Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Study on Cellular Localization of Bin Toxin and its Apoptosis-inducing Effect on Human Nasopharyngeal Carcinoma Cells

Author(s): Simab Kanwal and Panadda Boonserm*

Volume 23, Issue 5, 2023

Published on: 15 December, 2022

Page: [388 - 399] Pages: 12

DOI: 10.2174/1568009623666221124102524

Price: $65

conference banner
Abstract

Background: Bacterial pore-forming toxins, BinA and BinB together known as the binary toxin are potent insecticidal proteins, that share structural homology with antitumor bacterial parasporin-2 protein. The underlying molecular mechanism of Bin toxin-induced cancer cell cytotoxicity requires more knowledge to understand whether the toxin induced human cytotoxic effects occur in the same way as that of parasporin-2 or not.

Methods: In this study, anticancer properties of Lysinibacillus sphaericus derived Bin toxin on HK1 were evaluated through MTT assay, morphological analysis and lactate dehydrogenase efflux assay. Induction of apoptosis was determined from RT-qPCR, caspase activity and cytochrome c release assay. Internalization pattern of Bin toxin in HK1 cells was studied by confocal laser-scanning microscopic analysis.

Results: Activated Bin toxin had strong cytocidal activity to HK1 cancer cell line at 24 h postinoculation. Both BinA and BinB treated HK1 cells showed significant inhibition of cell viability at 12 μM. Induction of apoptotic mediators from RT-qPCR and caspase activity analyses indicated the activation of programmed cell death in HK1 cells in response to Bin toxin treatment. Internalization pattern of Bin toxin studied by using confocal microscopy indicated the localization of BinA on cell surface and internalization of BinB in the cytoplasm of cancer cells as well as colocalization of BinA with BinB. Evaluation of cytochrome c release also showed the association of BinB and BinA+BinB with mitochondria.

Conclusion: Bin toxin is a cytotoxic protein that induces cytotoxic and apoptotic events in HK1 cells, and may have high therapeutic potential as an anti-cancer agent.

Graphical Abstract

[1]
Ibrahim, M.A.; Griko, N.; Junker, M.; Bulla, L.A. Bacillus thuringiensis: A genomics and proteomic perspective. Bacillus thuringiensis. Bioeng. Bugs, 2010, 1(1), 31-50.
[http://dx.doi.org/10.4161/bbug.1.1.10519] [PMID: 21327125]
[2]
Berry, C. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J. Invertebr. Pathol., 2012, 109(1), 1-10.
[http://dx.doi.org/10.1016/j.jip.2011.11.008] [PMID: 22137877]
[3]
Knapp, O.; Stiles, B.; Popoff, M.R. The aerolysin-like toxin family of cytolytic, pore-forming toxins. Open Toxinology J., 2010, 3(2), 53-68.
[http://dx.doi.org/10.2174/1875414701003020053]
[4]
Broadwell, A.H.; Baumann, P. Proteolysis in the gut of mosquito larvae results in further activation of the Bacillus sphaericus toxin. Appl. Environ. Microbiol., 1987, 53(6), 1333-1337.
[http://dx.doi.org/10.1128/aem.53.6.1333-1337.1987] [PMID: 2886104]
[5]
Gómez-Garzón, C.; Hernández-Santana, A.; Dussán, J. Comparative genomics reveals Lysinibacillus sphaericus group comprises a novel species. BMC Genomics, 2016, 17(1), 709.
[http://dx.doi.org/10.1186/s12864-016-3056-9] [PMID: 27595771]
[6]
Berry, C.; Hindley, J.; Ehrhardt, A.F.; Grounds, T.; de Souza, I.; Davidson, E.W. Genetic determinants of host ranges of Bacillus sphaericus mosquito larvicidal toxins. J. Bacteriol., 1993, 175(2), 510-518.
[http://dx.doi.org/10.1128/jb.175.2.510-518.1993] [PMID: 8419297]
[7]
Myers, P.; Yousten, A.A. Toxic activity of Bacillus sphaericus SSII-1 for mosquito larvae. Infect. Immun., 1978, 19(3), 1047-1053.
[http://dx.doi.org/10.1128/iai.19.3.1047-1053.1978] [PMID: 640722]
[8]
Srisucharitpanit, K.; Inchana, P.; Rungrod, A.; Promdonkoy, B.; Boonserm, P. Expression and purification of the active soluble form of Bacillus sphaericus binary toxin for structural analysis. Protein Expr. Purif., 2012, 82(2), 368-372.
[http://dx.doi.org/10.1016/j.pep.2012.02.009] [PMID: 22381463]
[9]
Colletier, J.P.; Sawaya, M.R.; Gingery, M.; Rodriguez, J.A.; Cascio, D.; Brewster, A.S.; Michels-Clark, T.; Hice, R.H.; Coquelle, N.; Boutet, S.; Williams, G.J.; Messerschmidt, M.; DePonte, D.P.; Sierra, R.G.; Laksmono, H.; Koglin, J.E.; Hunter, M.S.; Park, H.W.; Uervirojnangkoorn, M.; Bideshi, D.K.; Brunger, A.T.; Federici, B.A.; Sauter, N.K.; Eisenberg, D.S. De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Nature, 2016, 539(7627), 43-47.
[http://dx.doi.org/10.1038/nature19825] [PMID: 27680699]
[10]
Srisucharitpanit, K.; Yao, M.; Promdonkoy, B.; Chimnaronk, S.; Tanaka, I.; Boonserm, P. Crystal structure of BinB: A receptor binding component of the binary toxin from Lysinibacillus sphaericus. Proteins, 2014, 82(10), 2703-2712.
[http://dx.doi.org/10.1002/prot.24636] [PMID: 24975613]
[11]
Akiba, T.; Abe, Y.; Kitada, S.; Kusaka, Y.; Ito, A.; Ichimatsu, T.; Katayama, H.; Akao, T.; Higuchi, K.; Mizuki, E.; Ohba, M.; Kanai, R.; Harata, K. Crystal structure of the parasporin-2 Bacillus thuringiensis toxin that recognizes cancer cells. J. Mol. Biol., 2009, 386(1), 121-133.
[http://dx.doi.org/10.1016/j.jmb.2008.12.002] [PMID: 19094993]
[12]
Luo, W.; Liu, C.; Zhang, R.; He, J.; Han, B. Anticancer activity of binary toxins from Lysinibacillus sphaericus IAB872 against human lung cancer cell line A549. Nat. Prod. Commun., 2014, 9(1), 1934578X1400900.
[http://dx.doi.org/10.1177/1934578X1400900131] [PMID: 24660476]
[13]
Chankamngoen, W.; Janvilisri, T.; Promdonkoy, B.; Boonserm, P. In vitro analysis of the anticancer activity of Lysinibacillus sphaericus binary toxin in human cancer cell lines. 3 Biotech, 2020, 10, 365.
[14]
Kanwal, S.; Abeysinghe, S.; Srisaisup, M.; Boonserm, P. Cytotoxic effects and intracellular localization of bin toxin from Lysinibacillus sphaericus in human liver cancer cell line. Toxins, 2021, 13(4), 288.
[http://dx.doi.org/10.3390/toxins13040288] [PMID: 33921797]
[15]
Broadwell, A.H.; Baumann, L.; Baumann, P. The 42- and 51-kilodalton mosquitocidal proteins of Bacillus sphaericus 2362: construction of recombinants with enhanced expression and in vivo studies of processing and toxicity. J. Bacteriol., 1990, 172(5), 2217-2223.
[http://dx.doi.org/10.1128/jb.172.5.2217-2223.1990] [PMID: 2110136]
[16]
Brasseur, K.; Auger, P.; Asselin, E.; Parent, S.; Côté, J.C.; Sirois, M. Parasporin-2 from a new Bacillus thuringiensis 4R2 strain induces caspases activation and apoptosis in human cancer cells. PLoS One, 2015, 10(8), e0135106.
[http://dx.doi.org/10.1371/journal.pone.0135106] [PMID: 26263002]
[17]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[18]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[19]
Lekakarn, H.; Promdonkoy, B.; Boonserm, P. Interaction of Lysinibacillus sphaericus binary toxin with mosquito larval gut cells: Binding and internalization. J. Invertebr. Pathol., 2015, 132, 125-131.
[http://dx.doi.org/10.1016/j.jip.2015.09.010] [PMID: 26408968]
[20]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[21]
Wu, J.; Hann, S.S. Functions and roles of long-non-coding RNAs in human nasopharyngeal carcinoma. Cell. Physiol. Biochem., 2018, 45(3), 1191-1204.
[http://dx.doi.org/10.1159/000487451] [PMID: 29448252]
[22]
Cole, A.R.; Gibert, M.; Popoff, M.; Moss, D.S.; Titball, R.W.; Basak, A.K. Clostridium perfringens ε-toxin shows structural similarity to the pore-forming toxin aerolysin. Nat. Struct. Mol. Biol., 2004, 11(8), 797-798.
[http://dx.doi.org/10.1038/nsmb804] [PMID: 15258571]
[23]
Kitada, S.; Abe, Y.; Shimada, H.; Kusaka, Y.; Matsuo, Y.; Katayama, H.; Okumura, S.; Akao, T.; Mizuki, E.; Kuge, O.; Sasaguri, Y.; Ohba, M.; Ito, A. Cytocidal actions of parasporin-2, an anti-tumor crystal toxin from Bacillus thuringiensis. J. Biol. Chem., 2006, 281(36), 26350-26360.
[http://dx.doi.org/10.1074/jbc.M602589200] [PMID: 16809341]
[24]
Okumura, S.; Saitoh, H.; Ishikawa, T.; Inouye, K.; Mizuki, E. Mode of action of parasporin-4, a cytocidal protein from Bacillus thuringiensis. Biochim. Biophys. Acta Biomembr., 2011, 1808(6), 1476-1482.
[http://dx.doi.org/10.1016/j.bbamem.2010.11.003] [PMID: 21073856]
[25]
Bravo, A.; Gill, S.S.; Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 2007, 49(4), 423-435.
[http://dx.doi.org/10.1016/j.toxicon.2006.11.022] [PMID: 17198720]
[26]
Schwartz, J.L.; Potvin, L.; Coux, F.; Charles, J.F.; Berry, C.; Humphreys, M.J.; Jones, A.F.; Bernhart, I.; Dalla Serra, M.; Menestrina, G. Permeabilization of model lipid membranes by Bacillus sphaericus mosquitocidal binary toxin and its individual components. J. Membr. Biol., 2001, 184(2), 171-183.
[http://dx.doi.org/10.1007/s00232-001-0086-1] [PMID: 11719853]
[27]
Pfeffer, C.; Singh, A. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci., 2018, 19(2), 448.
[http://dx.doi.org/10.3390/ijms19020448] [PMID: 29393886]
[28]
Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol., 2020, 17(7), 395-417.
[http://dx.doi.org/10.1038/s41571-020-0341-y] [PMID: 32203277]
[29]
Tangsongcharoen, C.; Chomanee, N.; Promdonkoy, B.; Boonserm, P. Lysinibacillus sphaericus binary toxin induces apoptosis in susceptible Culex quinquefasciatus larvae. J. Invertebr. Pathol., 2015, 128, 57-63.
[http://dx.doi.org/10.1016/j.jip.2015.04.008] [PMID: 25958262]
[30]
Oei, C.; Hindley, J.; Berry, C. Binding of purified Bacillus sphaericus binary toxin and its deletion derivatives to Culex quinquefasciatus gut: elucidation of functional binding domains. J. Gen. Microbiol., 1992, 138(7), 1515-1526.
[http://dx.doi.org/10.1099/00221287-138-7-1515] [PMID: 1512580]
[31]
Marchi, S.; Giorgi, C.; Suski, J.M.; Agnoletto, C.; Bononi, A.; Bonora, M.; De Marchi, E.; Missiroli, S.; Patergnani, S.; Poletti, F.; Rimessi, A.; Duszynski, J.; Wieckowski, M.R.; Pinton, P. Mitochondria-ros crosstalk in the control of cell death and aging. J. Signal Transduct., 2012, 2012, 329635.
[http://dx.doi.org/10.1155/2012/329635] [PMID: 22175013]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy