[1]
Tidwell, T.T. Hugo (Ugo) Schiff, Schiff bases, and a century of β-lactam synthesis. Angew. Chem. Int. Ed., 2008, 47(6), 1016-1020.
[http://dx.doi.org/10.1002/anie.200702965] [PMID: 18022986]
[http://dx.doi.org/10.1002/anie.200702965] [PMID: 18022986]
[2]
Qin, W.; Long, S.; Panunzio, M.; Biondi, S. Schiff bases: A short survey on an evergreen chemistry tool. Molecules, 2013, 18(10), 12264-12289.
[http://dx.doi.org/10.3390/molecules181012264] [PMID: 24108395]
[http://dx.doi.org/10.3390/molecules181012264] [PMID: 24108395]
[3]
Mondal, K.; Mistri, S. Schiff base based metal complexes: A review of their catalytic activity on aldol and henry reaction. Comm. Inorg. Chem., 2022, 2020, 2094919.
[http://dx.doi.org/10.1080/02603594.2022.2094919]
[http://dx.doi.org/10.1080/02603594.2022.2094919]
[4]
Mukhtar, S.; Hassan, A.; Morsy, N.; Hafez, T.; Hassaneen, H.; Saleh, F. Overview on synthesis, reactions, applications, and biological activities of Schiff bases. Egypt. J. Chem., 2021, 64(11), 6541-6554.
[http://dx.doi.org/10.21608/ejchem.2021.79736.3920]
[http://dx.doi.org/10.21608/ejchem.2021.79736.3920]
[5]
Pervaiz, M.; Sadiq, S.; Sadiq, A.; Younas, U.; Ashraf, A.; Saeed, Z.; Zuber, M.; Adnan, A. Azo-Schiff base derivatives of transition metal complexes as antimicrobial agents. Coord. Chem. Rev., 2021, 447, 214128.
[http://dx.doi.org/10.1016/j.ccr.2021.214128]
[http://dx.doi.org/10.1016/j.ccr.2021.214128]
[6]
Wang, Y.Y.; Xu, F.Z.; Zhu, Y.Y.; Song, B.; Luo, D.; Yu, G.; Chen, S.; Xue, W.; Wu, J. Pyrazolo[3,4-d]pyrimidine derivatives containing a Schiff base moiety as potential antiviral agents. Bioorg. Med. Chem. Lett., 2018, 28(17), 2979-2984.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.049] [PMID: 30122226]
[http://dx.doi.org/10.1016/j.bmcl.2018.06.049] [PMID: 30122226]
[7]
Chen, Y.; Li, P.; Su, S.; Chen, M.; He, J.; Liu, L.; He, M.; Wang, H.; Xue, W. Synthesis and antibacterial and antiviral activities of myricetin derivatives containing a 1,2,4-triazole Schiff base. RSC Advances, 2019, 9(40), 23045-23052.
[http://dx.doi.org/10.1039/C9RA05139B] [PMID: 35514467]
[http://dx.doi.org/10.1039/C9RA05139B] [PMID: 35514467]
[8]
Abdeldjebar, H.; Ait-Ramdane-Terbouche, C.; Terbouche, A.; Lakhdari, H. Exploring Schiff base ligand inhibitor for cancer and neurological cells, viruses and bacteria receptors by homology modeling and molecular docking. Comput. Toxicol., 2022, 23, 100231.
[http://dx.doi.org/10.1016/j.comtox.2022.100231]
[http://dx.doi.org/10.1016/j.comtox.2022.100231]
[9]
Iacopetta, D.; Ceramella, J.; Catalano, A.; Saturnino, C.; Bonomo, M.G.; Franchini, C.; Sinicropi, M.S. Schiff bases: Interesting scaffolds with promising antitumoral properties. Appl. Sci., 2021, 11(4), 1877.
[http://dx.doi.org/10.3390/app11041877]
[http://dx.doi.org/10.3390/app11041877]
[10]
Majid, S.A.; Mir, J.M.; Jan, G.; Shalla, A.H. Schiff base complexes, cancer cell lines, and anticancer evaluation: A review. J. Coord. Chem., 2022, 75(15-16), 2018-2038.
[http://dx.doi.org/10.1080/00958972.2022.2131402]
[http://dx.doi.org/10.1080/00958972.2022.2131402]
[11]
Ceramella, J.; Iacopetta, D.; Catalano, A.; Cirillo, F.; Lappano, R.; Sinicropi, M.S. A review on the antimicrobial activity of Schiff bases: Data collection and recent studies. Antibiotics, 2022, 11(2), 191.
[http://dx.doi.org/10.3390/antibiotics11020191] [PMID: 35203793]
[http://dx.doi.org/10.3390/antibiotics11020191] [PMID: 35203793]
[12]
Chandramouli, C.; Shivanand, M.; Nayanbhai, T.; Bheemachari, B.; Udupi, R. Synthesis and biological screening of certain new triazole Schiff bases and their derivatives bearing substituted benzothiazole moiety. J. Chem. Pharm. Res., 2012, 4, 1151-1159.
[13]
Hearn, M.J.; Cynamon, M.H.; Chen, M.F.; Coppins, R.; Davis, J.; Joo-On, K.H.; Noble, A.; Tu-Sekine, B.; Terrot, M.S.; Trombino, D.; Thai, M.; Webster, E.R.; Wilson, R. Preparation and antitubercular activities in vitro and in vivo of novel Schiff bases of isoniazid. Eur. J. Med. Chem., 2009, 44(10), 4169-4178.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.009] [PMID: 19524330]
[http://dx.doi.org/10.1016/j.ejmech.2009.05.009] [PMID: 19524330]
[14]
Chaubey, A.K.; Pandeya, S.N. Synthesis & anticonvulsant activity (Chemo Shock) of Schiff and Mannich bases of isatin derivatives with 2-amino pyridine (mechanism of action). Int. J. Pharm. Tech. Res., 2012, 4, 590-598.
[15]
Kumar, M.; Padmini, T.; Ponnuvel, K. Synthesis, characterization and antioxidant activities of Schiff bases are of cholesterol. J. Saudi Chem. Soc., 2017, 21, S322-S328.
[http://dx.doi.org/10.1016/j.jscs.2014.03.006]
[http://dx.doi.org/10.1016/j.jscs.2014.03.006]
[16]
Mathew, B.; Vakketh, S.S.; Kumar, S.S. Synthesis, molecular properties and anthelmintic activity of some Schiff bases of 1,3,4-thiadiazole derivatives. Der Pharma Chem., 2010, 2(5), 337-343.
[17]
Abid, M.; Husain, K.; Azam, A. Synthesis and antiamoebic activity of new oxime ether derivatives containing 2-acetylpyridine/2-acetylfuran. Bioorg. Med. Chem. Lett., 2005, 15(19), 4375-4379.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.029] [PMID: 16002285]
[http://dx.doi.org/10.1016/j.bmcl.2005.06.029] [PMID: 16002285]
[18]
Goebel, T.; Ulmer, D.; Projahn, H.; Kloeckner, J.; Heller, E.; Glaser, M.; Ponte-Sucre, A.; Specht, S.; Sarite, S.R.; Hoerauf, A.; Kaiser, A.; Hauber, I.; Hauber, J.; Holzgrabe, U. In search of novel agents for therapy of tropical diseases and human immunodeficiency virus. J. Med. Chem., 2008, 51(2), 238-250.
[http://dx.doi.org/10.1021/jm070763y] [PMID: 18159921]
[http://dx.doi.org/10.1021/jm070763y] [PMID: 18159921]
[19]
Tople, M.S.; Patel, N.B.; Patel, P.P.; Purohit, A.C.; Ahmad, I.; Patel, H. An in silico-in vitro antimalarial and antimicrobial investigation of newer 7-chloroquinoline based Schiff-bases. J. Mol. Struct., 2023, 1271, 134016.
[http://dx.doi.org/10.1016/j.molstruc.2022.134016]
[http://dx.doi.org/10.1016/j.molstruc.2022.134016]
[20]
Al-Mudhafar, M.M.J.; Omar, T.N.; Abdulhadi, S.L. Bis-Schiff bases of isatin derivatives synthesis, and their biological activities: a review. Al Mustansiriyah J. Pharmaceut. Sci., 2022, 22(1), 23-48.
[http://dx.doi.org/10.32947/ajps.v22i1.827]
[http://dx.doi.org/10.32947/ajps.v22i1.827]
[21]
Alotaibi, S.H.; Amer, H.H.; Touil, N.; Abdel-Moneim, A.S.; Soliman, M.M.; Zaki, Y.H. Synthesis, characterization and molecular docking of new nucleosides and Schiff bases derived from ampyrone as antiviral agents to contain the COVID-19 virus. Polycycl. Aromat. Compd., 2022, 2022, 2045329.
[http://dx.doi.org/10.1080/10406638.2022.2045329]
[http://dx.doi.org/10.1080/10406638.2022.2045329]
[22]
Said, M.A.; Khan, D.J.O.; Al-blewi, F.F.; Al-Kaff, N.S.; Ali, A.A.; Rezki, N.; Aouad, M.R.; Hagar, M. New 1,2,3-triazole scaffold Schiff bases as potential anti-COVID-19: Design, synthesis, DFT-molecular docking, and cytotoxicity aspects. Vaccines, 2021, 9(9), 1012.
[http://dx.doi.org/10.3390/vaccines9091012] [PMID: 34579249]
[http://dx.doi.org/10.3390/vaccines9091012] [PMID: 34579249]
[23]
Alshammari, M.B.; Ramadan, M.; Aly, A.A.; El-Sheref, E.M.; Bakht, M.A.; Ibrahim, M.A.A.; Shawky, A.M. Synthesis of potentially new schiff bases of N-substituted-2-quinolonylacetohydrazides as anti-COVID-19 agents. J. Mol. Struct., 2021, 1230, 129649.
[http://dx.doi.org/10.1016/j.molstruc.2020.129649] [PMID: 33223566]
[http://dx.doi.org/10.1016/j.molstruc.2020.129649] [PMID: 33223566]
[24]
Iacopetta, D.; Ceramella, J.; Catalano, A.; Saturnino, C.; Pellegrino, M.; Mariconda, A.; Longo, P.; Sinicropi, M.S.; Aquaro, S. COVID-19 at a glance: An up-to-date overview on variants, drug design and therapies. Viruses, 2022, 14(3), 573.
[http://dx.doi.org/10.3390/v14030573] [PMID: 35336980]
[http://dx.doi.org/10.3390/v14030573] [PMID: 35336980]
[25]
Çınar, E.; Başaran, E.; Erdoğan, Ö.; Çakmak, R.; Boğa, M.; Çevik, Ö. Heterocyclic Schiff base derivatives containing pyrazolone moiety: Synthesis, characterization, and in vitro biological studies. J. Chin. Chem. Soc., 2021, 68(12), 2355-2367.
[http://dx.doi.org/10.1002/jccs.202100357]
[http://dx.doi.org/10.1002/jccs.202100357]
[26]
Reşit Çakmak; Başaran, E.; Boğa, M.; Erdoğan, Ö.; Çınar, E.; Çevik, Ö. Schiff base derivatives of 4-aminoantipyrine as promising molecules: Synthesis, structural characterization, and biological activities. Russ. J. Bioorganic Chem., 2022, 48(2), 334-344.
[http://dx.doi.org/10.1134/S1068162022020182]
[http://dx.doi.org/10.1134/S1068162022020182]
[27]
Xu, R.; Qiu, S.; Zhang, J.; Liu, X.; Zhang, L.; Xing, H.; You, M.; Wang, M.; Lu, Y.; Zhang, P.; Zhu, J. Silibinin Schiff base derivatives counteract CCl4-induced acute liver injury by enhancing anti-inflammatory and antiapoptotic bioactivities. Drug Des. Devel. Ther., 2022, 16, 1441-1456.
[http://dx.doi.org/10.2147/DDDT.S356847] [PMID: 35601675]
[http://dx.doi.org/10.2147/DDDT.S356847] [PMID: 35601675]
[28]
Sinicropi, M.S.; Ceramella, J.; Iacopetta, D.; Catalano, A.; Mariconda, A.; Rosano, C.; Saturnino, C.; El-Kashef, H.; Longo, P. Metal complexes with Schiff bases: Data collection and recent studies on biological activities. Int. J. Mol. Sci., 2022, 23(23), 14840.
[http://dx.doi.org/10.3390/ijms232314840] [PMID: 36499170]
[http://dx.doi.org/10.3390/ijms232314840] [PMID: 36499170]
[29]
Ghanghas, P.; Choudhary, A.; Kumar, D.; Poonia, K. Coordination metal complexes with Schiff bases: Useful pharmacophores with comprehensive biological applications. Inorg. Chem. Commun., 2021, 130, 108710.
[http://dx.doi.org/10.1016/j.inoche.2021.108710]
[http://dx.doi.org/10.1016/j.inoche.2021.108710]
[30]
Chaudhary, N.K.; Guragain, B.; Chaudhary, S.K.; Mishra, P. Schiff base metal complex as a potential therapeutic drug in medical science: A critical review. BIBECHANA, 2021, 18(1), 214-230.
[http://dx.doi.org/10.3126/bibechana.v18i1.29841]
[http://dx.doi.org/10.3126/bibechana.v18i1.29841]
[31]
Schwartz, J.A.; Lium, E.K.; Silverstein, S.J. Herpes simplex virus type 1 entry is inhibited by the cobalt chelate complex CTC-96. J. Virol., 2001, 75(9), 4117-4128.
[http://dx.doi.org/10.1128/JVI.75.9.4117-4128.2001] [PMID: 11287561]
[http://dx.doi.org/10.1128/JVI.75.9.4117-4128.2001] [PMID: 11287561]
[32]
Catalano, A.; Sinicropi, M.S.; Iacopetta, D.; Ceramella, J.; Mariconda, A.; Rosano, C.; Scali, E.; Saturnino, C.; Longo, P. A review on the advancements in the field of metal complexes with Schiff bases as antiproliferative agents. Appl. Sci., 2021, 11(13), 6027.
[http://dx.doi.org/10.3390/app11136027]
[http://dx.doi.org/10.3390/app11136027]
[33]
Rao, N.N. kishan, E.; Gopichand, K.; Nagaraju, R.; Ganai, A.M.; Rao, P.V. Design, synthesis, spectral characterization, DNA binding, photo cleavage and antibacterial studies of transition metal complexes of benzothiazole Schiff base. Chem. Data Collect., 2020, 27, 100368.
[http://dx.doi.org/10.1016/j.cdc.2020.100368]
[http://dx.doi.org/10.1016/j.cdc.2020.100368]
[34]
Xiong, Y.; Li, X.; Li, M.; Qin, H.; Chen, C.; Wang, D.; Wang, X.; Zheng, X.; Liu, Y.; Liang, X.; Qing, G. What is hidden behind Schiff base hydrolysis? Dynamic covalent chemistry for the precise capture of sialylated glycans. J. Am. Chem. Soc., 2020, 142(16), 7627-7637.
[http://dx.doi.org/10.1021/jacs.0c01970] [PMID: 32243139]
[http://dx.doi.org/10.1021/jacs.0c01970] [PMID: 32243139]
[35]
Bhunia, A.; Vojtíšek, P.; Bertolasi, V.; Manna, S.C. Tridentate Schiff base coordinated trigonal bipyramidal/square pyramidal copper(II) complexes: Synthesis, crystal structure, DFT/TD-DFT calculation, catecholase activity and DNA binding. J. Mol. Struct., 2019, 1189, 94-101.
[http://dx.doi.org/10.1016/j.molstruc.2019.03.098]
[http://dx.doi.org/10.1016/j.molstruc.2019.03.098]
[36]
Naqi Ahamad, M.; Iman, K.; Raza, M.K.; Kumar, M.; Ansari, A.; Ahmad, M.; Shahid, M. Anticancer properties, apoptosis and catecholase mimic activities of dinuclear cobalt(II) and copper(II) Schiff base complexes. Bioorg. Chem., 2020, 95, 103561.
[http://dx.doi.org/10.1016/j.bioorg.2019.103561] [PMID: 31935603]
[http://dx.doi.org/10.1016/j.bioorg.2019.103561] [PMID: 31935603]
[37]
Kar, K.; Ghosh, D.; Kabi, B.; Chandra, A. A concise review on cobalt Schiff base complexes as anticancer agents. Polyhedron, 2022, 222, 115890.
[http://dx.doi.org/10.1016/j.poly.2022.115890]
[http://dx.doi.org/10.1016/j.poly.2022.115890]
[38]
Khan, E.; Hanif, M.; Akhtar, M.S. Schiff bases and their metal complexes with biologically compatible metal ions; biological importance, recent trends and future hopes. Rev. Inorg. Chem., 2022, 42(4), 307-325.
[http://dx.doi.org/10.1515/revic-2021-0034]
[http://dx.doi.org/10.1515/revic-2021-0034]
[39]
Liu, S.; Han, J.; Wang, W.; Chang, Y.; Wang, R.; Wang, Z.; Li, G.; Zhu, D.; Bryce, M.R. AIE-active Ir(III) complexes functionalised with a cationic Schiff base ligand: synthesis, photophysical properties and applications in photodynamic therapy. Dalton Trans., 2022, 51(42), 16119-16125.
[http://dx.doi.org/10.1039/D2DT02960J] [PMID: 36218133]
[http://dx.doi.org/10.1039/D2DT02960J] [PMID: 36218133]
[40]
Aroua, L.M.; Al-Hakimi, A.N.; Abdulghani, M.A.M.; Alhag, S.K. Elaboration of novel urea bearing schiff bases as potent in vitro anticancer candidates with low in vivo acute oral toxicity. Main Group Chem., 2022, 21(4), 953-973.
[http://dx.doi.org/10.3233/MGC-220019]
[http://dx.doi.org/10.3233/MGC-220019]
[41]
Catalano, A.; Iacopetta, D.; Sinicropi, M.S.; Franchini, C. Diarylureas as antitumor agents. Appl. Sci., 2021, 11(1), 374.
[http://dx.doi.org/10.3390/app11010374] [PMID: 33477901]
[http://dx.doi.org/10.3390/app11010374] [PMID: 33477901]
[42]
Aroua, L.M.; Al-Hakimi, A.N.; Abdulghani, M.A.M.; Alhag, S.K. Cytotoxic urea Schiff base complexes for multidrug discovery as anticancer activity and low in vivo oral assessing toxicity. Arab. J. Chem., 2022, 15(8), 103986.
[http://dx.doi.org/10.1016/j.arabjc.2022.103986]
[http://dx.doi.org/10.1016/j.arabjc.2022.103986]
[43]
Catalano, A.; Iacopetta, D.; Pellegrino, M.; Aquaro, S.; Franchini, C.; Sinicropi, M.S. Diarylureas: Repositioning from antitumor to antimicrobials or multi-target agents against new pandemics. Antibiotics, 2021, 10(1), 92.
[http://dx.doi.org/10.3390/antibiotics10010092] [PMID: 33477901]
[http://dx.doi.org/10.3390/antibiotics10010092] [PMID: 33477901]
[44]
Iacopetta, D.; Catalano, A.; Ceramella, J.; Saturnino, C.; Salvagno, L.; Ielo, I.; Drommi, D.; Scali, E.; Plutino, M.R.; Rosace, G.; Sinicropi, M.S. The different facets of triclocarban: A review. Molecules, 2021, 26(9), 2811.
[http://dx.doi.org/10.3390/molecules26092811] [PMID: 34068616]
[http://dx.doi.org/10.3390/molecules26092811] [PMID: 34068616]
[45]
Catalano, A. Diarylurea: A privileged scaffold in drug discovery and therapeutic development. Curr. Med. Chem., 2022, 29(25), 4302-4306.
[http://dx.doi.org/10.2174/0929867329666220111121251] [PMID: 35021967]
[http://dx.doi.org/10.2174/0929867329666220111121251] [PMID: 35021967]