Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Benefits of GLP-1 Mimetics on Epicardial Adiposity

Author(s): Habib Yaribeygi*, Mina Maleki, Fatemeh Nasimi, Tannaz Jamialahmadi, Fatima C. Stanford and Amirhossein Sahebkar*

Volume 30, Issue 37, 2023

Published on: 02 February, 2023

Page: [4256 - 4265] Pages: 10

DOI: 10.2174/0929867330666230113110431

Price: $65

Abstract

The epicardial adipose tissue, which is referred to as fats surrounding the myocardium, is an active organ able to induce cardiovascular problems in pathophysiologic conditions through several pathways, such as inflammation, fibrosis, fat infiltration, and electrophysiologic problems. So, control of its volume and thickness, especially in patients with diabetes, is highly important. Incretin-based pharmacologic agents are newly developed antidiabetics that could provide further cardiovascular benefits through control and modulating epicardial adiposity. They can reduce cardiovascular risks by rapidly reducing epicardial adipose tissues, improving cardiac efficiency. We are at the first steps of a long way, but current evidence demonstrates the sum of possible mechanisms. In this study, we evaluate epicardial adiposity in physiologic and pathologic states and the impact of incretin-based drugs.

[1]
Iacobellis, G. Aging effects on epicardial adipose tissue. Front. Aging, 2021, 2, 666260.
[http://dx.doi.org/10.3389/fragi.2021.666260] [PMID: 35822028]
[2]
Iacobellis, G.; Camarena, V.; Sant, D.; Wang, G. Human epicardial fat expresses glucagon-like peptide 1 and 2 receptors genes. Horm. Metab. Res., 2017, 49(8), 625-630.
[http://dx.doi.org/10.1055/s-0043-109563] [PMID: 28514806]
[3]
Talman, A.H.; Psaltis, P.J.; Cameron, J.D.; Meredith, I.T.; Seneviratne, S.K.; Wong, D.T. Epicardial adipose tissue: Far more than a fat depot. Cardiovasc. Diagn. Ther., 2014, 4(6), 416-429.
[PMID: 25610800]
[4]
van Woerden, G.; Gorter, T.M.; Westenbrink, B.D.; Willems, T.P.; van Veldhuisen, D.J.; Rienstra, M. Epicardial fat in heart failure patients with mid-range and preserved ejection fraction. Eur. J. Heart Fail., 2018, 20(11), 1559-1566.
[http://dx.doi.org/10.1002/ejhf.1283] [PMID: 30070041]
[5]
van Woerden, G; van Veldhuisen, DJ; Manintveld, OC; van Empel, VP; Willems, TP; de Boer, RA Epicardial adipose tissue and outcome in heart failure with mid-range and preserved ejection fraction. Circulation: Heart Failure, 2021, e009238.
[6]
Iacobellis, G. Epicardial adipose tissue in contemporary cardiology. Nat. Rev. Cardiol., 2022, 19(9), 593-606.
[http://dx.doi.org/10.1038/s41569-022-00679-9] [PMID: 35296869]
[7]
Matafome, P. Epicardial adipose tissue (dys)function: A new player in heart disease? Revis. Portuguesa de Cardiol., 2020, 39(11), 635-637.
[http://dx.doi.org/10.1016/j.repce.2020.12.009] [PMID: 33143994]
[8]
Sato, T.; Aizawa, Y.; Yuasa, S.; Kishi, S.; Fuse, K.; Fujita, S.; Ikeda, Y.; Kitazawa, H.; Takahashi, M.; Sato, M.; Okabe, M. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc. Diabetol., 2018, 17(1), 6.
[http://dx.doi.org/10.1186/s12933-017-0658-8] [PMID: 29301516]
[9]
Patel, K.H.K.; Hwang, T.; Se Liebers, C.; Ng, F.S. Epicardial adipose tissue as a mediator of cardiac arrhythmias. Am. J. Physiol. Heart Circ. Physiol., 2022, 322(2), H129-H144.
[http://dx.doi.org/10.1152/ajpheart.00565.2021] [PMID: 34890279]
[10]
Yaribeygi, H.; Sathyapalan, T.; Sahebkar, A. Molecular mechanisms by which GLP-1 RA and DPP-4i induce insulin sensitivity. Life Sci., 2019, 234, 116776.
[http://dx.doi.org/10.1016/j.lfs.2019.116776] [PMID: 31425698]
[11]
Dozio, E.; Vianello, E.; Malavazos, A.E.; Tacchini, L.; Schmitz, G.; Iacobellis, G.; Corsi Romanelli, M.M. Epicardial adipose tissue GLP-1 receptor is associated with genes involved in fatty acid oxidation and white-to-brown fat differentiation: A target to modulate cardiovascular risk? Int. J. Cardiol., 2019, 292, 218-224.
[http://dx.doi.org/10.1016/j.ijcard.2019.04.039] [PMID: 31023563]
[12]
Iacobellis, G.; Villasante Fricke, A.C. Effects of semaglutide versus dulaglutide on epicardial fat thickness in subjects with type 2 diabetes and obesity. J. Endocr. Soc., 2020, 4(4), bvz042.
[http://dx.doi.org/10.1210/jendso/bvz042] [PMID: 32190806]
[13]
Association, A.D. 2. Classification and diagnosis of diabetes. Diabetes Care, 2017, 40(Suppl. 1), S11-S24.
[http://dx.doi.org/10.2337/dc17-S005] [PMID: 27979889]
[14]
O’Neal, K.S.; Johnson, J.L.; Panak, R.L. Recognizing and appropriately treating latent autoimmune diabetes in adults. Diabetes Spectr., 2016, 29(4), 249-252.
[http://dx.doi.org/10.2337/ds15-0047] [PMID: 27899877]
[15]
Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[16]
de Faria Maraschin, J. Classification of diabetes. Diabetes; Springer, 2013, pp. 12-19.
[17]
Yaribeygi, H.; Atkin, S.L.; Pirro, M.; Sahebkar, A. A review of the anti-inflammatory properties of antidiabetic agents providing protective effects against vascular complications in diabetes. J. Cell. Physiol., 2018, 234(6), 8286-8294.
[PMID: 30417367]
[18]
Drucker, D.J.; Nauck, M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 2006, 368(9548), 1696-1705.
[http://dx.doi.org/10.1016/S0140-6736(06)69705-5] [PMID: 17098089]
[19]
Islam, M. Insulinotropic effect of herbal drugs for management of diabetes mellitus: A congregational approach. Biosens J., 2016, 5(142), 2.
[20]
Meier, J.J. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol., 2012, 8(12), 728-742.
[http://dx.doi.org/10.1038/nrendo.2012.140] [PMID: 22945360]
[21]
Baggio, L.L.; Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology, 2007, 132(6), 2131-2157.
[http://dx.doi.org/10.1053/j.gastro.2007.03.054] [PMID: 17498508]
[22]
Scott, K.A.; Moran, T.H. The GLP-1 agonist exendin-4 reduces food intake in nonhuman primates through changes in meal size. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 293(3), R983-R987.
[http://dx.doi.org/10.1152/ajpregu.00323.2007] [PMID: 17581835]
[23]
Ding, X.; Saxena, N.K.; Lin, S.; Gupta, N.; Anania, F.A. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis inob/ob mice. Hepatology, 2006, 43(1), 173-181.
[http://dx.doi.org/10.1002/hep.21006] [PMID: 16374859]
[24]
Yaribeygi, H.; Ashrafizadeh, M.; Henney, N.C.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Neuromodulatory effects of anti-diabetes medications: A mechanistic review. Pharmacol. Res., 2020, 152, 104611.
[http://dx.doi.org/10.1016/j.phrs.2019.104611] [PMID: 31863868]
[25]
Yaribeygi, H.; Atkin, S.L.; Jamialahmadi, T.; Sahebkar, A. A review on the effects of new anti-diabetic drugs on platelet function. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(3), 328-334.
[http://dx.doi.org/10.2174/1871530319666191014110414] [PMID: 31612835]
[26]
Yaribeygi, H; Atkin, SL; Montecucco, F; Jamialahmadi, T; Sahebkar, A Renoprotective effects of incretin-based therapy in diabetes mellitus. BioMed Res. Int., 2021, 2021, 8163153.
[http://dx.doi.org/10.1155/2021/8163153]
[27]
Yaribeygi, H.; Katsiki, N.; Butler, A.E.; Sahebkar, A. Effects of antidiabetic drugs on NLRP3 inflammasome activity, with a focus on diabetic kidneys. Drug Discov. Today, 2019, 24(1), 256-262.
[http://dx.doi.org/10.1016/j.drudis.2018.08.005] [PMID: 30086405]
[28]
Yaribeygi, H.; Maleki, M.; Atkin, S.L.; Jamialahmadi, T.; Sahebkar, A. Impact of incretin-based therapies on adipokines and adiponectin. J. Diabetes Res., 2021, 2021, 3331865.
[http://dx.doi.org/10.1155/2021/3331865]
[29]
Yaribeygi, H; Maleki, M; Butler, AE; Jamialahmadi, T; Sahebkar, A The impact of incretin-based medications on lipid metabolism. J. Diabetes Res., 2021, 2021, 1815178.
[http://dx.doi.org/10.1155/2021/1815178]
[30]
Yaribeygi, H.; Maleki, M.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Anti-inflammatory potentials of incretin-based therapies used in the management of diabetes. Life Sci., 2020, 241, 117152.
[http://dx.doi.org/10.1016/j.lfs.2019.117152] [PMID: 31837333]
[31]
Yaribeygi, H.; Maleki, M.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Incretin-based therapies and renin-angiotensin system: Looking for new therapeutic potentials in the diabetic milieu. Life Sci., 2020, 256, 117916.
[http://dx.doi.org/10.1016/j.lfs.2020.117916] [PMID: 32534034]
[32]
Yaribeygi, H.; Maleki, M.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Antioxidative potentials of incretin-based medications: A review of molecular mechanisms. Oxid. Med. Cell. Longev., 2021, 2021.
[http://dx.doi.org/10.1155/2021/9959320]
[33]
Yaribeygi, H.; Rashidy-Pour, A.; Atkin, S.L.; Jamialahmadi, T.; Sahebkar, A. GLP-1 mimetics and cognition. Life Sci., 2021, 264, 118645.
[http://dx.doi.org/10.1016/j.lfs.2020.118645] [PMID: 33121988]
[34]
Wootten, D.; Simms, J.; Koole, C.; Woodman, O.L.; Summers, R.J.; Christopoulos, A.; Sexton, P.M. Modulation of the glucagon-like peptide-1 receptor signaling by naturally occurring and synthetic flavonoids. J. Pharmacol. Exp. Ther., 2011, 336(2), 540-550.
[http://dx.doi.org/10.1124/jpet.110.176362] [PMID: 21075839]
[35]
Association, A.D. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2018. Diabetes Care, 2018, 41(Suppl. 1), S13-S27.
[http://dx.doi.org/10.2337/dc18-S002] [PMID: 29222373]
[36]
Ahrén, B. DPP-4 inhibitors. Best Pract. Res. Clin. Endocrinol. Metab., 2007, 21(4), 517-533.
[http://dx.doi.org/10.1016/j.beem.2007.07.005] [PMID: 18054733]
[37]
Iacobellis, G. Epicardial adipose tissue in endocrine and metabolic diseases. Endocrine, 2014, 46(1), 8-15.
[http://dx.doi.org/10.1007/s12020-013-0099-4] [PMID: 24272604]
[38]
Carr, J.J.; Ding, J. Response to Epicardial and pericardial fat: Close, but very different. Obesity , 2009, 17(4), 626-627.
[http://dx.doi.org/10.1038/oby.2008.622]
[39]
Sacks, H.S.; Fain, J.N. Human epicardial fat: What is new and what is missing? Clin. Exp. Pharmacol. Physiol., 2011, 38(12), 879-887.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05601.x] [PMID: 21895738]
[40]
Marchington, J.M.; Mattacks, C.A.; Pond, C.M. Adipose tissue in the mammalian heart and pericardium: Structure, foetal development and biochemical properties. Comp. Biochem. Physiol. B, 1989, 94(2), 225-232.
[http://dx.doi.org/10.1016/0305-0491(89)90337-4] [PMID: 2591189]
[41]
Iacobellis, G.; Barbaro, G. Epicardial adipose tissue feeding and overfeeding the heart. Nutrition, 2019, 59, 1-6.
[http://dx.doi.org/10.1016/j.nut.2018.07.002] [PMID: 30415157]
[42]
Fésüs, G.; Dubrovska, G.; Gorzelniak, K.; Kluge, R.; Huang, Y.; Luft, F.; Gollasch, M. Adiponectin is a novel humoral vasodilator. Cardiovasc. Res., 2007, 75(4), 719-727.
[http://dx.doi.org/10.1016/j.cardiores.2007.05.025] [PMID: 17617391]
[43]
Mahadev, K.; Wu, X.; Donnelly, S.; Ouedraogo, R.; Eckhart, A.D.; Goldstein, B.J. Adiponectin inhibits vascular endothelial growth factor-induced migration of human coronary artery endothelial cells. Cardiovasc. Res., 2008, 78(2), 376-384.
[http://dx.doi.org/10.1093/cvr/cvn034] [PMID: 18267956]
[44]
Szmitko, P.E.; Teoh, H.; Stewart, D.J.; Verma, S. Adiponectin and cardiovascular disease: State of the art? Am. J. Physiol. Heart Circ. Physiol., 2007, 292(4), H1655-H1663.
[http://dx.doi.org/10.1152/ajpheart.01072.2006] [PMID: 17142348]
[45]
Sacks, H.S.; Fain, J.N.; Holman, B.; Cheema, P.; Chary, A.; Parks, F.; Karas, J.; Optican, R.; Bahouth, S.W.; Garrett, E.; Wolf, R.Y.; Carter, R.A.; Robbins, T.; Wolford, D.; Samaha, J. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: Epicardial fat functioning as brown fat. J. Clin. Endocrinol. Metab., 2009, 94(9), 3611-3615.
[http://dx.doi.org/10.1210/jc.2009-0571] [PMID: 19567523]
[46]
Muzurović, E.M.; Vujošević, S.; Mikhailidis, D.P. Can we decrease epicardial and pericardial fat in patients with diabetes? J. Cardiovasc. Pharmacol. Ther., 2021, 26(5), 415-436.
[http://dx.doi.org/10.1177/10742484211006997] [PMID: 33844605]
[47]
Ernault, A.C.; Meijborg, V.M.F.; Coronel, R. Modulation of cardiac arrhythmogenesis by epicardial adipose tissue. J. Am. Coll. Cardiol., 2021, 78(17), 1730-1745.
[http://dx.doi.org/10.1016/j.jacc.2021.08.037] [PMID: 34674819]
[48]
Zhou, M.; Wang, H.; Chen, J.; Zhao, L. Epicardial adipose tissue and atrial fibrillation: Possible mechanisms, potential therapies, and future directions. Pacing Clin. Electrophysiol., 2020, 43(1), 133-145.
[http://dx.doi.org/10.1111/pace.13825] [PMID: 31682014]
[49]
Gaborit, B.; Venteclef, N.; Ancel, P.; Pelloux, V.; Gariboldi, V.; Leprince, P.; Amour, J.; Hatem, S.N.; Jouve, E.; Dutour, A.; Clément, K. Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location. Cardiovasc. Res., 2015, 108(1), 62-73.
[http://dx.doi.org/10.1093/cvr/cvv208] [PMID: 26239655]
[50]
Shaihov-Teper, O.; Ram, E.; Ballan, N.; Brzezinski, R.Y.; Naftali-Shani, N.; Masoud, R.; Ziv, T.; Lewis, N.; Schary, Y.; Levin-Kotler, L.P.; Volvovitch, D.; Zuroff, E.M.; Amunts, S.; Regev-Rudzki, N.; Sternik, L.; Raanani, E.; Gepstein, L.; Leor, J. Extracellular vesicles from epicardial fat facilitate atrial fibrillation. Circulation, 2021, 143(25), 2475-2493.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.052009] [PMID: 33793321]
[51]
Hirata, Y.; Tabata, M.; Kurobe, H.; Motoki, T.; Akaike, M.; Nishio, C.; Higashida, M.; Mikasa, H.; Nakaya, Y.; Takanashi, S.; Igarashi, T.; Kitagawa, T.; Sata, M. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J. Am. Coll. Cardiol., 2011, 58(3), 248-255.
[http://dx.doi.org/10.1016/j.jacc.2011.01.048] [PMID: 21737014]
[52]
Baker, A.R.; Harte, A.L.; Howell, N.; Pritlove, D.C.; Ranasinghe, A.M.; da Silva, N.F.; Youssef, E.M.; Khunti, K.; Davies, M.J.; Bonser, R.S.; Kumar, S.; Pagano, D.; McTernan, P.G. Epicardial adipose tissue as a source of nuclear factor-kappaB and c-Jun N-terminal kinase mediated inflammation in patients with coronary artery disease. J. Clin. Endocrinol. Metab., 2009, 94(1), 261-267.
[http://dx.doi.org/10.1210/jc.2007-2579] [PMID: 18984670]
[53]
Salgado-Somoza, A.; Teijeira-Fernández, E.; Rubio, J.; Couso, E.; González-Juanatey, J.R.; Eiras, S. Coronary artery disease is associated with higher epicardial Retinol-binding protein 4 (RBP4) and lower glucose transporter (GLUT) 4 levels in epicardial and subcutaneous adipose tissue. Clin. Endocrinol. (Oxf.), 2012, 76(1), 51-58.
[http://dx.doi.org/10.1111/j.1365-2265.2011.04140.x] [PMID: 21645024]
[54]
Burgeiro, A.; Fuhrmann, A.; Cherian, S.; Espinoza, D.; Jarak, I.; Carvalho, R.A.; Loureiro, M.; Patrício, M.; Antunes, M.; Carvalho, E. Glucose uptake and lipid metabolism are impaired in epicardial adipose tissue from heart failure patients with or without diabetes. Am. J. Physiol. Endocrinol. Metab., 2016, 310(7), E550-E564.
[http://dx.doi.org/10.1152/ajpendo.00384.2015] [PMID: 26814014]
[55]
Camarena, V.; Sant, D.; Mohseni, M.; Salerno, T.; Zaleski, M.L.; Wang, G.; Iacobellis, G. Novel atherogenic pathways from the differential transcriptome analysis of diabetic epicardial adipose tissue. Nutr. Metab. Cardiovasc. Dis., 2017, 27(8), 739-750.
[http://dx.doi.org/10.1016/j.numecd.2017.05.010] [PMID: 28739185]
[56]
Parisi, V.; Rengo, G.; Perrone-Filardi, P.; Pagano, G.; Femminella, G.D.; Paolillo, S.; Petraglia, L.; Gambino, G.; Caruso, A.; Grimaldi, M.G.; Baldascino, F.; Nolano, M.; Elia, A.; Cannavo, A.; De Bellis, A.; Coscioni, E.; Pellegrino, T.; Cuocolo, A.; Ferrara, N.; Leosco, D. Increased epicardial adipose tissue volume correlates with cardiac sympathetic denervation in patients with heart failure. Circ. Res., 2016, 118(8), 1244-1253.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307765] [PMID: 26926470]
[57]
Gorter, P.M.; de Vos, A.M.; van der Graaf, Y.; Stella, P.R.; Doevendans, P.A.; Meijs, M.F.L.; Prokop, M.; Visseren, F.L.J. Relation of epicardial and pericoronary fat to coronary atherosclerosis and coronary artery calcium in patients undergoing coronary angiography. Am. J. Cardiol., 2008, 102(4), 380-385.
[http://dx.doi.org/10.1016/j.amjcard.2008.04.002] [PMID: 18678291]
[58]
Batal, O.; Schoenhagen, P.; Shao, M.; Ayyad, A.E.; Van Wagoner, D.R.; Halliburton, S.S.; Tchou, P.J.; Chung, M.K. Left atrial epicardial adiposity and atrial fibrillation. Circ. Arrhythm. Electrophysiol., 2010, 3(3), 230-236.
[http://dx.doi.org/10.1161/CIRCEP.110.957241] [PMID: 20504944]
[59]
Iacobellis, G.; Mohseni, M.; Bianco, S.D.; Banga, P.K. Liraglutide causes large and rapid epicardial fat reduction. Obesity , 2017, 25(2), 311-316.
[http://dx.doi.org/10.1002/oby.21718] [PMID: 28124506]
[60]
Haberka, M.; Siniarski, A.; Gajos, G.; Machnik, G.; Kowalówka, A.; Deja, M. Epicardial, pericardial fat and glucagon-like peptide-1 and-2 receptors expression in stable patients with multivessel coronary artery disease: An association with the renin-angiotensin-aldosterone system. Arch. Intern. Med., 2021, 131(3), 233-240.
[61]
Iacobellis, G. Can epicardial fat glucagon-like peptide-1 receptor open up to the cardiovascular benefits of glucagon-like peptide-1 analogues? Polish Arch. Intern. Med., 2021, 131(3), 224-225.
[http://dx.doi.org/10.20452/pamw.15904] [PMID: 33783174]
[62]
Zhao, N.; Wang, X.; Wang, Y.; Yao, J.; Shi, C.; Du, J. The effect of liraglutide on epicardial adipose tissue in type 2 diabetes. J. Diabetes Res., 2021, 2021, 5578216.
[63]
Dutour, A.; Abdesselam, I.; Ancel, P.; Kober, F.; Mrad, G.; Darmon, P.; Ronsin, O.; Pradel, V.; Lesavre, N.; Martin, J.C.; Jacquier, A.; Lefur, Y.; Bernard, M.; Gaborit, B. Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: A prospective randomized clinical trial using magnetic resonance imaging and spectroscopy. Diabetes Obes. Metab., 2016, 18(9), 882-891.
[http://dx.doi.org/10.1111/dom.12680] [PMID: 27106272]
[64]
Lima-Martínez, M.M.; Paoli, M.; Rodney, M.; Balladares, N.; Contreras, M.; D’Marco, L.; Iacobellis, G. Effect of sitagliptin on epicardial fat thickness in subjects with type 2 diabetes and obesity: A pilot study. Endocrine, 2016, 51(3), 448-455.
[http://dx.doi.org/10.1007/s12020-015-0710-y] [PMID: 26233684]
[65]
van Eyk, H.J.; Paiman, E.H.M.; Bizino, M.B.; de Heer, P.; Geelhoed-Duijvestijn, P.H.; Kharagjitsingh, A.V.; Smit, J.W.A.; Lamb, H.J.; Rensen, P.C.N.; Jazet, I.M. A double-blind, placebo-controlled, randomised trial to assess the effect of liraglutide on ectopic fat accumulation in South Asian type 2 diabetes patients. Cardiovasc. Diabetol., 2019, 18(1), 87.
[http://dx.doi.org/10.1186/s12933-019-0890-5] [PMID: 31288820]
[66]
Bizino, M.B.; Jazet, I.M.; de Heer, P.; van Eyk, H.J.; Dekkers, I.A.; Rensen, P.C.N.; Paiman, E.H.M.; Lamb, H.J.; Smit, J.W. Placebo-controlled randomised trial with liraglutide on magnetic resonance endpoints in individuals with type 2 diabetes: A pre-specified secondary study on ectopic fat accumulation. Diabetologia, 2020, 63(1), 65-74.
[http://dx.doi.org/10.1007/s00125-019-05021-6] [PMID: 31690988]
[67]
Morano, S.; Romagnoli, E.; Filardi, T.; Nieddu, L.; Mandosi, E.; Fallarino, M.; Turinese, I.; Dagostino, M.P.; Lenzi, A.; Carnevale, V. Short-term effects of glucagon-like peptide 1 (GLP-1) receptor agonists on fat distribution in patients with type 2 diabetes mellitus: An ultrasonography study. Acta Diabetol., 2015, 52(4), 727-732.
[http://dx.doi.org/10.1007/s00592-014-0710-z] [PMID: 25577244]
[68]
Rowlands, J.; Heng, J.; Newsholme, P.; Carlessi, R. Pleiotropic effects of GLP-1 and analogs on cell signaling, metabolism, and function. Front. Endocrinol. (Lausanne), 2018, 9, 672.
[http://dx.doi.org/10.3389/fendo.2018.00672] [PMID: 30532733]
[69]
Chen, J.; Zhao, H.; Ma, X.; Zhang, Y.; Lu, S.; Wang, Y.; Zong, C.; Qin, D.; Wang, Y.; Yingfeng, Y.Y.; Wang, X.; Liu, Y. GLP-1/GLP-1R signaling in regulation of adipocyte differentiation and lipogenesis. Cell. Physiol. Biochem., 2017, 42(3), 1165-1176.
[http://dx.doi.org/10.1159/000478872] [PMID: 28668964]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy