids incorporating the piperazine moiety as potential antiinflammatory agent with promising antibacterial activity. ChemistrySelect, 2021, 6(21), 5313-5319.
[http://dx.doi.org/10.1002/slct.202101194]
[12]
Devi, K.; Awasthi, P. Isoleucine with secondary sulfonamide functionality as anticancer, antibacterial and antifungal agents. J. Biomol. Struct. Dyn., 2022, 40(15), 7052-7069.
[http://dx.doi.org/10.1080/07391102.2021.1893818] [PMID: 33704017]
[13]
Shntaif, A.H.; Khan, S.; Tapadiya, G.; Chettupalli, A.; Saboo, S.; Shaikh, M.S.; Siddiqui, F.; Amara, R.R. Rational drug design, synthesis, and biological evaluation of novel N-(2-arylaminophenyl)-2,3-diphenylquinoxaline-6-sulfona-mides as potential antimalarial, antifungal, and antibacterial agents. Digital Chinese Med., 2021, 4(4), 290-304.
[http://dx.doi.org/10.1016/j.dcmed.2021.12.004]
[14]
Salve, M.T.; Jadhav, S.B., Sr Synthesis, characterization and antidiabetic evaluation of sulfonamide in corporated with 1, 3, 4-oxadiazole derivatives. Indian J. Pharmaceut. Edu. Res., 2021, 55(4), 1145-1150.
[http://dx.doi.org/10.5530/ijper.55.4.214]
[15]
Sayed, A.M.; Taher, F.A.; Abdel-Samad, M.R.K.; El-Gaby, M.S.A.; El-Adl, K.; Saleh, N.M. Design, synthesis, molecular docking, in silico ADMET profile and anticancer evaluations of sulfonamide endowed with hydrazone-coupled derivatives as VEGFR-2 inhibitors. Bioorg. Chem., 2021, 108, 104669.
[http://dx.doi.org/10.1016/j.bioorg.2021.104669] [PMID: 33515863]
[16]
Wan, Y.; Fang, G.; Chen, H.; Deng, X.; Tang, Z. Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur. J. Med. Chem., 2021, 226, 113837.
[http://dx.doi.org/10.1016/j.ejmech.2021.113837] [PMID: 34530384]
[17]
Kumar, S.; Rulhania, S.; Jaswal, S.; Monga, V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. Eur. J. Med. Chem., 2021, 209, 112923.
[http://dx.doi.org/10.1016/j.ejmech.2020.112923] [PMID: 33121862]
[18]
Massah, A.R.; Adibi, H.; Khodarahmi, R.; Abiri, R.; Majnooni, M.B.; Shahidi, S.; Asadi, B.; Mehrabi, M.; Zolfigol, M.A. Synthesis, in vitro antibacterial and carbonic anhydrase II inhibitory activities of N-acylsulfonamides using silica sulfuric acid as an efficient catalyst under both solvent-free and heterogeneous conditions. Bioorg. Med. Chem., 2008, 16(10), 5465-5472.
[http://dx.doi.org/10.1016/j.bmc.2008.04.011] [PMID: 18439830]
[19]
Massah, A.R.; Azadi, D.; Aliyan, H.; Momeni, A.R.; Naghash, H.J.; Kazemi, F. An efficient method for the synthesis of N-acylsulfonamides: One-Pot sulfonylation and acylation of primary arylamines under solvent-free conditions. Monatsh. Chem., 2008, 139(3), 233-240.
[http://dx.doi.org/10.1007/s00706-007-0783-2]
[20]
Rubab, L.; Afroz, S.; Ahmad, S.; Hussain, S.; Nawaz, I.; Irfan, A.; Batool, F.; Kotwica-Mojzych, K.; Mojzych, M. An update on synthesis of coumarin sulfonamides as enzyme inhibitors and anticancer agents. Molecules, 2022, 27(5), 1604.
[http://dx.doi.org/10.3390/molecules27051604] [PMID: 35268704]
[21]
Ghomashi, R.; Rabiei, M.; Ghomashi, S.; Massah, A.R.; Kolahdoozan, M.; Hosseinnezhad, M.; Ebrahimi-Kahrizsangi, R.; Palevicius, A.; Nasiri, S.; Janusas, G. Synthesis and investigation of the theoretical and experimental optical properties of some novel azo pyrazole sulfonamide hybrids. Mater. Lett., 2022, 317, 132132.
[http://dx.doi.org/10.1016/j.matlet.2022.132132]
[22]
Tars, K.; Vullo, D.; Kazaks, A.; Leitans, J.; Lends, A.; Grandane, A.; Zalubovskis, R.; Scozzafava, A.; Supuran, C.T. Sulfocoumarins (1,2-benzoxathiine-2,2-dioxides): a class of potent and isoform-selective inhibitors of tumor-associated carbonic anhydrases. J. Med. Chem., 2013, 56(1), 293-300.
[http://dx.doi.org/10.1021/jm301625s] [PMID: 23241068]
[23]
Adibi, H.; Massah, A.R.; Majnooni, M.B.; Shahidi, S.; Afshar, M.; Abiri, R.; Naghash, H.J. Synthesis, characterization, and antimicrobial evaluation of sulfonamides containing n-acyl moieties catalyzed by bismuth (III) salts under both solvent and solvent-free conditions. Synth. Commun., 2010, 40(18), 2753-2766.
[http://dx.doi.org/10.1080/00397910903318732]
[24]
Goljani, H.; Tavakkoli, Z.; Sadatnabi, A.; Masoudi-khoram, M.; Nematollahi, D. A new electrochemical strategy for the synthesis of a new type of sulfonamide derivatives. Sci. Rep., 2020, 10(1), 17904.
[http://dx.doi.org/10.1038/s41598-020-74733-2] [PMID: 33087774]
[25]
Massah, A.R.; Sayadi, S.; Ebrahimi, S. A green, mild and efficient one-pot method for the synthesis of sulfonamides from thiols and disulfides in water. RSC Advances, 2012, 2(16), 6606-6616.
[http://dx.doi.org/10.1039/c2ra20418e]
[26]
Giddens, A.C.; Gamage, S.A.; Kendall, J.D.; Lee, W.J.; Baguley, B.C.; Buchanan, C.M.; Jamieson, S.M.F.; Dickson, J.M.J.; Shepherd, P.R.; Denny, W.A.; Rewcastle, G.W. Synthesis and biological evaluation of solubilized sulfonamide analogues of the phosphatidylinositol 3-kinase inhibitor ZSTK474. Bioorg. Med. Chem., 2019, 27(8), 1529-1545.
[http://dx.doi.org/10.1016/j.bmc.2019.02.050] [PMID: 30850264]
[27]
Marciniec, K.; Kurczab, R.; Książek, M.; Bębenek, E.; Chrobak, E.; Satała, G.; Bojarski, A.J.; Kusz, J.; Zajdel, P. Structural determinants influencing halogen bonding: a case study on azinesulfonamide analogs of aripiprazole as 5-HT1A, 5-HT7, and D2 receptor ligands. Chem. Cent. J., 2018, 12(1), 55.
[http://dx.doi.org/10.1186/s13065-018-0422-5] [PMID: 29748774]
[28]
Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. Anticancer and antiviral sulfonamides. Curr. Med. Chem., 2003, 10(11), 925-953.
[http://dx.doi.org/10.2174/0929867033457647] [PMID: 12678681]
[29]
Yurttaş, L.; Çiftçi, G.A. New quinoline based sulfonamide derivatives: cytotoxic and apoptotic activity evaluation against pancreatic cancer cells. Anticancer. Agents Med. Chem., 2018, 18(8), 1122-1130.
[http://dx.doi.org/10.2174/1871520618666180307142629] [PMID: 29521252]
[30]
Massah, A.R.; Kazemi, F.; Azadi, D.; Farzaneh, S.; Aliyan, H.; Naghash, H.; Momeni, A. A mild and chemoselective solvent-free method for the synthesis of N-aryl and Nalkylsulfonamides. Lett. Org. Chem., 2006, 3(3), 235-241.
[http://dx.doi.org/10.2174/157017806775789886]
[31]
Rakesh, K.P.; Wang, S.M.; Leng, J.; Ravindar, L.; Asiri, A.M.; Marwani, H.M.; Qin, H.L. Recent development of sulfonyl or sulfonamide hybrids as potential anticancer agents: A key review. Anticancer. Agents Med. Chem., 2018, 18(4), 488-505.
[http://dx.doi.org/10.2174/1871520617666171103140749] [PMID: 29110622]
[32]
Zhao, C.; Rakesh, K.P.; Ravidar, L.; Fang, W.Y.; Qin, H.L. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review. Eur. J. Med. Chem., 2019, 162, 679-734.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.017] [PMID: 30496988]
[33]
Ghomashi, R.; Ghomashi, S.; Aghaei, H.; Massah, A.R. Recent advances in biological active sulfonamide based hybrid compounds part A: Two-component sulfonamide hybrids. Curr. Med. Chem., 2023, 30, 407-480.
[http://dx.doi.org/10.2174/0929867329666220622153348] [PMID: 35733317]
[34]
Ghomashi, S.; Ghomashi, R.; Aghaei, H.; Massah, A.R. recent advances in biological active sulfonamide based hybrid compounds part B: Two-component sulfonamide hybrids. Curr. Med. Chem., 2023, 30, 604-665.
[http://dx.doi.org/10.2174/0929867329666220722143547] [PMID: 35899958]
[35]
Durgapal, S.D.; Soman, S.S. Evaluation of novel coumarinproline sulfonamide hybrids as anticancer and antidiabetic agents. Synth. Commun., 2019, 49(21), 1-15.
[http://dx.doi.org/10.1080/00397911.2019.1647439]
[36]
Kraljević, T.G.; Harej, A.; Sedić, M.; Pavelić, S.K.; Stepanić, V.; Drenjančević, D.; Talapko, J.; Raić-Malić, S. Synthesis, in vitro anticancer and antibacterial activities and in silico studies of new 4-substituted 1,2,3-triazole-coumarin hybrids. Eur. J. Med. Chem., 2016, 124, 794-808.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.062] [PMID: 27639370]
[37]
Alshibl, H.M.; Al-Abdullah, E.S.; Haiba, M.E.; Alkahtani, H.M.; Awad, G.E.A.; Mahmoud, A.H.; Ibrahim, B.M.M.; Bari, A.; Villinger, A. Synthesis and evaluation of new coumarin derivatives as antioxidant, antimicrobial, and antiinflammatory agents. Molecules, 2020, 25(14), 3251.
[http://dx.doi.org/10.3390/molecules25143251] [PMID: 32708787]
[38]
Holiyachi, M.; Samundeeswari, S.; Chougala, B.M.; Naik, N.S.; Madar, J.; Shastri, L.A.; Joshi, S.D.; Dixit, S.R.; Dodamani, S.; Jalalpure, S.; Sunagar, V.A. Design and synthesis of coumarin-imidazole hybrid and phenylimidazoloacrylates as potent antimicrobial and antiinflammatory agents. Monatsh. Chem., 2018, 149(3), 595-609.
[http://dx.doi.org/10.1007/s00706-017-2079-5]
[39]
Zengin Kurt, B.; Sonmez, F.; Ozturk, D.; Akdemir, A.; Angeli, A.; Supuran, C.T. Synthesis of coumarinsulfonamide derivatives and determination of their cytotoxicity, carbonic anhydrase inhibitory and molecular docking studies. Eur. J. Med. Chem., 2019, 183, 111702.
[http://dx.doi.org/10.1016/j.ejmech.2019.111702] [PMID: 31542715]
[40]
Lu, X.Y.; Wang, Z.C.; Ren, S.Z.; Shen, F.Q.; Man, R.J.; Zhu, H.L. Coumarin sulfonamides derivatives as potent and selective COX-2 inhibitors with efficacy in suppressing cancer proliferation and metastasis. Bioorg. Med. Chem. Lett., 2016, 26(15), 3491-3498.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.037] [PMID: 27349331]
[41]
Shen, F.Q.; Wang, Z.C.; Wu, S.Y.; Ren, S.Z.; Man, R.J.; Wang, B.Z.; Zhu, H.L. Synthesis of novel hybrids of pyrazole and coumarin as dual inhibitors of COX-2 and 5-LOX. Bioorg. Med. Chem. Lett., 2017, 27(16), 3653-3660.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.020] [PMID: 28720504]
[42]
El-Sawy, E.R.; Ebaid, M.S.; Rady, H.M.; Shalby, A.B.; Ahmed, K.M.; Abo-Salem, H.M. Synthesis and molecular docking of novel non-cytotoxic anti-angiogenic sulfonyl coumarin derivatives against hepatocellular carcinoma cells in vitro. J. Appl. Pharm. Sci., 2017, 7, 49-66.
[http://dx.doi.org/10.7324/JAPS.2017.70207]
[43]
Chandak, N.; Ceruso, M.; Supuran, C.T.; Sharma, P.K. Novel sulfonamide bearing coumarin scaffolds as selective inhibitors of tumor associated carbonic anhydrase isoforms IX and XII. Bioorg. Med. Chem., 2016, 24(13), 2882-2886.
[http://dx.doi.org/10.1016/j.bmc.2016.04.052] [PMID: 27137360]
[44]
Sabt, A.; Abdelhafez, O.M.; El-Haggar, R.S.; Madkour, H.M.F.; Eldehna, W.M.; El-Khrisy, E.E.D.A.M.; Abdel-Rahman, M.A.; Rashed, L.A. Novel coumarin-6-sulfonamides as apoptotic anti-proliferative agents: synthesis, in vitro biological evaluation, and QSAR studies. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1095-1107.
[http://dx.doi.org/10.1080/14756366.2018.1477137] [PMID: 29944015]
[45]
Kurt, B.Z.; Sönmez, F.; Bilen, Ç.; Ergun, A.; Gençer, N.; Arslan, O.; Kucukislamoglu, M. Synthesis, antioxidant and carbonic anhydrase I and II inhibitory activities of novel sulphonamide-substituted coumarylthiazole derivatives. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 991-998.
[http://dx.doi.org/10.3109/14756366.2015.1077823] [PMID: 26309156]
[46]
Ghorab, M.M.; Alsaid, M.S.; Al-Ansary, G.H.; Abdel-Latif, G.A.; Abou El Ella, D.A. Analogue based drug design, synthesis, molecular docking and anticancer evaluation of novel chromene sulfonamide hybrids as aromatase inhibitors and apoptosis enhancers. Eur. J. Med. Chem., 2016, 124, 946-958.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.020] [PMID: 27770735]
[47]
Naaz, F.; Preeti Pallavi, M.C.; Shafi, S.; Mulakayala, N.; Shahar Yar, M.; Sampath Kumar, H.M. 1,2,3-triazole tethered Indole-3-glyoxamide derivatives as multiple inhibitors of 5-LOX, COX-2 & tubulin: Their anti-proliferative & anti-inflammatory activity. Bioorg. Chem., 2018, 81, 1-20.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.029] [PMID: 30081353]
[48]
Awadallah, F.M.; Bua, S.; Mahmoud, W.R.; Nada, H.H.; Nocentini, A.; Supuran, C.T. Inhibition studies on a panel of human carbonic anhydrases with N 1-substituted secondary sulfonamides incorporating thiazolinone or imidazolone-indole tails. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 629-638.
[http://dx.doi.org/10.1080/14756366.2018.1446432] [PMID: 29536779]
[49]
Feng, Y.; Teng, X.; Gu, J.; Yu, B.; Luo, Y.; Ye, L. Novel anti-cancer agents: design, synthesis, biological activity, molecular docking, and MD simulations of 2, 3, 4, 5-tetrahydro-1H-pyrido-[4,3-b]indole derivatives. Med. Chem. Res., 2019, 28(2), 133-142.
[http://dx.doi.org/10.1007/s00044-018-2271-0]
[50]
Luo, G.; Chen, L.; Easton, A.; Newton, A.; Bourin, C.; Shields, E.; Mosure, K.; Soars, M.G.; Knox, R.J.; Matchett, M.; Pieschl, R.L.; Post-Munson, D.J.; Wang, S.; Herrington, J.; Graef, J.; Newberry, K.; Sivarao, D.V.; Senapati, A.; Bristow, L.J.; Meanwell, N.A.; Thompson, L.A.; Dzierba, C. Discovery of indole- and indazole-acylsulfonamides as potent and selective NaV1.7 inhibitors for the treatment of pain. J. Med. Chem., 2019, 62(2), 831-856.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01550] [PMID: 30576602]
[51]
Boubia, B.; Poupardin, O.; Barth, M.; Binet, J.; Peralba, P.; Mounier, L.; Jacquier, E.; Gauthier, E.; Lepais, V.; Chatar, M.; Ferry, S.; Thourigny, A.; Guillier, F.; Llacer, J.; Amaudrut, J.; Dodey, P.; Lacombe, O.; Masson, P.; Montalbetti, C.; Wettstein, G.; Luccarini, J.M.; Legendre, C.; Junien, J.L.; Broqua, P. Design, synthesis, and evaluation of a novel series of indole sulfonamide peroxisome proliferator activated receptor (PPAR) α/γ/δ triple activators: discovery of lanifibranor, a new antifibrotic clinical candidate. J. Med. Chem., 2018, 61(6), 2246-2265.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01285] [PMID: 29446942]
[52]
Greig, I.R.; Baillie, G.L.; Abdelrahman, M.; Trembleau, L.; Ross, R.A. Development of indole sulfonamides as cannabinoid receptor negative allosteric modulators. Bioorg. Med. Chem. Lett., 2016, 26(18), 4403-4407.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.018] [PMID: 27542310]
[53]
Al-Romaizan, A.N. Synthesis, characteristic and antimicrobial activity of some new spiro[indol-thiazolidon-2,4-diones] and bis(5-fluorospiro[indoline-3,2′-thiazolidine]-2,4′-dione) probes. Int. J. Org. Chem. (Irvine), 2020, 10(2), 77-87.
[http://dx.doi.org/10.4236/ijoc.2020.102005]
[54]
Bucki, A.; Marcinkowska, M.; Śniecikowska, J.; Więckowski, K.; Pawłowski, M.; Głuch-Lutwin, M.; Grybo, A.; Siwek, A.; Pytka, K.; Jastrzębska-Więsek, M.; Partyka, A.; Wesołowska, A.; Mierzejewski, P.; Kołaczkowski, M. Novel 3-(1, 2, 3, 6-tetrahydropyridin-4-yl)-1 H-indole-based multifunctional ligands with antipsychotic-like, mood-modulating, and procognitive activity. J. Med. Chem., 2017, 60(17), 7483-7501.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00839] [PMID: 28763213]
[55]
Singh, P.; Swain, B.; Thacker, P.S.; Sigalapalli, D.K.; Purnachander Yadav, P.; Angeli, A.; Supuran, C.T.; Arifuddin, M. Synthesis and carbonic anhydrase inhibition studies of sulfonamide based indole-1,2,3-triazole chalcone hybrids. Bioorg. Chem., 2020, 99, 103839.
[http://dx.doi.org/10.1016/j.bioorg.2020.103839] [PMID: 32289586]
[56]
Peerzada, M.N.; Khan, P.; Ahmad, K.; Hassan, M.I.; Azam, A. Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents. Eur. J. Med. Chem., 2018, 155, 13-23.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.034] [PMID: 29852328]
[57]
Zajdel, P.; Marciniec, K.; Satała, G.; Canale, V.; Kos, T.; Partyka, A.; Jastrzębska-Więsek, M.; Wesołowska, A.; Basińska-Ziobroń, A.; Wójcikowski, J.; Daniel, W.A.; Bojarski, A.J.; Popik, P. N1-Azinylsulfonyl-1H-indoles: 5-HT6 Receptor antagonists with procognitive and antidepressant-like properties. ACS Med. Chem. Lett., 2016, 7(6), 618-622.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00056] [PMID: 27326337]
[58]
Man, R.J.; Tang, D.J.; Lu, X.Y.; Duan, Y.T.; Tao, X.X.; Yang, M.R.; Wang, L.L.; Wang, B.Z.; Xu, C.; Zhu, H.L. Synthesis and biological evaluation of novel indole derivatives containing sulfonamide scaffold as potential tubulin inhibitor. MedChemComm, 2016, 7(9), 1759-1767.
[http://dx.doi.org/10.1039/C6MD00255B]
[59]
Roaiah, H.M.; Ghannam, I.A.Y.; Ali, I.H.; El Kerdawy, A.M.; Ali, M.M.; Abbas, S.E.S.; El-Nakkady, S.S. Design, synthesis, and molecular docking of novel indole scaffold-based VEGFR-2 inhibitors as targeted anticancer agents. Arch. Pharm. (Weinheim), 2018, 351(2), 1700299.
[http://dx.doi.org/10.1002/ardp.201700299] [PMID: 29323750]
[60]
Halawa, A.H.; Eskandrani, A.A.; Elgammal, W.E.; Hassan, S.M.; Hassan, A.H.; Ebrahim, H.Y.; Mehany, A.B.M.; El-Agrody, A.M.; Okasha, R.M. Rational design and synthesis of diverse pyrimidine molecules bearing sulfonamide moiety as novel ERK inhibitors. Int. J. Mol. Sci., 2019, 20(22), 5592.
[http://dx.doi.org/10.3390/ijms20225592] [PMID: 31717402]
[61]
Nocentini, A.; Bua, S.; Lomelino, C.L.; McKenna, R.; Menicatti, M.; Bartolucci, G.; Tenci, B.; Di Cesare Mannelli, L.; Ghelardini, C.; Gratteri, P.; Supuran, C.T. Discovery of new sulfonamide carbonic anhydrase IX inhibitors incorporating nitrogenous bases. ACS Med. Chem. Lett., 2017, 8(12), 1314-1319.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00399] [PMID: 29259754]
[62]
Silva, T.B.; Bernardino, A.M.R.; Ferreira, M.L.G.; Rogerio, K.R.; Carvalho, L.J.M.; Boechat, N.; Pinheiro, L.C.S. Design, synthesis and anti-P. falciparum activity of pyrazolopyridine-sulfonamide derivatives. Bioorg. Med. Chem., 2016, 24(18), 4492-4498.
[http://dx.doi.org/10.1016/j.bmc.2016.07.049] [PMID: 27485600]
[63]
Ghorab, M.M.; Alsaid, M.S.; El-Gaby, M.S.A.; Elaasser, M.M.; Nissan, Y.M. Antimicrobial and anticancer activity of some novel fluorinated thiourea derivatives carrying sulfonamide moieties: synthesis, biological evaluation and molecular docking. Chem. Cent. J., 2017, 11(1), 32.
[http://dx.doi.org/10.1186/s13065-017-0258-4] [PMID: 29086809]
[64]
Yang, C.; Zhang, X.; Wang, Y.; Yang, Y.; Liu, X.; Deng, M.; Jia, Y.; Ling, Y.; Meng, L.; Zhou, Y. Discovery of a novel series of 7-azaindole scaffold derivatives as PI3K inhibitors with potent activity. ACS Med. Chem. Lett., 2017, 8(8), 875-880.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00222] [PMID: 28835805]
[65]
Karpina, V.R.; Kovalenko, S.S.; Kovalenko, S.M.; Drushlyak, O.G.; Bunyatyan, N.D.; Georgiyants, V.A.; Ivanov, V.V.; Langer, T.; Maes, L. A novel series of [1,2,4]triazolo[4,3-a]pyridine sulfonamides as potential antimalarial agents: In silico studies, synthesis and in vitro evaluation. Molecules, 2020, 25(19), 4485.
[http://dx.doi.org/10.3390/molecules25194485] [PMID: 33007887]
[66]
Szafrański, K.; Sławiński, J.; Kędzia, A.; Kwapisz, E. Syntheses of novel 4-substituted N-(5-amino-1H-1,2,4-triazol-3-yl)pyridine-3-sulfonamide derivatives with potential antifungal activity. Molecules, 2017, 22(11), 1926.
[http://dx.doi.org/10.3390/molecules22111926] [PMID: 29112162]
[67]
Ghareb, N.; El-Sayed, N.M.; Abdelhameed, R.; Yamada, K.; Elgawish, M.S. Toward a treatment of diabesity: Rational design, synthesis and biological evaluation of benzene-sulfonamide derivatives as a new class of PTP-1B inhibitors. Bioorg. Chem., 2019, 86, 322-338.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.052] [PMID: 30743173]
[68]
Ullah, S.; El-Gamal, M.I.; Zaib, S.; Anbar, H.S.; Zaraei, S.O.; Sbenati, R.M.; Pelletier, J.; Sévigny, J.; Oh, C.H.; Iqbal, J. Synthesis, biological evaluation, and docking studies of new pyrazole-based thiourea and sulfonamide derivatives as inhibitors of nucleotide pyrophosphatase/phosphodiesterase. Bioorg. Chem., 2020, 99, 103783.
[http://dx.doi.org/10.1016/j.bioorg.2020.103783] [PMID: 32224334]
[69]
Ghorab, M.M.; Alsaid, M.S.; El-Gaby, M.S.A.; Safwat, N.A.; Elaasser, M.M.; Soliman, A.M. Biological evaluation of some new N -(2,6-dimethoxypyrimidinyl) thioureido benzenesulfonamide derivatives as potential antimicrobial and anticancer agents. Eur. J. Med. Chem., 2016, 124, 299-310.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.060] [PMID: 27597407]
[70]
Pawar, C.D.; Sarkate, A.P.; Karnik, K.S.; Shinde, D.B. Palladium catalyzed tricyclohexylphosphine ligand associated synthesis of N -(2-(pyridine-4-yl)-1 H -pyrrolo[3,2- c]-pyridin-6-yl-(substituted)-sulfonamide derivatives as antiproliferative agents. J. Heterocycl. Chem., 2018, 55(7), 1695-1701.
[http://dx.doi.org/10.1002/jhet.3206]
[71]
Ghorab, M.M.; Alsaid, M.S. Novel 3-pyridinecarbonitriles incorporating sulfonamide moieties as anti-breast cancer agents. Russ. J. Bioorganic Chem., 2016, 42(4), 441-448.
[http://dx.doi.org/10.1134/S1068162016040087]
[72]
Gari Divya, K.R.; Lakshmi Teja, G.; Yamini, G.; Padmaja, A.; Padmavathi, V. Synthesis of amido sulfonamido heteroaromatics under ultrasonication and their antimicrobial activity. Chem. Biodivers., 2019, 16(11), e1900291.
[http://dx.doi.org/10.1002/cbdv.201900291] [PMID: 31469234]
[73]
Chandrasekhar, M.; Prasad, G.S.; Venkataramaiah, C.; Naga Raju, C.; Seshaiah, K.; Rajendra, W. Synthesis, spectral characterization, docking studies and biological activity of urea, thiourea, sulfonamide and carbamate derivatives of imatinib intermediate. Mol. Divers., 2019, 23(3), 723-738.
[http://dx.doi.org/10.1007/s11030-018-9906-4] [PMID: 30560342]
[74]
Barton, N.; Convery, M.; Cooper, A.W.J.; Down, K.; Hamblin, J.N.; Inglis, G.; Peace, S.; Rowedder, J.; Rowland, P.; Taylor, J.A.; Wellaway, N. Discovery of potent, efficient, and selective inhibitors of phosphoinositide 3-kinase δ through a deconstruction and regrowth approach. J. Med. Chem., 2018, 61(24), 11061-11073.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01556] [PMID: 30532965]
[75]
Lin, S.; Wang, C.; Ji, M.; Wu, D.; Lv, Y.; Sheng, L.; Han, F.; Dong, Y.; Zhang, K.; Yang, Y.; Li, Y.; Chen, X.; Xu, H. Discovery of new thienopyrimidine derivatives as potent and orally efficacious phosphoinositide 3-kinase inhibitors. Bioorg. Med. Chem., 2018, 26(3), 637-646.
[http://dx.doi.org/10.1016/j.bmc.2017.12.025] [PMID: 29305298]
[76]
Tan, B.; Zhang, X.; Quan, X.; Zheng, G.; Li, X.; Zhao, L.; Li, W.; Li, B. Design, synthesis and biological activity evaluation of novel 4-((1-cyclopropyl-3-(tetrahydro-2Hpyran-4-yl)-1H-pyrazol-4-yl) oxy) pyridine-2-yl) amino derivatives as potent transforming growth factor-β (TGF-β) type I receptor inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(16), 127339.
[http://dx.doi.org/10.1016/j.bmcl.2020.127339] [PMID: 32631540]
[77]
Azzam, R.A.; Osman, R.R.; Elgemeie, G.H. Efficient synthesis and docking studies of novel benzothiazole-based pyrimidinesulfonamide scaffolds as new antiviral agents and Hsp90α inhibitors. ACS Omega, 2020, 5(3), 1640-1655.
[http://dx.doi.org/10.1021/acsomega.9b03706] [PMID: 32010839]
[78]
Li, X.; Wang, D.; Lu, G.; Liu, K.; Zhang, T.; Li, S.; Mohamed O, K.; Xue, W.; Qian, X.; Meng, F. Development of a novel thymidylate synthase (TS) inhibitor capable of upregulating P53 expression and inhibiting angiogenesis in NSCLC. J. Adv. Res., 2020, 26, 95-110.
[http://dx.doi.org/10.1016/j.jare.2020.07.008] [PMID: 33133686]
[79]
El-Ansary, A.K.; Kamal, A.M.; Al-Ghorafi, M.A.H. Design, synthesis and biological evaluation of some 5-arylthieno[2,3-d]pyrimidines as potential anti-cancer agents. Chem. Pharm. Bull. (Tokyo), 2016, 64(8), 1172-1180.
[http://dx.doi.org/10.1248/cpb.c16-00291] [PMID: 27477657]
[80]
Khalil, O.M.; Kamal, A.M.; Bua, S.; El Sayed Teba, H.; Nissan, Y.M.; Supuran, C.T. Pyrrolo and pyrrolopyrimidine sulfonamides act as cytotoxic agents in hypoxia via inhibition of transmembrane carbonic anhydrases. Eur. J. Med. Chem., 2020, 188, 112021.
[http://dx.doi.org/10.1016/j.ejmech.2019.112021] [PMID: 31901743]
[81]
Sui, Y.F.; Li, D.; Wang, J.; Bheemanaboina, R.R.Y.; Ansari, M.F.; Gan, L.L.; Zhou, C.H. Design and biological evaluation of a novel type of potential multi-targeting antimicrobial sulfanilamide hybrids in combination of pyrimidine and azoles. Bioorg. Med. Chem. Lett., 2020, 30(6), 126982.
[http://dx.doi.org/10.1016/j.bmcl.2020.126982] [PMID: 32001137]
[82]
Said, M.A.; Eldehna, W.M.; Nocentini, A.; Fahim, S.H.; Bonardi, A.; Elgazar, A.A.; Kryštof, V.; Soliman, D.H.; Abdel-Aziz, H.A.; Gratteri, P.; Abou-Seri, S.M.; Supuran, C.T. Sulfonamide-based ring-fused analogues for CAN508 as novel carbonic anhydrase inhibitors endowed with antitumor activity: Design, synthesis, and in vitro biological evaluation. Eur. J. Med. Chem., 2020, 189, 112019.
[http://dx.doi.org/10.1016/j.ejmech.2019.112019] [PMID: 31972394]
[83]
Hafez, H.; El-Gazzar, A.R. Synthesis and biological evaluation of N- pyrazolyl derivatives and pyrazolopyrimidine bearing a biologically active sulfonamide moiety as potential antimicrobial agent. Molecules, 2016, 21(9), 1156.
[http://dx.doi.org/10.3390/molecules21091156] [PMID: 27589717]
[84]
Silveira, F.F.; Feitosa, L.M.; Mafra, J.C.M.; Ferreira, M.L.G.; Rogerio, K.R.; Carvalho, L.J.M.; Boechat, N.; Pinheiro, L.C.S. Synthesis and anti-Plasmodium falciparum evaluation of novel pyrazolopyrimidine derivatives. Med. Chem. Res., 2018, 27(8), 1876-1884.
[http://dx.doi.org/10.1007/s00044-018-2199-4]
[85]
Kang, D.; Wang, Z.; Chen, M.; Feng, D.; Wu, G.; Zhou, Z.; Jing, L.; Zuo, X.; Jiang, X.; Daelemans, D.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Discovery of potent HIV ‐1 non‐nucleoside reverse transcriptase inhibitors by exploring the structure-activity relationship of solventexposed regions I. Chem. Biol. Drug Des., 2019, 93(4), 430-437.
[http://dx.doi.org/10.1111/cbdd.13429] [PMID: 30381875]
[86]
Butta, R.; Ummadi, N.; Adivireddy, P.; Venkatapuram, P. Synthesis and antimicrobial activity of pyrimidinylsulfamoyl azolylbenzamides. Indian J. Chem. Sect. B: Org. Chem. Incl. Med. Chem., 2019, 58, 907-915.
[87]
Rehman, T.U.; Khan, I.U.; Ashraf, M.; Tarazi, H.; Riaz, S.; Yar, M. An efficient synthesis of bi -aryl pyrimidine heterocycles: Potential new drug candidates to treat Alzheimer’s disease. Arch. Pharm. (Weinheim), 2017, 350(3-4), 1600304.
[http://dx.doi.org/10.1002/ardp.201600304] [PMID: 28220522]
[88]
Kang, D.; Ding, X.; Wu, G.; Huo, Z.; Zhou, Z.; Zhao, T.; Feng, D.; Wang, Z.; Tian, Y.; Daelemans, D.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Discovery of thiophene [3, 2-d] pyrimidine derivatives as potent HIV-1 NNRTIs targeting the tolerant region I of NNIBP. ACS Med. Chem. Lett., 2017, 8(11), 1188-1193.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00361] [PMID: 29152052]
[89]
Yamaguchi-Sasaki, T.; Tamura, Y.; Ogata, Y.; Kawaguchi, T.; Kurosaka, J.; Sugaya, Y.; Iwakiri, K.; Busujima, T.; Takahashi, R.; Ueda-Yonemoto, N.; Tanigawa, E.; Abe-Kumasaka, T.; Sugiyama, H.; Kanuma, K. Design and synthesis of 2-(1-alkylaminoalkyl)pyrazolo[1,5-a]pyrimidines as new respiratory syncytial virus fusion protein inhibitors. Chem. Pharm. Bull. (Tokyo), 2020, 68(4), 345-362.
[http://dx.doi.org/10.1248/cpb.c19-00895] [PMID: 32238652]
[90]
Hafez, H.N.; Alsalamah, S.A.; El-Gazzar, A.R.B.A. Synthesis of thiophene and N -substituted thieno[3,2- d] pyrimidine derivatives as potent antitumor and antibacterial agents. Acta Pharm., 2017, 67(3), 275-292.
[http://dx.doi.org/10.1515/acph-2017-0028] [PMID: 28858838]
[91]
Barresi, E.; Salerno, S.; Marini, A.M.; Taliani, S.; La Motta, C.; Simorini, F.; Da Settimo, F.; Vullo, D.; Supuran, C.T. Sulfonamides incorporating heteropolycyclic scaffolds show potent inhibitory action against carbonic anhydrase isoforms I, II, IX and XII. Bioorg. Med. Chem., 2016, 24(4), 921-927.
[http://dx.doi.org/10.1016/j.bmc.2016.01.018] [PMID: 26796953]
[92]
Ghorab, M.; Alsaid, M. Anticancer activity of some novel thieno [2, 3-d] pyrimidine derivatives. Biomed. Res., 2016, 27, 110-115.
[93]
Chen, Y.; Zhang, L.; Yang, C.; Han, J.; Wang, C.; Zheng, C.; Zhou, Y.; Lv, J.; Song, Y.; Zhu, J. Discovery of benzenesulfonamide derivatives as potent PI3K/mTOR dual inhibitors with in vivo efficacies against hepatocellular carcinoma. Bioorg. Med. Chem., 2016, 24(5), 957-966.
[http://dx.doi.org/10.1016/j.bmc.2016.01.008] [PMID: 26819001]
[94]
Ramdas, V.; Talwar, R.; Kanoje, V.; Loriya, R.M.; Banerjee, M.; Patil, P.; Joshi, A.A.; Datrange, L.; Das, A.K.; Walke, D.S.; Kalhapure, V.; Khan, T.; Gote, G.; Dhayagude, U.; Deshpande, S.; Shaikh, J.; Chaure, G.; Pal, R.R.; Parkale, S.; Suravase, S.; Bhoskar, S.; Gupta, R.V.; Kalia, A.; Yeshodharan, R.; Azhar, M.; Daler, J.; Mali, V.; Sharma, G.; Kishore, A.; Vyawahare, R.; Agarwal, G.; Pareek, H.; Budhe, S.; Nayak, A.; Warude, D.; Gupta, P.K.; Joshi, P.; Joshi, S.; Darekar, S.; Pandey, D.; Wagh, A.; Nigade, P.B.; Mehta, M.; Patil, V.; Modi, D.; Pawar, S.; Verma, M.; Singh, M.; Das, S.; Gundu, J.; Nemmani, K.; Bock, M.G.; Sharma, S.; Bakhle, D.; Kamboj, R.K.; Palle, V.P. Discovery of potent, selective, and state-dependent NaV1. 7 inhibitors with robust oral efficacy in pain models: Structure-activity relationship and optimization of chroman and indane aryl sulfonamides. J. Med. Chem., 2020, 63(11), 6107-6133.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00361] [PMID: 32368909]
[95]
Katouah, H.A.; Gaffer, H.E. Synthesis and docking study of pyrimidine derivatives scaffold for anti-hypertension application. ChemistrySelect, 2019, 4(20), 6250-6255.
[http://dx.doi.org/10.1002/slct.201900799]
[96]
Variya, H.H.; Panchal, V.; Patel, G.R. Synthesis, antituberculosis and anti-bacterial activities of sulfadimethoxine bearing N-(2, 6-dimethoxypyrimidin-4-yl)-4-(4-oxo-2-(substituted) phenylthiazolidin-3yl) benzenesulfonamide. Int. J. Res. Anal. Rev., 2019, 6(2), 168-180.
[97]
Bahekar, S.P.; Chandak, H.S. Synthesis of Thiazolopyrimidines via Annulation of N -(4,6-Diaryl-2-thioxo-1,2,3,6-tetrahydropyrimidin-4-yl)phenyl)aryl-sulfonamides. ChemistrySelect, 2018, 3(9), 2626-2630.
[http://dx.doi.org/10.1002/slct.201702785]
[98]
Saleh, N.M.; El-Gaby, M.S.A.; El-Adl, K.; Abd El-Sattar, N.E.A. Design, green synthesis, molecular docking and anticancer evaluations of diazepam bearing sulfonamide moieties as VEGFR-2 inhibitors. Bioorg. Chem., 2020, 104, 104350.
[http://dx.doi.org/10.1016/j.bioorg.2020.104350] [PMID: 33142416]
[99]
Shinde, R.R.; Gaikwad, D.; Farooqui, M. Synthesis and antimicrobial activity of 2‐(4‐(benzo[d]thiazol‐5‐ylsulfonyl)piperazine‐1‐yl)‐N‐substituted acetamide derivatives. J. Heterocycl. Chem., 2020, 57(11), 3907-3917.
[http://dx.doi.org/10.1002/jhet.4099]
[100]
Meleddu, R.; Distinto, S.; Cottiglia, F.; Angius, R.; Gaspari, M.; Taverna, D.; Melis, C.; Angeli, A.; Bianco, G.; Deplano, S.; Fois, B.; Del Prete, S.; Capasso, C.; Alcaro, S.; Ortuso, F.; Yanez, M.; Supuran, C.T.; Maccioni, E. Tuning the dual inhibition of carbonic anhydrase and cyclooxygenase by dihydrothiazole benzensulfonamides. ACS Med. Chem. Lett., 2018, 9(10), 1045-1050.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00352] [PMID: 30344915]
[101]
Abdel-Maksoud, M.S.; Ammar, U.M.; Oh, C.H. Anticancer profile of newly synthesized BRAF inhibitors possess 5-(pyrimidin-4-yl)imidazo[2,1-b]thiazole scaffold. Bioorg. Med. Chem., 2019, 27(10), 2041-2051.
[http://dx.doi.org/10.1016/j.bmc.2019.03.062] [PMID: 30955995]
[102]
Abdel Gawad, N.M.; Amin, N.H.; Elsaadi, M.T.; Mohamed, F.M.M.; Angeli, A.; De Luca, V.; Capasso, C.; Supuran, C.T. Synthesis of 4-(thiazol-2-ylamino)-benzenesulfonamides with carbonic anhydrase I, II and IX inhibitory activity and cytotoxic effects against breast cancer cell lines. Bioorg. Med. Chem., 2016, 24(13), 3043-3051.
[http://dx.doi.org/10.1016/j.bmc.2016.05.016] [PMID: 27234893]
[103]
Bhat, M.A.; Al-Omar, M.A.; Naglah, A.M.; Khan, A.A. Synthesis of novel sulfamethaoxazole 4-thiazolidinone hybrids and their biological evaluation. Molecules, 2020, 25(16), 3570.
[http://dx.doi.org/10.3390/molecules25163570] [PMID: 32781534]
[104]
Sivaraman, A.; Kim, D.G.; Bhattarai, D.; Kim, M.; Lee, H.Y.; Lim, S.; Kong, J.; Goo, J.; Shim, S.; Lee, S.; Suh, Y.G.; Choi, Y.; Kim, S.; Lee, K. Synthesis and structureactivity relationships of arylsulfonamides as AIMP2-DX2 inhibitors for the development of a novel anticancer therapy. J. Med. Chem., 2020, 63(10), 5139-5158.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01961] [PMID: 32315177]
[105]
Azzam, R.A.; Elsayed, R.E.; Elgemeie, G.H. Design and synthesis of a new class of pyridine-based Nsulfonamides exhibiting antiviral, antimicrobial, and enzyme inhibition characteristics. ACS Omega, 2020, 5(40), 26182-26194.
[http://dx.doi.org/10.1021/acsomega.0c03773] [PMID: 33073144]
[106]
Azzam, R.A.; Elboshi, H.A.; Elgemeie, G.H. Novel synthesis and antiviral evaluation of new benzothiazole-bearing N-sulfonamide 2-pyridone derivatives as USP7 enzyme inhibitors. ACS Omega, 2020, 5(46), 30023-30036.
[http://dx.doi.org/10.1021/acsomega.0c04424] [PMID: 33251438]
[107]
Azzam, R.A.; Elsayed, R.E.; Elgemeie, G.H. Design, synthesis, and antimicrobial evaluation of a new series of N-sulfonamide 2-pyridones as dual inhibitors of DHPS and DHFR enzymes. ACS Omega, 2020, 5(18), 10401-10414.
[http://dx.doi.org/10.1021/acsomega.0c00280] [PMID: 32426597]
[108]
Aziz, D.M.; Azeez, H.J. Synthesis of new ß-lactam- N-(thiazol-2-yl)benzene sulfonamide hybrids: Their in vitro antimicrobial and in silico molecular docking studies. J. Mol. Struct., 2020, 1222, 128904.
[http://dx.doi.org/10.1016/j.molstruc.2020.128904]
[109]
Li, R.; Ning, X.; Zhou, S.; Lin, Z.; Wu, X.; Chen, H.; Bai, X.; Wang, X.; Ge, Z.; Li, R.; Yin, Y. Discovery and structure-activity relationship of novel 4-hydroxy-thiazolidine-2-thione derivatives as tumor cell specific pyruvate kinase M2 activators. Eur. J. Med. Chem., 2018, 143, 48-65.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.023] [PMID: 29172082]
[110]
Husain, A.; Madhesia, D.; Rashid, M.; Ahmad, A.; Khan, S.A. Synthesis and in vivo diuretic activity of some new benzothiazole sulfonamides containing quinoxaline ring system. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1682-1689.
[http://dx.doi.org/10.3109/14756366.2015.1128425] [PMID: 26739592]
[111]
Fadda, A.A.; Soliman, N.N.; Bayoumy, N.M. Antimicrobial properties of some new synthesized benzothiazole linked carboxamide, acetohydrazide, and sulfonamide systems. J. Heterocycl. Chem., 2019, 56(9), 2369-2378.
[http://dx.doi.org/10.1002/jhet.3624]
[112]
Elsayed, M.S.A.; Chang, S.; Cushman, M. Ligand-free, palladacycle-facilitated Suzuki coupling of hindered 2-arylbenzothiazole derivatives yields potent and selective COX-2 inhibitors. Org. Biomol. Chem., 2018, 16(1), 108-118.
[http://dx.doi.org/10.1039/C7OB02386C] [PMID: 29199735]
[113]
Ugwu, D.I.; Okoro, U.C.; Ukoha, P.O.; Gupta, A.; Okafor, S.N. Novel anti-inflammatory and analgesic agents: synthesis, molecular docking and in vivo studies. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 405-415.
[http://dx.doi.org/10.1080/14756366.2018.1426573] [PMID: 29372659]
[114]
Abd El-Gilil, S.M. Design, synthesis, molecular docking and biological screening of N-ethyl-N-methylbenzenesulfonamide derivatives as effective antimicrobial and antiproliferative agents. J. Mol. Struct., 2019, 1194, 144-156.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.048]
[115]
Alkhaldi, A.A.M.; Al-Sanea, M.M.; Nocentini, A.; Eldehna, W.M.; Elsayed, Z.M.; Bonardi, A.; Abo-Ashour, M.F.; El-Damasy, A.K.; Abdel-Maksoud, M.S.; Al-Warhi, T.; Gratteri, P.; Abdel-Aziz, H.A.; Supuran, C.T.; El-Haggar, R. 3-Methylthiazolo[3,2-a]benzimidazole-benzenesulfonamide conjugates as novel carbonic anhydrase inhibitors endowed with anticancer activity: Design, synthesis, biological and molecular modeling studies. Eur. J. Med. Chem., 2020, 207, 112745.
[http://dx.doi.org/10.1016/j.ejmech.2020.112745] [PMID: 32877804]
[116]
Majalakere, K.; Kunhana, S.B.; Rao, S.; Kalal, B.S.; Badiadka, N.; Sanjeev, G.; Holla, B.S. Studies on imidazo[2,1-b][1,3]benzothiazole derivatives as new radiosensitizers. SN Appl. Sci., 2020, 2(11), 1902.
[http://dx.doi.org/10.1007/s42452-020-03726-7]
[117]
Wu, Y.J.; Guernon, J.; McClure, A.; Luo, G.; Rajamani, R.; Ng, A.; Easton, A.; Newton, A.; Bourin, C.; Parker, D.; Mosure, K.; Barnaby, O.; Soars, M.G.; Knox, R.J.; Matchett, M.; Pieschl, R.; Herrington, J.; Chen, P.; Sivarao, D.V.; Bristow, L.J.; Meanwell, N.A.; Bronson, J.; Olson, R.; Thompson, L.A.; Dzierba, C. Discovery of nonzwitterionic aryl sulfonamides as Nav1.7 inhibitors with efficacy in preclinical behavioral models and translational measures of nociceptive neuron activation. Bioorg. Med. Chem., 2017, 25(20), 5490-5505.
[http://dx.doi.org/10.1016/j.bmc.2017.08.012] [PMID: 28818462]
[118]
Rajeswari, T.; Rekha, T.; Dinneswara Reddy, G.; Padmaja, A.; Padmavathi, V. Synthesis and antibacterial activity of benzazolyl azolyl sulfamoyl acetamides. J. Heterocycl. Chem., 2019, 56(9), 2449-2459.
[http://dx.doi.org/10.1002/jhet.3634]
[119]
Manasa, K.L.; Pujitha, S.; Sethi, A.; Arifuddin, M.; Alvala, M.; Angeli, A.; Supuran, C.T. Synthesis and biological evaluation of imidazo [2, 1-b] thiazole based sulfonyl piperazines as novel carbonic anhydrase II inhibitors. Metabolites, 2020, 10(4), 136.
[http://dx.doi.org/10.3390/metabo10040136] [PMID: 32244413]
[120]
Bashandy, M.S. 1-(4-(pyrrolidin-1-ylsulfonyl) phenyl) ethanone in heterocyclic synthesis: synthesis, molecular docking and anti-human liver cancer evaluation of novel sulfonamides incorporating thiazole, imidazo [1, 2-a] pyridine, imidazo [2, 1-c][1, 2, 4] triazole, imidazo [2, 1-b] thiazole, 1, 3, 4-thiadiazine and 1, 4-thiazine moieties. Int. J. Org. Chem. (Irvine), 2015, 5(3), 166-190.
[http://dx.doi.org/10.4236/ijoc.2015.53018]
[121]
Hussein, E.M.; Al-Rooqi, M.M.; Elkhawaga, A.A.; Ahmed, S.A. Tailoring of novel biologically active molecules based on N-substituted sulfonamides bearing thiazole moiety exhibiting unique multi-addressable biological potentials. Arab. J. Chem., 2020, 13(5), 5345-5362.
[http://dx.doi.org/10.1016/j.arabjc.2020.03.014]
[122]
Wang, L.; Kofler, M.; Brosch, G.; Melesina, J.; Sippl, W.; Martinez, E.D.; Easmon, J. 2-Benzazolyl-4-Piperazin-1-Ylsulfonylbenzenecarbohydroxamic acids as novel selective histone deacetylase-6 inhibitors with antiproliferative activity. PLoS One, 2015, 10(12), e0134556.
[http://dx.doi.org/10.1371/journal.pone.0134556] [PMID: 26698121]
[123]
Tsagris, D.J.; Birchall, K.; Bouloc, N.; Large, J.M.; Merritt, A.; Smiljanic-Hurley, E.; Wheldon, M.; Ansell, K.H.; Kettleborough, C.; Whalley, D.; Stewart, L.B.; Bowyer, P.W.; Baker, D.A.; Osborne, S.A. Trisubstituted thiazoles as potent and selective inhibitors of Plasmodium falciparum protein kinase G (PfPKG). Bioorg. Med. Chem. Lett., 2018, 28(19), 3168-3173.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.028] [PMID: 30174152]
[124]
Rai, G.; Urban, D.J.; Mott, B.T.; Hu, X.; Yang, S.M.; Benavides, G.A.; Johnson, M.S.; Squadrito, G.L.; Brimacombe, K.R.; Lee, T.D.; Cheff, D.M.; Zhu, H.; Henderson, M.J.; Pohida, K.; Sulikowski, G.A.; Dranow, D.M.; Kabir, M.; Shah, P.; Padilha, E.; Tao, D.; Fang, Y.; Christov, P.P.; Kim, K.; Jana, S.; Muttil, P.; Anderson, T.; Kunda, N.K.; Hathaway, H.J.; Kusewitt, D.F.; Oshima, N.; Cherukuri, M.; Davies, D.R.; Norenberg, J.P.; Sklar, L.A.; Moore, W.J.; Dang, C.V.; Stott, G.M.; Neckers, L.; Flint, A.J.; Darley-Usmar, V.M.; Simeonov, A.; Waterson, A.G.; Jadhav, A.; Hall, M.D.; Maloney, D.J. Pyrazole-based lactate dehydrogenase inhibitors with optimized cell activity and pharmacokinetic properties. J. Med. Chem., 2020, 63(19), 10984-11011.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00916] [PMID: 32902275]
[125]
Afifi, O.S.; Shaaban, O.G.; Abd El Razik, H.A.; Shams El-Dine, S.E.D.A.; Ashour, F.A.; El-Tombary, A.A.; Abu-Serie, M.M. Synthesis and biological evaluation of purinepyrazole hybrids incorporating thiazole, thiazolidinone or rhodanine moiety as 15-LOX inhibitors endowed with anticancer and antioxidant potential. Bioorg. Chem., 2019, 87, 821-837.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.076] [PMID: 30999135]
[126]
Ashour, H.M.A.; El-Ashmawy, I.M.; Bayad, A.E. Synthesis and pharmacological evaluation of new pyrazolyl benzenesulfonamides linked to polysubstituted pyrazoles and thiazolidinones as anti-inflammatory and analgesic agents. Monatsh. Chem., 2016, 147(3), 605-618.
[http://dx.doi.org/10.1007/s00706-015-1549-x]
[127]
Swain, N.A.; Batchelor, D.; Beaudoin, S.; Bechle, B.M.; Bradley, P.A.; Brown, A.D.; Brown, B.; Butcher, K.J.; Butt, R.P.; Chapman, M.L.; Denton, S.; Ellis, D.; Galan, S.R.G.; Gaulier, S.M.; Greener, B.S.; de Groot, M.J.; Glossop, M.S.; Gurrell, I.K.; Hannam, J.; Johnson, M.S.; Lin, Z.; Markworth, C.J.; Marron, B.E.; Millan, D.S.; Nakagawa, S.; Pike, A.; Printzenhoff, D.; Rawson, D.J.; Ransley, S.J.; Reister, S.M.; Sasaki, K.; Storer, R.I.; Stupple, P.A.; West, C.W. Discovery of clinical candidate 4-[2-(5-amino-1Hpyrazol-4-yl)-4-chlorophenoxy]-5-chloro-2-fluoro-N-1,3-thiazol-4-ylbenzenesulfonamide (PF-05089771): Design and optimization of diaryl ether aryl sulfonamides as selective inhibitors of NaV1.7. J. Med. Chem., 2017, 60(16), 7029-7042.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00598] [PMID: 28682065]
[128]
Naim, M.J.; Alam, O.; Alam, M.J.; Hassan, M.Q.; Siddiqui, N.; Naidu, V.G.M.; Alam, M.I. Design, synthesis and molecular docking of thiazolidinedione based benzene sulphonamide derivatives containing pyrazole core as potential anti-diabetic agents. Bioorg. Chem., 2018, 76, 98-112.
[http://dx.doi.org/10.1016/j.bioorg.2017.11.010] [PMID: 29169079]
[129]
Hunt, H.J.; Belanoff, J.K.; Walters, I.; Gourdet, B.; Thomas, J.; Barton, N.; Unitt, J.; Phillips, T.; Swift, D.; Eaton, E. Identification of the Clinical Candidate (R)-(1-(4-Fluorophenyl)-6-((1-methyl-1 H -pyrazol-4-yl)sulfonyl)-4,4a,5,6,7,8-hexahydro-1 H -pyrazolo[3,4- g]isoquinolin-4a-yl)(4-(trifluoromethyl)pyridin-2-yl)methanone (CORT-125134): A Selective Glucocorticoid Receptor (GR) Antagonist. J. Med. Chem., 2017, 60(8), 3405-3421.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00162] [PMID: 28368581]
[130]
Abdel-Maksoud, M.S.; El-Gamal, M.I.; Gamal El-Din, M.M.; Oh, C.H. Design, synthesis, in vitro anticancer evaluation, kinase inhibitory effects, and pharmacokinetic profile of new 1,3,4-triarylpyrazole derivatives possessing terminal sulfonamide moiety. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 97-109.
[http://dx.doi.org/10.1080/14756366.2018.1530225] [PMID: 30362383]
[131]
Rai, G.; Brimacombe, K.R.; Mott, B.T.; Urban, D.J.; Hu, X.; Yang, S.M.; Lee, T.D.; Cheff, D.M.; Kouznetsova, J.; Benavides, G.A.; Pohida, K.; Kuenstner, E.J.; Luci, D.K.; Lukacs, C.M.; Davies, D.R.; Dranow, D.M.; Zhu, H.; Sulikowski, G.; Moore, W.J.; Stott, G.M.; Flint, A.J.; Hall, M.D.; Darley-Usmar, V.M.; Neckers, L.M.; Dang, C.V.; Waterson, A.G.; Simeonov, A.; Jadhav, A.; Maloney, D.J. Discovery and optimization of potent, Cell-active pyrazolebased inhibitors of lactate dehydrogenase (LDH). J. Med. Chem., 2017, 60(22), 9184-9204.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00941] [PMID: 29120638]
[132]
Shingare, R.M.; Patil, Y.S.; Sangshetti, J.N.; Patil, R.B.; Rajani, D.P.; Rajani, S.D.; Madje, B.R. Benzene sulfonamide pyrazole thio-oxadiazole hybrid as potential antimicrobial and antitubercular agents. Res. Chem. Intermed., 2018, 44(7), 4437-4453.
[http://dx.doi.org/10.1007/s11164-018-3396-y]
[133]
Yamali, C.; Gul, H.I.; Ece, A.; Taslimi, P.; Gulcin, I. Synthesis, molecular modeling, and biological evaluation of 4-[5-aryl-3-(thiophen-2-yl)-4,5-dihydro-1 H-pyrazol-1-yl] benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes. Chem. Biol. Drug Des., 2018, 91(4), 854-866.
[http://dx.doi.org/10.1111/cbdd.13149] [PMID: 29143485]
[134]
Mustafa, G.; Angeli, A.; Zia-ur-Rehman, M.; Akbar, N.; Ishtiaq, S.; Supuran, C.T. An efficient method for the synthesis of novel derivatives 4-{5-[4-(4-amino-5-mercapto-4H-[1,2,4]triazol-3-yl)-phenyl]-3-trifluoromethyl-pyrazol1-yl}-benzenesulfonamide and their anti-inflammatory potential. Bioorg. Chem., 2019, 91, 103110.
[http://dx.doi.org/10.1016/j.bioorg.2019.103110] [PMID: 31310883]
[135]
Othman, I.M.M.; Gad-Elkareem, M.A.M.; Amr, A.E.G.E.; Al-Omar, M.A.; Nossier, E.S.; Elsayed, E.A. Novel heterocyclic hybrids of pyrazole targeting dihydrofolate reductase: design, biological evaluation and in silico studies. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1491-1502.
[http://dx.doi.org/10.1080/14756366.2020.1791842] [PMID: 32668994]
[136]
Gedawy, E.M.; Kassab, A.E.; El Kerdawy, A.M. Design, synthesis and biological evaluation of novel pyrazole sulfonamide derivatives as dual COX-2/5-LOX inhibitors. Eur. J. Med. Chem., 2020, 189, 112066.
[http://dx.doi.org/10.1016/j.ejmech.2020.112066] [PMID: 31982653]
[137]
Xu, W.; Pan, Y.; Wang, H.; Li, H.; Peng, Q.; Wei, D.; Chen, C.; Zheng, J. Synthesis and evaluation of new pyrazoline derivatives as potential anticancer agents in HepG-2 cell line. Molecules, 2017, 22(3), 467.
[http://dx.doi.org/10.3390/molecules22030467] [PMID: 28300751]
[138]
Abd El Razik, H.A.; Badr, M.H.; Atta, A.H.; Mouneir, S.M.; Abu-Serie, M.M. Benzodioxole-pyrazole hybrids as antiinflammatory and analgesic agents with COX‐1, 2/5‐LOX inhibition and antioxidant potential. Arch. Pharm. (Weinheim), 2017, 350(5), 1700026.
[http://dx.doi.org/10.1002/ardp.201700026] [PMID: 28418202]
[139]
Qiu, H.Y.; Wang, P.F.; Li, Z.; Ma, J.T.; Wang, X.M.; Yang, Y.H.; Zhu, H.L. Synthesis of dihydropyrazole sulphonamide derivatives that act as anti-cancer agents through COX-2 inhibition. Pharmacol. Res., 2016, 104, 86-96.
[http://dx.doi.org/10.1016/j.phrs.2015.12.025] [PMID: 26723906]
[140]
Faidallah, H.M.; Rostom, S.A.F. Synthesis, anti‐inflammatory activity, and cOX‐1/2 inhibition profile of some novel non‐acidic polysubstituted pyrazoles and pyrano [2, 3‐c] pyrazoles. Arch. Pharm. (Weinheim), 2017, 350(5), 1700025.
[http://dx.doi.org/10.1002/ardp.201700025] [PMID: 28370254]
[141]
Gul, H.I.; Tugrak, M.; Sakagami, H.; Taslimi, P.; Gulcin, I.; Supuran, C.T. Synthesis and bioactivity studies on new 4-(3-(4-Substitutedphenyl)-3a,4-dihydro-3 H -indeno[1,2-c]pyrazol-2-yl) benzenesulfonamides. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1619-1624.
[http://dx.doi.org/10.3109/14756366.2016.1160077] [PMID: 27028783]
[142]
Mete, E.; Comez, B.; Inci Gul, H.; Gulcin, I.; Supuran, C.T. Synthesis and carbonic anhydrase inhibitory activities of new thienyl-substituted pyrazoline benzenesulfonamides. J. Enzyme Inhib. Med. Chem., 2016, 31(Suppl. 2), 1181627.
[http://dx.doi.org/10.1080/14756366.2016.1181627] [PMID: 27435177]
[143]
Wang, Y.T.; Shi, T.Q.; Zhu, H.L.; Liu, C.H. Synthesis, biological evaluation and molecular docking of benzimidazole grafted benzsulfamide-containing pyrazole ring derivatives as novel tubulin polymerization inhibitors. Bioorg. Med. Chem., 2019, 27(3), 502-515.
[http://dx.doi.org/10.1016/j.bmc.2018.12.031] [PMID: 30606674]
[144]
Variya, H.H.; Panchal, V.; Patel, G.R. Synthesis and characterization of 4-((5-bromo-1H-pyrazolo [3,4-b]pyridin-3-yl)amino)-N-(substituted)benzenesulfonamide as Antibacterial, and Antioxidant Candidates. Curr. Chem. Lett., 2019, 8(4), 177-186.
[http://dx.doi.org/10.5267/j.ccl.2019.5.001]
[145]
Gornowicz, A.; Szymanowska, A.; Mojzych, M.; Bielawski, K.; Bielawska, A. The effect of novel 7-methyl-5-phenyl-pyrazolo [4, 3-e] tetrazolo [4, 5-b][1, 2, 4] triazine sulfonamide derivatives on apoptosis and autophagy in DLD-1 and HT-29 colon cancer cells. Int. J. Mol. Sci., 2020, 21(15), 5221.
[http://dx.doi.org/10.3390/ijms21155221] [PMID: 32717981]
[146]
Al-Blewi, F.F.; Almehmadi, M.A.; Aouad, M.R.; Bardaweel, S.K.; Sahu, P.K.; Messali, M.; Rezki, N.; El Ashry, E.S.H. Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1,2,3-triazole-sulfonamide hybrids as antimicrobial and antiproliferative agents. Chem. Cent. J., 2018, 12(1), 110.
[http://dx.doi.org/10.1186/s13065-018-0479-1] [PMID: 30387018]
[147]
Virk, N.A.; Rehman, A.; Abbasi, M.A.; Siddiqui, S.Z.; Iqbal, J.; Rasool, S.; Khan, S.U.; Htar, T.T.; Khalid, H.; Laulloo, S.J.; Ali Shah, S.A. Microwave‐assisted synthesis of triazole derivatives conjugated with piperidine as new anti‐enzymatic agents. J. Heterocycl. Chem., 2020, 57(3), 1387-1402.
[http://dx.doi.org/10.1002/jhet.3875]
[148]
Balewski, Ł.; Sączewski, F.; Bednarski, P.J.; Wolff, L.; Nadworska, A.; Gdaniec, M.; Kornicka, A. Synthesis, structure and cytotoxicity testing of novel 7-(4, 5-dihydro-1Himidazol-2-yl)-2-aryl-6, 7-dihydro-2H-imidazo [2, 1-c][1, 2, 4] triazol-3 (5H)-imine derivatives. Molecules, 2020, 25(24), 5924.
[http://dx.doi.org/10.3390/molecules25245924] [PMID: 33327611]
[149]
Elgogary, S.R.; Khidre, R.E.; El-Telbani, E.M. Regioselective synthesis and evaluation of novel sulfonamide 1,2,3-triazole derivatives as antitumor agents. J. Indian Chem. Soc., 2020, 17(4), 765-776.
[http://dx.doi.org/10.1007/s13738-019-01796-y]
[150]
El-Gazzar, M.G.; Nafie, N.H.; Nocentini, A.; Ghorab, M.M.; Heiba, H.I.; Supuran, C.T. Carbonic anhydrase inhibition with a series of novel benzenesulfonamide-triazole conjugates. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1565-1574.
[http://dx.doi.org/10.1080/14756366.2018.1513927] [PMID: 30274535]
[151]
Sharma, V.; Kumar, R.; Bua, S.; Supuran, C.T.; Sharma, P.K. Synthesis of novel benzenesulfonamide bearing 1,2,3-triazole linked hydroxy-trifluoromethylpyrazolines and hydrazones as selective carbonic anhydrase isoforms IX and XII inhibitors. Bioorg. Chem., 2019, 85, 198-208.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.002] [PMID: 30622012]
[152]
Siliveri, S.; Shiva, R. Design, synthesis, molecular docking, ADMET studies, and biological evaluation of isoxazoline and pyrazoline incorporating 1,2,3-triazole benzene sulfonamides. Russ. J. Bioorg. Chem., 2019, 45(5), 381-390.
[http://dx.doi.org/10.1134/S1068162019050108]
[153]
Rezki, N.; Almehmadi, M.A.; Ihmaid, S.; Shehata, A.M.; Omar, A.M.; Ahmed, H.E.A.; Aouad, M.R. Novel scaffold hopping of potent benzothiazole and isatin analogues linked to 1,2,3-triazole fragment that mimic quinazoline epidermal growth factor receptor inhibitors: Synthesis, antitumor and mechanistic analyses. Bioorg. Chem., 2020, 103, 104133.
[http://dx.doi.org/10.1016/j.bioorg.2020.104133] [PMID: 32745759]
[154]
Marchiori, M.F.; Riul, T.B.; Oliveira Bortot, L.; Andrade, P.; Junqueira, G.G.; Foca, G.; Doti, N.; Ruvo, M.; Dias-Baruffi, M.; Carvalho, I.; Campo, V.L. Binding of triazolelinked galactosyl arylsulfonamides to galectin-3 affects Trypanosoma cruzi cell invasion. Bioorg. Med. Chem., 2017, 25(21), 6049-6059.
[http://dx.doi.org/10.1016/j.bmc.2017.09.042] [PMID: 29032929]
[155]
Said, M.A.; Eldehna, W.M.; Nocentini, A.; Bonardi, A.; Fahim, S.H.; Bua, S.; Soliman, D.H.; Abdel-Aziz, H.A.; Gratteri, P.; Abou-Seri, S.M.; Supuran, C.T. Synthesis, biological and molecular dynamics investigations with a series of triazolopyrimidine/triazole-based benzenesulfonamides as novel carbonic anhydrase inhibitors. Eur. J. Med. Chem., 2020, 185, 111843.
[http://dx.doi.org/10.1016/j.ejmech.2019.111843] [PMID: 31718943]
[156]
Chamduang, C.; Pingaew, R.; Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Novel triazole-tetrahydroisoquinoline hybrids as human aromatase inhibitors. Bioorg. Chem., 2019, 93, 103327.
[http://dx.doi.org/10.1016/j.bioorg.2019.103327] [PMID: 31614285]
[157]
Chinchilli, K.K.; Angeli, A.; Thacker, P.S.; Korra, L.N.; Biswas, R.; Arifuddin, M.; Supuran, C.T. Design, synthesis, and biological evaluation of 1,2,3-triazole-linked triazino[5,6-b]indole-benzene sulfonamide conjugates as potent carbonic anhydrase I, II, IX, and XIII inhibitors. Metabolites, 2020, 10(5), 200.
[http://dx.doi.org/10.3390/metabo10050200] [PMID: 32429261]
[158]
Guo, S.; Zhen, Y.; Guo, M.; Zhang, L.; Zhou, G. Design, synthesis and antiproliferative evaluation of novel sulfanilamide-1,2,3-triazole derivatives as tubulin polymerization inhibitors. Invest. New Drugs, 2018, 36(6), 1147-1157.
[http://dx.doi.org/10.1007/s10637-018-0632-7] [PMID: 30019099]
[159]
Angapelly, S.; Sri Ramya, P.V.; Angeli, A.; Supuran, C.T.; Arifuddin, M. Sulfocoumarin-, coumarin-, 4-sulfamoylphenyl-bearing indazole-3-carboxamide hybrids: Synthesis and selective inhibition of tumor-associated carbonic anhydrase isozymes IX and XII. ChemMedChem, 2017, 12(19), 1578-1584.
[http://dx.doi.org/10.1002/cmdc.201700446] [PMID: 28940980]
[160]
Yang, J.; Shibu, M.A.; Kong, L.; Luo, J.; BadrealamKhan, F.; Huang, Y.; Tu, Z.C.; Yun, C.H.; Huang, C.Y.; Ding, K.; Lu, X.; BadrealamKhan, F.; Huang, Y.; Tu, Z.-C.; Yun, C.-H.; Huang, C.-Y.; Ding, K.; Lu, X. Design, synthesis, and structure-activity relationships of 1,2,3-triazole benzenesulfonamides as new selective leucine-zipper and sterile-α motif kinase (ZAK) inhibitors. J. Med. Chem., 2020, 63(5), 2114-2130.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00664] [PMID: 31244114]
[161]
Elzahhar, P.A.; Abd El Wahab, S.M.; Elagawany, M.; Daabees, H.; Belal, A.S.F.; EL-Yazbi, A.F.; Eid, A.H.; Alaaeddine, R.; Hegazy, R.R.; Allam, R.M.; Helmy, M.W.; Bahaa Elgendy; Angeli, A.; El-Hawash, S.A.; Supuran, C.T. Expanding the anticancer potential of 1,2,3-triazoles via simultaneously targeting cyclooxygenase-2, 15-lipoxygenase and tumor-associated carbonic anhydrases. Eur. J. Med. Chem., 2020, 200, 112439.
[http://dx.doi.org/10.1016/j.ejmech.2020.112439] [PMID: 32485532]
[162]
Khalid, W.; Badshah, A.; Khan, A.; Nadeem, H.; Ahmed, S. Synthesis, characterization, molecular docking evaluation, antiplatelet and anticoagulant actions of 1,2,4 triazole hydrazone and sulphonamide novel derivatives. Chem. Cent. J., 2018, 12(1), 11.
[http://dx.doi.org/10.1186/s13065-018-0378-5] [PMID: 29411174]
[163]
Focken, T.; Chowdhury, S.; Zenova, A.; Grimwood, M.E.; Chabot, C.; Sheng, T.; Hemeon, I.; Decker, S.M.; Wilson, M.; Bichler, P.; Jia, Q.; Sun, S.; Young, C.; Lin, S.; Goodchild, S.J.; Shuart, N.G.; Chang, E.; Xie, Z.; Li, B.; Khakh, K.; Bankar, G.; Waldbrook, M.; Kwan, R.; Nelkenbrecher, K.; Karimi Tari, P.; Chahal, N.; Sojo, L.; Robinette, C.L.; White, A.D.; Chen, C.A.; Zhang, Y.; Pang, J.; Chang, J.H.; Hackos, D.H.; Johnson, J.P., Jr; Cohen, C.J.; Ortwine, D.F.; Sutherlin, D.P.; Dehnhardt, C.M.; Safina, B.S. Design of conformationally constrained acyl sulfonamide isosteres: Identification of N-([1,2,4]triazolo[4,3-a]pyridin-3-yl)methane-sulfonamides as potent and selective hNaV1.7 inhibitors for the treatment of pain. J. Med. Chem., 2018, 61(11), 4810-4831.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01826] [PMID: 29737846]
[164]
Ceni, C.; Catarzi, D.; Varano, F.; Ben, D.D.; Marucci, G.; Buccioni, M.; Volpini, R.; Angeli, A.; Nocentini, A.; Gratteri, P.; Supuran, C.T.; Colotta, V. Discovery of first-inclass multi-target adenosine A2A receptor antagonistscarbonic anhydrase IX and XII inhibitors. 8-Amino-6-aryl-2-phenyl-1,2,4-triazolo [4,3-a]pyrazin-3-one derivatives as new potential antitumor agents. Eur. J. Med. Chem., 2020, 201, 112478.
[http://dx.doi.org/10.1016/j.ejmech.2020.112478] [PMID: 32659606]
[165]
Batra, N.; Rajendran, V.; Wadi, I.; Lathwal, A.; Dutta, R.K.; Ghosh, P.C.; Gupta, R.D.; Nath, M. Synthesis, characterization, and antiplasmodial efficacy of sulfonamideappended [1,2,3]‐triazoles. J. Heterocycl. Chem., 2020, 57(4), 1625-1636.
[http://dx.doi.org/10.1002/jhet.3888]
[166]
Li, N.; Liu, N.; Tang, S.; Li, D.L.; Zhang, X.J. Synthesis and antiproliferative activity of novel 1,2,3-triazolesulfonamide hybrids. J. Chem. Res., 2018, 42(1), 50-53.
[http://dx.doi.org/10.3184/174751918X15161933697853]
[167]
Manasa, K.L.; Thatikonda, S.; Sigalapalli, D.K.; Vuppaladadium, S.; Devi, G.P.; Godugu, C.; Alvala, M.; Nagesh, N.; Babu, B.N. Design and synthesis of substituted (1-(benzyl)-1 H -1,2,3-triazol-4-yl)(piperazin-1-yl)methanone conjugates: study on their apoptosis inducing ability and tubulin polymerization inhibition. RSC Med. Chem., 2020, 11(11), 1295-1302.
[http://dx.doi.org/10.1039/D0MD00162G] [PMID: 34095841]
[168]
Berrino, E.; Angeli, A.; Zhdanov, D.D.; Kiryukhina, A.P.; Milaneschi, A.; De Luca, A.; Bozdag, M.; Carradori, S.; Selleri, S.; Bartolucci, G.; Peat, T.S.; Ferraroni, M.; Supuran, C.T.; Carta, F. Azidothymidine “clicked” into 1,2,3-triazoles: First report on carbonic anhydrase-telomerase dual-hybrid inhibitors. J. Med. Chem., 2020, 63(13), 7392-7409.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00636] [PMID: 32463228]
[169]
Hamdani, S.S.; Khan, B.A.; Hameed, S.; Batool, F.; Saleem, H.N.; Mughal, E.U.; Saeed, M. Synthesis and evaluation of novel S-benzyl- and S-alkylphthalimide- oxadiazole -benzenesulfonamide hybrids as inhibitors of dengue virus protease. Bioorg. Chem., 2020, 96, 103567.
[http://dx.doi.org/10.1016/j.bioorg.2020.103567] [PMID: 32062063]
[170]
Ajeesh Kumar, A.K.; Nair, K.B.; Bodke, Y.D.; Sambasivam, G.; Bhat, K.G. Design, synthesis, and evaluation of the anticancer properties of a novel series of carboxamides, sulfonamides, ureas, and thioureas derived from 1,2,4-oxadiazol-3-ylmethyl-piperazin-1-yl substituted with pyrazolo[1,5-a]pyrimidine derivatives. Monatsh. Chem., 2016, 147(12), 2221-2234.
[http://dx.doi.org/10.1007/s00706-016-1723-9]
[171]
Mohamed, M.F.; Elhakim, H.K.A.; Saddiq, A.A.; Abdelhamid, I.A. A novel inhibitor, 2-cyano-3-(1-phenyl-3-(thiophen-2-yl)-pyrazol-4-yl)acrylamide linked to sulphamethoxazole, blocks anti-apoptotic proteins via molecular docking and strongly induced apoptosis of HCT116 cell line by different molecular tools. Arab. J. Chem., 2020, 13(7), 5978-5995.
[http://dx.doi.org/10.1016/j.arabjc.2020.04.032]
[172]
Shamsi, F.; Hasan, P.; Queen, A.; Hussain, A.; Khan, P.; Zeya, B.; King, H.M.; Rana, S.; Garrison, J.; Alajmi, M.F.; Rizvi, M.M.A.; Zahid, M.; Imtaiyaz Hassan, M.; Abid, M. Synthesis and SAR studies of novel 1,2,4-oxadiazolesulfonamide based compounds as potential anticancer agents for colorectal cancer therapy. Bioorg. Chem., 2020, 98, 103754.
[http://dx.doi.org/10.1016/j.bioorg.2020.103754] [PMID: 32200329]
[173]
Pero, J.E.; Rossi, M.A.; Lehman, H.D.G.F.; Kelly, M.J., III; Mulhearn, J.J.; Wolkenberg, S.E.; Cato, M.J.; Clements, M.K.; Daley, C.J.; Filzen, T.; Finger, E.N.; Gregan, Y.; Henze, D.A.; Jovanovska, A.; Klein, R.; Kraus, R.L.; Li, Y.; Liang, A.; Majercak, J.M.; Panigel, J.; Urban, M.O.; Wang, J.; Wang, Y.H.; Houghton, A.K.; Layton, M.E. Benzoxazolinone aryl sulfonamides as potent, selective Na v 1.7 inhibitors with in vivo efficacy in a preclinical pain model. Bioorg. Med. Chem. Lett., 2017, 27(12), 2683-2688.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.040] [PMID: 28465103]
[174]
Krasavin, M.; Shetnev, A.; Sharonova, T.; Baykov, S.; Kalinin, S.; Nocentini, A.; Sharoyko, V.; Poli, G.; Tuccinardi, T.; Presnukhina, S.; Tennikova, T.B.; Supuran, C.T. Continued exploration of 1,2,4-oxadiazole periphery for carbonic anhydrase-targeting primary arene sulfonamides: Discovery of subnanomolar inhibitors of membrane-bound hCA IX isoform that selectively kill cancer cells in hypoxic environment. Eur. J. Med. Chem., 2019, 164, 92-105.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.049] [PMID: 30594030]
[175]
Özkan, H.; Demirci, B. Synthesis and antimicrobial and antioxidant activities of sulfonamide derivatives containing tetrazole and oxadiazole rings. J. Heterocycl. Chem., 2019, 56(9), 2528-2535.
[http://dx.doi.org/10.1002/jhet.3647]
[176]
Dende, S.K.; Korupolu, R.B.; Leleti, K.R. Design and synthesis of sulfonamide-attached 2-(isoxazol-3-yl)-1Himidazoles as anticancer agents. ChemistrySelect, 2020, 5(26), 7919-7922.
[http://dx.doi.org/10.1002/slct.202001449]
[177]
Sattar, A.; Aziz-ur-Rehman; Abbasi, M.A.; Siddiqui, S.Z.; Rasool, S.; Ahmad, I. Synthesis of some novel enzyme inhibitors and antibacterial agents derived from 5-(1-(4-tosyl)piperidin-4-yl)-1,3,4-oxadiazol-2-thiol. Braz. J. Pharm. Sci., 2016, 52(1), 77-85.
[http://dx.doi.org/10.1590/S1984-82502016000100009]
[178]
Szafrański, K.; Sławiński, J.; Tomorowicz, Ł.; Kawiak, A. Synthesis, anticancer evaluation and structure-activity analysis of novel (E)-5-(2-arylvinyl)-1, 3, 4-oxadiazol-2-yl) benzenesulfonamides. Int. J. Mol. Sci., 2020, 21(6), 2235.
[http://dx.doi.org/10.3390/ijms21062235] [PMID: 32210190]
[179]
Kachaeva, M.V.; Hodyna, D.M.; Semenyuta, I.V.; Pilyo, S.G.; Prokopenko, V.M.; Kovalishyn, V.V.; Metelytsia, L.O.; Brovarets, V.S. Design, synthesis and evaluation of novel sulfonamides as potential anticancer agents. Comput. Biol. Chem., 2018, 74, 294-303.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.04.006] [PMID: 29698921]
[180]
Vinoda, B.; Bodke, Y.; Vinuth, M.; Sindhe, M.; Venkatesh, T.; Telkar, S. One pot synthesis, antimicrobial and in silico molecular docking study of 1, 3-benzoxazole-5-sulfonamide derivatives. Org. Chem.: Curr. Res., 2016, 5, 163.
[http://dx.doi.org/10.4172/2161-0401.100016]
[181]
Weiss, M.M.; Dineen, T.A.; Marx, I.E.; Altmann, S.; Boezio, A.; Bregman, H.; Chu-Moyer, M.; DiMauro, E.F.; Feric Bojic, E.; Foti, R.S.; Gao, H.; Graceffa, R.; Gunaydin, H.; Guzman-Perez, A.; Huang, H.; Huang, L.; Jarosh, M.; Kornecook, T.; Kreiman, C.R.; Ligutti, J.; La, D.S.; Lin, M.H.J.; Liu, D.; Moyer, B.D.; Nguyen, H.N.; Peterson, E.A.; Rose, P.E.; Taborn, K.; Youngblood, B.D.; Yu, V.; Fremeau, R.T., Jr Sulfonamides as selective NaV1. 7 inhibitors: optimizing potency and pharmacokinetics while mitigating metabolic liabilities. J. Med. Chem., 2017, 60(14), 5969-5989.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01851] [PMID: 28287723]
[182]
Kalinin, S.; Valtari, A.; Ruponen, M.; Toropainen, E.; Kovalenko, A.; Nocentini, A.; Gureev, M.; Dar’in, D.; Urtti, A.; Supuran, C.T.; Krasavin, M. Highly hydrophilic 1,3-oxazol-5-yl benzenesulfonamide inhibitors of carbonic anhydrase II for reduction of glaucoma-related intraocular pressure. Bioorg. Med. Chem., 2019, 27(21), 115086.
[http://dx.doi.org/10.1016/j.bmc.2019.115086] [PMID: 31515057]
[183]
Sunil Kumar, A.; Kudva, J.; Madan Kumar, S.; Vishwanatha, U.; Kumar, V.; Naral, D. Synthesis, characterization, crystal structure, Hirshfeld interaction and bioevaluation studies of 4-amino quinazoline sulfonamide derivatives. J. Mol. Struct., 2018, 1167, 142-153.
[http://dx.doi.org/10.1016/j.molstruc.2018.04.055]
[184]
Desai, N.C.; Makwana, A.H.; Senta, R.D. Synthesis, characterization and antimicrobial activity of some novel 4-(4-(arylamino)-6-(piperidin-1-yl)-1,3,5-triazine-2-ylamino)-N-(pyrimidin-2-yl)benzenesulfonamides. J. Saudi Chem. Soc., 2016, 20(6), 686-694.
[http://dx.doi.org/10.1016/j.jscs.2015.01.004]
[185]
Tomorowicz, Ł.; Sławiński, J.; Żołnowska, B.; Szafrański, K.; Kawiak, A. Synthesis, antitumor evaluation, molecular modeling and quantitative structure-activity relationship (QSAR) of novel 2-[(4-amino-6-N-substituted-1, 3, 5-triazin-2-yl) methylthio]-4-chloro-5-methyl-N-(1H-benzo [d] imidazol-2 (3H)-ylidene) benzenesulfonamides. Int. J. Mol. Sci., 2020, 21(8), 2924.
[http://dx.doi.org/10.3390/ijms21082924] [PMID: 32331219]
[186]
Havránková, E.; Čalkovská, N.; Padrtová, T.; Csöllei, J.; Opatřilová, R.; Pazdera, P. Antioxidative activity of 1, 3, 5-triazine analogues incorporating aminobenzene sulfonamide, aminoalcohol/phenol, piperazine, chalcone, or stilbene motifs. Molecules, 2020, 25(8), 1787.
[http://dx.doi.org/10.3390/molecules25081787] [PMID: 32295147]
[187]
Kuriwaki, I.; Kameda, M.; Hisamichi, H.; Kikuchi, S.; Iikubo, K.; Kawamoto, Y.; Moritomo, H.; Kondoh, Y.; Amano, Y.; Tateishi, Y.; Echizen, Y.; Iwai, Y.; Noda, A.; Tomiyama, H.; Suzuki, T.; Hirano, M. Structure-based drug design of 1,3,5-triazine and pyrimidine derivatives as novel FGFR3 inhibitors with high selectivity over VEGFR2. Bioorg. Med. Chem., 2020, 28(10), 115453.
[http://dx.doi.org/10.1016/j.bmc.2020.115453] [PMID: 32278710]
[188]
Mojzych, M.; Tarasiuk, P.; Kotwica-Mojzych, K.; Rafiq, M.; Seo, S.Y.; Nicewicz, M.; Fornal, E. Synthesis of chiral pyrazolo[4,3- e][1,2,4]triazine sulfonamides with tyrosinase and urease inhibitory activity. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 99-105.
[http://dx.doi.org/10.1080/14756366.2016.1238362] [PMID: 27778522]
[189]
Mojzych, M.; Kubacka, M.; Mogilski, S.; Filipek, B.; Fornal, E. Relaxant effects of selected sildenafil analogues in the rat aorta. J. Enzyme Inhib. Med. Chem., 2015, 31(3), 1-8.
[http://dx.doi.org/10.3109/14756366.2015.1024674] [PMID: 25798686]
[190]
Zheng, X.Z.; Zhou, J.L.; Ye, J.; Guo, P.P.; Lin, C.S. Cardioprotective effect of novel sulphonamides-1,3,5-triazine conjugates against ischaemic-reperfusion injury via selective inhibition of MMP-9. Chem. Biol. Drug Des., 2016, 88(5), 756-765.
[http://dx.doi.org/10.1111/cbdd.12807] [PMID: 27317634]
[191]
Gao, H.D.; Liu, P.; Yang, Y.; Gao, F. Sulfonamide-1,3,5-triazine-thiazoles: discovery of a novel class of antidiabetic agents via inhibition of DPP-4. RSC Advances, 2016, 6(86), 83438-83447.
[http://dx.doi.org/10.1039/C6RA15948F]
[192]
Gamage, S.A.; Giddens, A.C.; Tsang, K.Y.; Flanagan, J.U.; Kendall, J.D.; Lee, W.J.; Baguley, B.C.; Buchanan, C.M.; Jamieson, S.M.F.; Shepherd, P.R.; Denny, W.A.; Rewcastle, G.W. Synthesis and biological evaluation of sulfonamide analogues of the phosphatidylinositol 3-kinase inhibitor ZSTK474. Bioorg. Med. Chem., 2017, 25(20), 5859-5874.
[http://dx.doi.org/10.1016/j.bmc.2017.09.025] [PMID: 28958845]
[193]
Daoud, S.; Taha, M.O. Design and synthesis of new JAK1 inhibitors based on sulfonamide-triazine conjugates. Curr. Comput.-. Curr. Computeraided Drug Des., 2021, 17(7), 916-926.
[http://dx.doi.org/10.2174/1573409916666201224152253] [PMID: 33357183]
[194]
Ghorab, M.; Alsaid, M.; Al-Dosari, M.; El-Gazzar, M.; Parvez, M. Design, synthesis and anticancer evaluation of novel quinazoline-sulfonamide hybrids. Molecules, 2016, 21(2), 189.
[http://dx.doi.org/10.3390/molecules21020189] [PMID: 26861266]
[195]
Ghorab, M.M.; Alsaid, M.S.; Soliman, A.M.; Ragab, F.A. VEGFR-2 inhibitors and apoptosis inducers: synthesis and molecular design of new benzo [g] quinazolin bearing benzenesulfonamide moiety. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 893-907.
[http://dx.doi.org/10.1080/14756366.2017.1334650] [PMID: 28661197]
[196]
Soliman, A.M.; Alqahtani, A.S.; Ghorab, M.M. Novel sulfonamide benzoquinazolinones as dual EGFR/HER2 inhibitors, apoptosis inducers and radiosensitizers. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1030-1040.
[http://dx.doi.org/10.1080/14756366.2019.1609469] [PMID: 31074303]
[197]
Soliman, A.M.; Karam, H.M.; Mekkawy, M.H.; Ghorab, M.M. Antioxidant activity of novel quinazolinones bearing sulfonamide: Potential radiomodulatory effects on liver tissues via NF-κB/PON1 pathway. Eur. J. Med. Chem., 2020, 197, 112333.
[http://dx.doi.org/10.1016/j.ejmech.2020.112333] [PMID: 32361176]
[198]
Kumar, A.S.; Kudva, J.; Bharath, B.R.; Rai, V.M.; Kumar, S.M.; Kumar, V.; Sajankila, S.P. Synthesis, characterization, molecular docking studies and biological evaluation of some conjugated quinazoline-sulfonamide scaffold. ChemistrySelect, 2018, 3(48), 13586-13595.
[http://dx.doi.org/10.1002/slct.201802402]
[199]
Venkatesh, R.; Kasaboina, S.; Jain, N.; Janardhan, S.; Holagunda, U.D.; Nagarapu, L. Design and synthesis of novel sulphamide tethered quinazolinone hybrids as potential antitumor agents. J. Mol. Struct., 2019, 1181, 403-411.
[http://dx.doi.org/10.1016/j.molstruc.2018.12.098]
[200]
Waszkowycz, B.; Smith, K.M.; McGonagle, A.E.; Jordan, A.M.; Acton, B.; Fairweather, E.E.; Griffiths, L.A.; Hamilton, N.M.; Hamilton, N.S.; Hitchin, J.R.; Hutton, C.P.; James, D.I.; Jones, C.D.; Jones, S.; Mould, D.P.; Small, H.F.; Stowell, A.I.J.; Tucker, J.A.; Waddell, I.D.; Ogilvie, D.J. Cell-active small molecule inhibitors of the DNAdamage repair enzyme poly(ADP-ribose) glycohydrolase (PARG): Discovery and optimization of orally bioavailable quinazolinedione sulfonamides. J. Med. Chem., 2018, 61(23), 10767-10792.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01407] [PMID: 30403352]
[201]
Marx, I.E.; Dineen, T.A.; Able, J.; Bode, C.; Bregman, H.; Chu-Moyer, M.; DiMauro, E.F.; Du, B.; Foti, R.S.; Fremeau, R.T., Jr; Gao, H.; Gunaydin, H.; Hall, B.E.; Huang, L.; Kornecook, T.; Kreiman, C.R.; La, D.S.; Ligutti, J.; Lin, M.H.J.; Liu, D.; McDermott, J.S.; Moyer, B.D.; Peterson, E.A.; Roberts, J.T.; Rose, P.; Wang, J.; Youngblood, B.D.; Yu, V.; Weiss, M.M. Sulfonamides as selective Na V 1.7 inhibitors: Optimizing potency and pharmacokinetics to enable in vivo target engagement. ACS Med. Chem. Lett., 2016, 7(12), 1062-1067.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00243] [PMID: 27994738]
[202]
Aday, B.; Ulus, R.; Tanç, M.; Kaya, M.; Supuran, C.T. Synthesis of novel 5-amino-1,3,4-thiadiazole-2-sulfonamide containing acridine sulfonamide/carboxamide compounds and investigation of their inhibition effects on human carbonic anhydrase I, II, IV and VII. Bioorg. Chem., 2018, 77, 101-105.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.035] [PMID: 29353727]
[203]
Zhao, Y.; Shadrick, W.R.; Wallace, M.J.; Wu, Y.; Griffith, E.C.; Qi, J.; Yun, M.K.; White, S.W.; Lee, R.E. Pterin-sulfa conjugates as dihydropteroate synthase inhibitors and antibacterial agents. Bioorg. Med. Chem. Lett., 2016, 26(16), 3950-3954.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.006] [PMID: 27423480]
[204]
Mert, S.; Alım, Z.; İşgör, M.M.; Beydemir, Ş.; Kasımoğulları, R. The synthesis of novel pyrazole-3,4-dicarboxamides bearing 5-amino-1,3,4-thiadiazole-2-sulfonamide moiety with effective inhibitory activity against the isoforms of human cytosolic carbonic anhydrase I and II. Bioorg. Chem., 2016, 68, 64-71.
[http://dx.doi.org/10.1016/j.bioorg.2016.07.006] [PMID: 27454619]
[205]
Charitos, G.; Trafalis, D.T.; Dalezis, P.; Potamitis, C.; Sarli, V.; Zoumpoulakis, P.; Camoutsis, C. Synthesis and anticancer activity of novel 3,6-disubstituted 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives. Arab. J. Chem., 2019, 12(8), 4784-4794.
[http://dx.doi.org/10.1016/j.arabjc.2016.09.015]
[206]
Focken, T.; Liu, S.; Chahal, N.; Dauphinais, M.; Grimwood, M.E.; Chowdhury, S.; Hemeon, I.; Bichler, P.; Bogucki, D.; Waldbrook, M.; Bankar, G.; Sojo, L.E.; Young, C.; Lin, S.; Shuart, N.; Kwan, R.; Pang, J.; Chang, J.H.; Safina, B.S.; Sutherlin, D.P.; Johnson, J.P. Jr.; Dehnhardt, C.M.; Mansour, T.S.; Oballa, R.M.; Cohen, C.J.; Robinette, C.L. Discovery of aryl sulfonamides as isoform-selective inhibitors of NaV1.7 with efficacy in rodent pain models. ACS Med. Chem. Lett., 2016, 7(3), 277-282.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00447] [PMID: 26985315]
[207]
El-Hazek, R.M.M.; El-Sabbagh, W.A.; El-Hazek, R.M.; El-Gazzar, M.G. Anti‐inflammatory and analgesic effect of LD‐RT and some novel thiadiazole derivatives through COX‐2 inhibition. Arch. Pharm. (Weinheim), 2020, 353(10), 2000094.
[http://dx.doi.org/10.1002/ardp.202000094] [PMID: 32618021]
[208]
Kumar, R.; Bua, S.; Ram, S.; Del Prete, S.; Capasso, C.; Supuran, C.T.; Sharma, P.K. Benzenesulfonamide bearing imidazothiadiazole and thiazolotriazole scaffolds as potent tumor associated human carbonic anhydrase IX and XII inhibitors. Bioorg. Med. Chem., 2017, 25(3), 1286-1293.
[http://dx.doi.org/10.1016/j.bmc.2016.12.047] [PMID: 28065499]
[209]
Ghorab, M.M.; Alsaid, M.S.; Samir, N.; Abdel-Latif, G.A.; Soliman, A.M.; Ragab, F.A.; Abou El Ella, D.A. Aromatase inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and molecular modeling studies of novel phenothiazine derivatives carrying sulfonamide moiety as hybrid molecules. Eur. J. Med. Chem., 2017, 134, 304-315.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.028] [PMID: 28427017]
[210]
Gündüz, M.G.; Tahir, M.N.; Armaković, S.; Özkul Koçak, C.; Armaković, S.J. Design, synthesis and computational analysis of novel acridine-(sulfadiazine/sulfathiazole) hybrids as antibacterial agents. J. Mol. Struct., 2019, 1186, 39-49.
[http://dx.doi.org/10.1016/j.molstruc.2019.03.010]
[211]
Liu, J.; Liu, C.; Zhang, X.; Yu, L.; Gong, X.; Wang, P. Anticancer sulfonamide hybrids that inhibit bladder cancer cells growth and migration as tubulin polymerisation inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1380-1387.
[http://dx.doi.org/10.1080/14756366.2019.1639696] [PMID: 31401884]
[212]
Esirden, İ.; Tanç, M.; Supuran, C.T.; Kaya, M. Microwave assisted synthesis of novel tetrazole/sulfonamide derivatives based on octahydroacridine, xanthene and chromene skeletons as inhibitors of the carbonic anhydrases isoforms I, II, IV and VII. Bioorg. Med. Chem. Lett., 2017, 27(1), 86-89.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.028] [PMID: 27876475]
[213]
Park, Y.; Pacitto, A.; Bayliss, T.; Cleghorn, L.A.T.; Wang, Z.; Hartman, T.; Arora, K.; Ioerger, T.R.; Sacchettini, J.; Rizzi, M.; Donini, S.; Blundell, T.L.; Ascher, D.B.; Rhee, K.; Breda, A.; Zhou, N.; Dartois, V.; Jonnala, S.R.; Via, L.E.; Mizrahi, V.; Epemolu, O.; Stojanovski, L.; Simeons, F.; Osuna-Cabello, M.; Ellis, L.; MacKenzie, C.J.; Smith, A.R.C.; Davis, S.H.; Murugesan, D.; Buchanan, K.I.; Turner, P.A.; Huggett, M.; Zuccotto, F.; Rebollo-Lopez, M.J.; Lafuente-Monasterio, M.J.; Sanz, O.; Diaz, G.S.; Lelièvre, J.; Ballell, L.; Selenski, C.; Axtman, M.; Ghidelli-Disse, S.; Pflaumer, H.; Bösche, M.; Drewes, G.; Freiberg, G.M.; Kurnick, M.D.; Srikumaran, M.; Kempf, D.J.; Green, S.R.; Ray, P.C.; Read, K.; Wyatt, P.; Barry, C.E. , III; Boshoff, H.I. Essential but not vulnerable: indazole sulfonamides targeting inosine monophosphate dehydrogenase as potential leads against Mycobacterium tuberculosis. ACS Infect. Dis., 2017, 3(1), 18-33.
[http://dx.doi.org/10.1021/acsinfecdis.6b00103] [PMID: 27704782]
[214]
Salerno, S.; Barresi, E.; Amendola, G.; Berrino, E.; Milite, C.; Marini, A.M.; Da Settimo, F.; Novellino, E.; Supuran, C.T.; Cosconati, S.; Taliani, S. 4-Substituted benzenesulfonamides incorporating bi/tricyclic moieties act as potent and isoform-selective carbonic anhydrase ii/ix inhibitors. J. Med. Chem., 2018, 61(13), 5765-5770.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00670] [PMID: 29912561]
[215]
Hu, Y.Y.; Yadav Bheemanaboina, R.R.; Battini, N.; Zhou, C.H. Sulfonamide-derived four-component molecular hybrids as novel DNA-targeting membrane active potentiators against clinical Escherichia coli. Mol. Pharm., 2019, 16(3), 1036-1052.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01021] [PMID: 30638386]
[216]
Halawa, A.H.; Elgammal, W.E.; Hassan, S.M.; Hassan, A.H.; Nassar, H.S.; Ebrahim, H.Y.; Mehany, A.B.M.; El-Agrody, A.M. Synthesis, anticancer evaluation and molecular docking studies of new heterocycles linked to sulfonamide moiety as novel human topoisomerase types I and II poisons. Bioorg. Chem., 2020, 98, 103725.
[http://dx.doi.org/10.1016/j.bioorg.2020.103725] [PMID: 32199303]
[217]
Bonakdar, A.P.S.; Sadeghi, A.; Aghaei, H.R.; Beheshtimaal, K.; Nazifi, S.M.R.; Massah, A.R. Convenient synthesis of novel chalcone and pyrazoline sulfonamide derivatives as potential antibacterial agents. Russ. J. Bioorg. Chem., 2020, 46(3), 371-381.
[http://dx.doi.org/10.1134/S1068162020030048]
[218]
Castaño, L.F.; Cuartas, V.; Bernal, A.; Insuasty, A.; Guzman, J.; Vidal, O.; Rubio, V.; Puerto, G.; Lukáč, P.; Vimberg, V.; Balíková-Novtoná, G.; Vannucci, L.; Janata, J.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J.; Insuasty, B. New chalcone-sulfonamide hybrids exhibiting anticancer and antituberculosis activity. Eur. J. Med. Chem., 2019, 176, 50-60.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.013] [PMID: 31096118]
[219]
Suresh, A.; Suresh, N.; Misra, S.; Kumar, M.M.K.; Sekhar, K.V.G.C. Design, synthesis and biological evaluation of new substituted sulfonamide tetrazole derivatives as antitubercular agents. ChemistrySelect, 2016, 1(8), 1705-1710.
[http://dx.doi.org/10.1002/slct.201600286]
[220]
Ejaz, S.A.; Saeed, A.; Siddique, M.N.; Nisa, Z.; Khan, S.; Lecka, J.; Sévigny, J.; Iqbal, J. Synthesis, characterization and biological evaluation of novel chalcone sulfonamide hybrids as potent intestinal alkaline phosphatase inhibitors. Bioorg. Chem., 2017, 70, 229-236.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.003] [PMID: 28110961]
[221]
Ulus, R.; Zengin Kurt, B.; Gazioğlu, I.; Kaya, M. Microwave assisted synthesis of novel hybrid tacrine-sulfonamide derivatives and investigation of their antioxidant and anticholinesterase activities. Bioorg. Chem., 2017, 70, 245-255.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.005] [PMID: 28153340]
[222]
Dalloul, H.M.M.; El-Nwairy, K.A.; Shorafa, A.Z.; Abu Samaha, A.S. Synthesis and antimicrobial activities evaluation of some new thiadiazinone and thiadiazepinone derivatives bearing sulfonamide moiety. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(5), 288-293.
[http://dx.doi.org/10.1080/10426507.2017.1417292]
[223]
Okolotowicz, K.J.; Dwyer, M.; Ryan, D.; Cheng, J.; Cashman, E.A.; Moore, S.; Mercola, M.; Cashman, J.R. Novel tertiary sulfonamides as potent anti-cancer agents. Bioorg. Med. Chem., 2018, 26(15), 4441-4451.
[http://dx.doi.org/10.1016/j.bmc.2018.07.042] [PMID: 30075999]
[224]
Fisher, G.M.; Bua, S.; Del Prete, S.; Arnold, M.S.J.; Capasso, C.; Supuran, C.T.; Andrews, K.T.; Poulsen, S.A. Investigating the antiplasmodial activity of primary sulfonamide compounds identified in open source malaria data. Int. J. Parasitol. Drugs Drug Resist., 2017, 7(1), 61-70.
[http://dx.doi.org/10.1016/j.ijpddr.2017.01.003] [PMID: 28129569]
[225]
Firoozpour, L.; Gao, L.; Moghimi, S.; Pasalar, P.; Davoodi, J.; Wang, M.W.; Rezaei, Z.; Dadgar, A.; Yahyavi, H.; Amanlou, M.; Foroumadi, A. Efficient synthesis, biological evaluation, and docking study of isatin based derivatives as caspase inhibitors. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1674-1684.
[http://dx.doi.org/10.1080/14756366.2020.1809388] [PMID: 32842789]
[226]
Eldehna, W.M.; Abo-Ashour, M.F.; Nocentini, A.; Gratteri, P.; Eissa, I.H.; Fares, M.; Ismael, O.E.; Ghabbour, H.A.; Elaasser, M.M.; Abdel-Aziz, H.A.; Supuran, C.T. Novel 4/3-((4-oxo-5-(2-oxoindolin-3-ylidene)thiazolidin-2-ylidene) amino) benzenesulfonamides: Synthesis, carbonic anhydrase inhibitory activity, anticancer activity and molecular modelling studies. Eur. J. Med. Chem., 2017, 139, 250-262.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.073] [PMID: 28802125]
[227]
Rutkauskas, K.; Zubrienė, A.; Tumosienė, I.; Kantminienė, K.; Mickevičius, V.; Matulis, D. Benzenesulfonamides bearing pyrrolidinone moiety as inhibitors of carbonic anhydrase IX: synthesis and binding studies. Med. Chem. Res., 2017, 26(1), 235-246.
[http://dx.doi.org/10.1007/s00044-016-1741-5]
[228]
Żołnowska, B.; Sławiński, J.; Brzozowski, Z.; Kawiak, A.; Belka, M.; Zielińska, J.; Bączek, T.; Chojnacki, J. Synthesis, molecular structure, anticancer activity, and QSAR Study of N-(aryl/heteroaryl)-4-(1H-pyrrol-1-yl) benzenesulfonamide derivatives. Int. J. Mol. Sci., 2018, 19(5), 1482.
[http://dx.doi.org/10.3390/ijms19051482] [PMID: 29772699]
[229]
Sun, L.; Wu, Y.; Liu, Y.; Chen, X.; Hu, L. Novel carbazole sulfonamide derivatives of antitumor agent: Synthesis, antiproliferative activity and aqueous solubility. Bioorg. Med. Chem. Lett., 2017, 27(2), 261-265.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.068] [PMID: 27919655]
[230]
Eldehna, W.M.; Nocentini, A.; Al-Rashood, S.T.; Hassan, G.S.; Alkahtani, H.M.; Almehizia, A.A.; Reda, A.M.; Abdel-Aziz, H.A.; Supuran, C.T. Tumor-associated carbonic anhydrase isoform IX and XII inhibitory properties of certain isatin-bearing sulfonamides endowed with in vitro antitumor activity towards colon cancer. Bioorg. Chem., 2018, 81, 425-432.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.007] [PMID: 30219719]
[231]
Bender, A.M.; Weiner, R.L.; Luscombe, V.B.; Ajmera, S.; Cho, H.P.; Chang, S.; Zhan, X.; Rodriguez, A.L.; Niswender, C.M.; Engers, D.W.; Bridges, T.M.; Conn, P.J.; Lindsley, C.W. Discovery and optimization of 3-(4-aryl/heteroarylsulfonyl)piperazin-1-yl)-6-(piperidin-1-yl)pyridazines as novel, CNS penetrant pan-muscarinic antagonists. Bioorg. Med. Chem. Lett., 2017, 27(15), 3576-3581.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.042] [PMID: 28633897]
[232]
Wang, L.J.; Guo, C.L.; Li, X.Q.; Wang, S.Y.; Jiang, B.; Zhao, Y.; Luo, J.; Xu, K.; Liu, H.; Guo, S.J.; Wu, N.; Shi, D.Y. Discovery of novel bromophenol hybrids as potential anticancer agents through the ROS-mediated apoptotic pathway: Design, synthesis and biological evaluation. Mar. Drugs, 2017, 15(11), 343.
[http://dx.doi.org/10.3390/md15110343] [PMID: 29104274]
[233]
Rifati-Nixha, A.; Arslan, M.; Gençer, N.; Çıkrıkıçı, K.; Gökçe, B.; Arslan, O. Synthesis of carbazole bearing pyridopyrimidine‐substituted sulfonamide derivatives and studies their carbonic anhydrase enzyme activity. J. Biochem. Mol. Toxicol., 2019, 33(6), e22306.
[http://dx.doi.org/10.1002/jbt.22306] [PMID: 30811741]
[234]
Zhou, D.; Xie, D.; He, F.; Song, B.; Hu, D. Antiviral properties and interaction of novel chalcone derivatives containing a purine and benzenesulfonamide moiety. Bioorg. Med. Chem. Lett., 2018, 28(11), 2091-2097.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.042] [PMID: 29724588]
[235]
Boutard, N.; Białas, A.; Sabiniarz, A.; Guzik, P.; Banaszak, K.; Biela, A.; Bień, M.; Buda, A.; Bugaj, B.; Cieluch, E.; Cierpich, A.; Dudek, Ł.; Eggenweiler, H.M.; Fogt, J.; Gaik, M.; Gondela, A.; Jakubiec, K.; Jurzak, M.; Kitlińska, A.; Kowalczyk, P.; Kujawa, M.; Kwiecińska, K.; Leś, M.; Lindemann, R.; Maciuszek, M.; Mikulski, M.; Niedziejko, P.; Obara, A.; Pawlik, H.; Rzymski, T.; Sieprawska-Lupa, M.; Sowińska, M.; Szeremeta-Spisak, J.; Stachowicz, A.; Tomczyk, M.M.; Wiklik, K.; Włoszczak, Ł.; Ziemiańska, S.; Zarębski, A.; Brzózka, K.; Nowak, M.; Fabritius, C.H. Synthesis of amide and sulfonamide substituted N-aryl 6-aminoquinoxalines as PFKFB3 inhibitors with improved physicochemical properties. Bioorg. Med. Chem. Lett., 2019, 29(4), 646-653.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.034] [PMID: 30626557]
[236]
Bregman, H.; Simard, J.R.; Andrews, K.L.; Ayube, S.; Chen, H.; Gunaydin, H.; Guzman-Perez, A.; Hu, J.; Huang, L.; Huang, X.; Krolikowski, P.H.; Lehto, S.G.; Lewis, R.T.; Michelsen, K.; Pegman, P.; Plant, M.H.; Shaffer, P.L.; Teffera, Y.; Yi, S.; Zhang, M.; Gingras, J.; DiMauro, E.F. The discovery and hit-to-lead optimization of tricyclic sulfonamides as potent and efficacious potentiators of glycine receptors. J. Med. Chem., 2017, 60(3), 1105-1125.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01496] [PMID: 28001399]
[237]
McKerrall, S.J.; Nguyen, T.; Lai, K.W.; Bergeron, P.; Deng, L.; DiPasquale, A.; Chang, J.H.; Chen, J.; Chernov-Rogan, T.; Hackos, D.H.; Maher, J.; Ortwine, D.F.; Pang, J.; Payandeh, J.; Proctor, W.R.; Shields, S.D.; Vogt, J.; Ji, P.; Liu, W.; Ballini, E.; Schumann, L.; Tarozzo, G.; Bankar, G.; Chowdhury, S.; Hasan, A.; Johnson, J.P., Jr; Khakh, K.; Lin, S.; Cohen, C.J.; Dehnhardt, C.M.; Safina, B.S.; Sutherlin, D.P. Structure- and ligand-based discovery of chromane arylsulfonamide Nav1.7 inhibitors for the treatment of chronic pain. J. Med. Chem., 2019, 62(8), 4091-4109.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00141] [PMID: 30943032]
[238]
Pandit, S.S.; Kulkarni, M.R.; Pandit, Y.B.; Lad, N.P.; Khedkar, V.M. Synthesis and in vitro evaluations of 6-(hetero)-aryl-imidazo[1,2-b]pyridazine-3-sulfonamide’s as an inhibitor of TNF-α production. Bioorg. Med. Chem. Lett., 2018, 28(1), 24-30.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.026] [PMID: 29173945]
[239]
Zhu, G.X.; Cheng, P.L.; Goto, M.; Zhang, N.; Morris-Natschke, S.L.; Hsieh, K.Y.; Yang, G.Z.; Yang, Q.R.; Liu, Y.Q.; Chen, H.L.; Zhang, X.S.; Lee, K.H. Design, synthesis and potent cytotoxic activity of novel 7-(N -[(substituted-sulfonyl)piperazinyl]-methyl)-camptothecin derivatives. Bioorg. Med. Chem. Lett., 2017, 27(8), 1750-1753.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.066] [PMID: 28285912]
[240]
Bakhotmah, D.A.; Al-Ahmadi, A.A. Design and synthesis of some new 3-oxo/thioxo-1,2,4-triazolo[4,3-a] benzimidazole derivatives bearing a 4-tollyl sulfonyl moiety as antimycobacterial agents. Polycycl. Aromat. Compd., 2021, 41(7), 1459-1471.
[http://dx.doi.org/10.1080/10406638.2019.1684326]
[241]
Nie, L.F.; Bozorov, K.; Niu, C.; Huang, G.; Aisa, H.A. Synthesis and biological evaluation of novel sulfonamide derivatives of tricyclic thieno[2,3-d]pyrimidin-4(3H)-ones on melanin synthesis in murine B16 cells. Res. Chem. Intermed., 2017, 43(12), 6835-6843.
[http://dx.doi.org/10.1007/s11164-017-3023-3]
[242]
Ahmed, N.S.; Badahdah, K.O.; Qassar, H.M. Novel quinoline bearing sulfonamide derivatives and their cytotoxic activity against MCF7 cell line. Med. Chem. Res., 2017, 26(6), 1201-1212.
[http://dx.doi.org/10.1007/s00044-017-1850-9]
[243]
Liu, Y.; Wu, Y.; Sun; Gu, Y.; Hu, L. Synthesis and structure-activity relationship study of water-soluble carbazole sulfonamide derivatives as new anticancer agents. Eur. J. Med. Chem., 2020, 191, 112181.
[http://dx.doi.org/10.1016/j.ejmech.2020.112181] [PMID: 32113125]
[244]
Di Matteo, M.; Ammazzalorso, A.; Andreoli, F.; Caffa, I.; De Filippis, B.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Nencioni, A.; Parenti, M.D.; Soncini, D.; Del Rio, A.; Amoroso, R. Synthesis and biological characterization of 3-(imidazol-1-ylmethyl)piperidine sulfonamides as aromatase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(13), 3192-3194.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.078] [PMID: 27161804]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy