Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Combinatorial Application of Papain and CD66B for Isolating Glioma- Associated Neutrophils

Author(s): Xing Xu, Yongchang Yang, Yancheng Liu, Xianglian Ge, Tailong Yi, Yang Xie, Chunlan Ning, Shengfu Shen, Zengfeng Sun, Zhen Zhang, Qiongli Zhai, Xiaoguang Wang, Xianghui Meng, Jun Dong, Qiang Huang, Xuejun Yang, Wenliang Li* and Xun Jin*

Volume 23, Issue 5, 2023

Published on: 23 November, 2022

Page: [400 - 411] Pages: 12

DOI: 10.2174/1568009623666221027101637

Price: $65

Abstract

Background: Stromal cells in the tumor microenvironment play crucial roles in glioma development. Current methods for isolating tumor-associated stromal cells (such as neutrophils) are inefficient due to the conflict between tissue dissociation and cell surface protein protection, which hampers the research on patient-derived stromal cells. Our study aims to establish a novel method for isolating glioma-associated neutrophils (GANs).

Methods: To observe neutrophil-like polymorphonuclear cells, we performed Hematoxylin-Eosin staining on glioma tissues. For isolating single cells from glioma tissues, we evaluated the efficiency of tissue dissociation with FastPrep Grinder-mediated homogenization or proteases (trypsin or papain) digestion. To definite specific markers of GANs, fluorescence-activated cell sorting (FACS) and immunofluorescence staining were performed. FACS and Ficoll were performed for the separation of neutrophils from glioma tissue-derived single-cell or whole blood pool. To identify the isolated neutrophils, FACS and RT-PCR were carried out.

Results: Neutrophil-like cells were abundant in high-grade glioma tissues. Among the three tissue dissociation methods, papain digestion produced a 5.1-fold and 1.7-fold more living cells from glioma mass than physical trituration and trypsin digestion, respectively, and it preserved over 97% of neutrophil surface protein markers. CD66B could be adopted as a unique neutrophil surface protein marker for FACS sorting in glioma. Glioma-derived CD66B+ cells specifically expressed neutrophil marker genes.

Conclusion: A combination of papain-mediated tissue dissociation and CD66B-mediated FACS sorting is an effective novel method for the isolation of GANs from glioma tissues.

Graphical Abstract

[1]
Cheever, M.A.; Allison, J.P.; Ferris, A.S.; Finn, O.J.; Hastings, B.M.; Hecht, T.T.; Mellman, I.; Prindiville, S.A.; Viner, J.L.; Weiner, L.M.; Matrisian, L.M. The prioritization of cancer antigens: A national cancer institute pilot project for the acceleration of translational research. Clin. Cancer Res., 2009, 15(17), 5323-5337.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0737] [PMID: 19723653]
[2]
He, Q.; Jiang, X.; Zhou, X.; Weng, J. Targeting cancers through TCR-peptide/MHC interactions. J. Hematol. Oncol., 2019, 12(1), 139.
[http://dx.doi.org/10.1186/s13045-019-0812-8] [PMID: 31852498]
[3]
Tukaramrao, D.B.; Malla, S.; Saraiya, S.; Hanely, R.A.; Ray, A.; Kumari, S.; Raman, D.; Tiwari, A.K. A novel thienopyrimidine analog, tph104, mediates immunogenic cell death in triple-negative breast cancer cells. Cancers (Basel), 2021, 13(8), 1954.
[http://dx.doi.org/10.3390/cancers13081954] [PMID: 33919653]
[4]
Sato, A.; Nakashima, H.; Nakashima, M.; Ikarashi, M.; Nishiyama, K.; Kinoshita, M.; Seki, S. Involvement of the TNF and FasL produced by CD11b Kupffer cells/macrophages in CCl4-induced acute hepatic injury. PLoS One, 2014, 9(3), e92515.
[http://dx.doi.org/10.1371/journal.pone.0092515] [PMID: 24667392]
[5]
Miyazato, K.; Tahara, H.; Hayakawa, Y. Antimetastatic effects of thalidomide by inducing the functional maturation of peripheral natural killer cells. Cancer Sci., 2020, 111(8), 2770-2778.
[http://dx.doi.org/10.1111/cas.14538] [PMID: 32573072]
[6]
Chigbu, D.; Loonawat, R.; Sehgal, M.; Patel, D.; Jain, P.; Hepatitis, C. Hepatitis C virus infection: Host–virus interaction and mechanisms of viral persistence. Cells, 2019, 8(4), 376.
[http://dx.doi.org/10.3390/cells8040376]
[7]
Molloy, A.P.; Martin, F.T.; Dwyer, R.M.; Griffin, T.P.; Murphy, M.; Barry, F.P.; O’Brien, T.; Kerin, M.J. Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int. J. Cancer, 2009, 124(2), 326-332.
[http://dx.doi.org/10.1002/ijc.23939] [PMID: 19003962]
[8]
Chang, A.L.; Miska, J.; Wainwright, D.A.; Dey, M.; Rivetta, C.V.; Yu, D.; Kanojia, D.; Pituch, K.C.; Qiao, J.; Pytel, P.; Han, Y.; Wu, M.; Zhang, L.; Horbinski, C.M.; Ahmed, A.U.; Lesniak, M.S. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res., 2016, 76(19), 5671-5682.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0144] [PMID: 27530322]
[9]
Chang, Y.; Xu, L.; An, H.; Fu, Q.; Chen, L.; Lin, Z.; Xu, J. Expression of IL-4 and IL-13 predicts recurrence and survival in localized clear-cell renal cell carcinoma. Int. J. Clin. Exp. Pathol., 2015, 8(2), 1594-1603.
[PMID: 25973044]
[10]
Michaudel, C.; Bataille, F.; Maillet, I.; Fauconnier, L.; Colas, C.; Sokol, H.; Straube, M.; Couturier-Maillard, A.; Dumoutier, L.; van Snick, J.; Quesniaux, V.F.; Togbe, D.; Ryffel, B. Ozone-induced aryl hydrocarbon receptor activation controls lung inflammation via Interleukin-22 Modulation. Front. Immunol., 2020, 11, 144.
[http://dx.doi.org/10.3389/fimmu.2020.00144] [PMID: 32161582]
[11]
Wolfsberger, J.; Sakil, H.A.M.; Zhou, L.; van Bree, N.; Baldisseri, E.; de Souza Ferreira, S.; Zubillaga, V.; Stantic, M.; Fritz, N.; Hartman, J.; Rolny, C.; Wilhelm, M.T. TAp73 represses NFkappaB-mediated recruitment of tumor-associated macrophages in breast cancer Proceedings of the National Academy of Sciences of the United States of America, 118, 2021.
[12]
Zhou, Z.; Wang, P.; Sun, R.; Li, J.; Hu, Z.; Xin, H.; Luo, C.; Zhou, J.; Fan, J.; Zhou, S. Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3. J. Immunother. Cancer, 2021, 9(3), e001946.
[http://dx.doi.org/10.1136/jitc-2020-001946] [PMID: 33692217]
[13]
Sanhueza, C.; Wehinger, S.; Castillo Bennett, J.; Valenzuela, M.; Owen, G.I.; Quest, A.F.G. The twisted survivin connection to angiogenesis. Mol. Cancer, 2015, 14(1), 198.
[http://dx.doi.org/10.1186/s12943-015-0467-1] [PMID: 26584646]
[14]
Albrengues, J.; Shields, M.A.; Ng, D.; Park, C.G.; Ambrico, A.; Poindexter, M.E.; Upadhyay, P.; Uyeminami, D.L.; Pommier, A.; Küttner, V.; Bružas, E.; Maiorino, L.; Bautista, C.; Carmona, E.M.; Gimotty, P.A.; Fearon, D.T.; Chang, K.; Lyons, S.K.; Pinkerton, K.E.; Trotman, L.C.; Goldberg, M.S.; Yeh, J.T.H.; Egeblad, M. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science, 2018, 361(6409), eaao4227.
[http://dx.doi.org/10.1126/science.aao4227] [PMID: 30262472]
[15]
Jeon, H.Y.; Ham, S.W.; Kim, J.K.; Jin, X.; Lee, S.Y.; Shin, Y.J.; Choi, C.Y.; Sa, J.K.; Kim, S.H.; Chun, T.; Jin, X.; Nam, D.H.; Kim, H. Ly6G+ inflammatory cells enable the conversion of cancer cells to cancer stem cells in an irradiated glioblastoma model. Cell Death Differ., 2019, 26(10), 2139-2156.
[http://dx.doi.org/10.1038/s41418-019-0282-0] [PMID: 30804471]
[16]
Yang, L.; Liu, Q.; Zhang, X.; Liu, X.; Zhou, B.; Chen, J.; Huang, D.; Li, J.; Li, H.; Chen, F.; Liu, J.; Xing, Y.; Chen, X.; Su, S.; Song, E. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature, 2020, 583(7814), 133-138.
[http://dx.doi.org/10.1038/s41586-020-2394-6] [PMID: 32528174]
[17]
Yee, P.P.; Wei, Y.; Kim, S.Y.; Lu, T.; Chih, S.Y.; Lawson, C.; Tang, M.; Liu, Z.; Anderson, B.; Thamburaj, K.; Young, M.M.; Aregawi, D.G.; Glantz, M.J.; Zacharia, B.E.; Specht, C.S.; Wang, H.G.; Li, W. Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nat. Commun., 2020, 11(1), 5424.
[http://dx.doi.org/10.1038/s41467-020-19193-y] [PMID: 33110073]
[18]
Kanayama, M.; Inoue, M.; Danzaki, K.; Hammer, G.; He, Y.W.; Shinohara, M.L. Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat. Commun., 2015, 6(1), 5779.
[http://dx.doi.org/10.1038/ncomms6779] [PMID: 25609235]
[19]
Lawrence, S.M.; Corriden, R.; Nizet, V. How neutrophils meet their end. Trends Immunol., 2020, 41(6), 531-544.
[http://dx.doi.org/10.1016/j.it.2020.03.008] [PMID: 32303452]
[20]
Leite Pereira, A.; Bitoun, S.; Paoletti, A.; Nocturne, G.; Marcos Lopez, E.; Cosma, A.; Le Grand, R.; Mariette, X.; Tchitchek, N. Characterization of phenotypes and functional activities of leukocytes from rheumatoid arthritis patients by mass cytometry. Front. Immunol., 2019, 10, 2384.
[http://dx.doi.org/10.3389/fimmu.2019.02384] [PMID: 31681279]
[21]
Li, W.; Deng, C.; Yang, H.; Lu, X.; Li, S.; Liu, X.; Chen, F.; Chen, L.; Shu, X.; Zhang, L.; Liu, Q.; Wang, G.; Peng, Q. Expansion of circulating peripheral TIGIT+CD226+ CD4 T cells with enhanced effector functions in dermatomyositis. Arthritis Res. Ther., 2021, 23(1), 15.
[http://dx.doi.org/10.1186/s13075-020-02397-4] [PMID: 33413573]
[22]
O’Flanagan, C.H.; Campbell, K.R.; Zhang, A.W.; Kabeer, F.; Lim, J.L.P.; Biele, J.; Eirew, P.; Lai, D.; McPherson, A.; Kong, E.; Bates, C.; Borkowski, K.; Wiens, M.; Hewitson, B.; Hopkins, J.; Pham, J.; Ceglia, N.; Moore, R.; Mungall, A.J.; McAlpine, J.N.; Shah, S.P.; Aparicio, S.; Aparicio, S. Dissociation of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses. Genome Biol., 2019, 20(1), 210.
[http://dx.doi.org/10.1186/s13059-019-1830-0] [PMID: 31623682]
[23]
Abdalla, A.; Murali, C.; Amin, A. Safranal inhibits angiogenesis via targeting HIF-1α/VEGF machinery: In vitro and ex vivo insights. Front. Oncol., 2022, 11, 789172.
[http://dx.doi.org/10.3389/fonc.2021.789172] [PMID: 35211395]
[24]
Al Shamsi, M.S.; Amin, A.; Adeghate, E. Beneficial effect of vitamin E on the metabolic parameters of diabetic rats. Mol. Cell. Biochem., 2004, 261(1), 35-42.
[http://dx.doi.org/10.1023/B:MCBI.0000028735.79172.9b] [PMID: 15362483]
[25]
Hamza, A.A.; Heeba, G.H.; Hamza, S.; Abdalla, A.; Amin, A. Standardized extract of ginger ameliorates liver cancer by reducing proliferation and inducing apoptosis through inhibition oxidative stress/ inflammation pathway. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2021, 134(2021), 111102.
[26]
Lubec, G.; Förster, O.; Coradello, H.; Maxa, E.; Pollak, A. Proteolytic degradation of the glomerular basement membrane and immunochemical characterization of split products. Ren. Physiol., 1980, 3(1-6), 126-132.
[PMID: 7034090]
[27]
Kaiser, O.; Aliuos, P.; Wissel, K.; Lenarz, T.; Werner, D.; Reuter, G.; Kral, A.; Warnecke, A. Dissociated neurons and glial cells derived from rat inferior colliculi after digestion with papain. PLoS One, 2013, 8(12), e80490.
[http://dx.doi.org/10.1371/journal.pone.0080490] [PMID: 24349001]
[28]
Stone, G.P.; Lin, K.S.; Haselton, F.R. Adaptive virus detection using filament-coupled antibodies. J. Biomed. Opt., 2006, 11(3), 034012.
[http://dx.doi.org/10.1117/1.2209907] [PMID: 16822062]
[29]
Quante, M.; Tu, S.P.; Tomita, H.; Gonda, T.; Wang, S.S.W.; Takashi, S.; Baik, G.H.; Shibata, W.; DiPrete, B.; Betz, K.S.; Friedman, R.; Varro, A.; Tycko, B.; Wang, T.C. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell, 2011, 19(2), 257-272.
[http://dx.doi.org/10.1016/j.ccr.2011.01.020] [PMID: 21316604]
[30]
Fujiyama, S.; Nakahashi-Oda, C.; Abe, F.; Wang, Y.; Sato, K.; Shibuya, A. Identification and isolation of splenic tissue-resident macrophage sub-populations by flow cytometry. Int. Immunol., 2019, 31(1), 51-56.
[http://dx.doi.org/10.1093/intimm/dxy064] [PMID: 30256964]
[31]
Chan, J.Y.; Lim, J.Q.; Yeong, J.; Ravi, V.; Guan, P.; Boot, A.; Tay, T.K.Y.; Selvarajan, S.; Md Nasir, N.D.; Loh, J.H.; Ong, C.K.; Huang, D.; Tan, J.; Li, Z.; Ng, C.C.Y.; Tan, T.T.; Masuzawa, M.; Sung, K.W.K.; Farid, M.; Quek, R.H.H.; Tan, N.C.; Teo, M.C.C.; Rozen, S.G.; Tan, P.; Futreal, A.; Teh, B.T.; Soo, K.C. Multiomic analysis and immunoprofiling reveal distinct subtypes of human angiosarcoma. J. Clin. Invest., 2020, 130(11), 5833-5846.
[http://dx.doi.org/10.1172/JCI139080] [PMID: 33016928]
[32]
Kubick, N.; Henckell Flournoy, P.C.; Klimovich, P.; Manda, G.; Mickael, M.E. What has single‐cell RNA sequencing revealed about microglial neuroimmunology? Immun. Inflamm. Dis., 2020, 8(4), 825-839.
[http://dx.doi.org/10.1002/iid3.362] [PMID: 33085226]
[33]
Hassani, M.; Leijte, G.; Bruse, N.; Kox, M.; Pickkers, P.; Vrisekoop, N.; Koenderman, L. Differentiation and activation of eosinophils in the human bone marrow during experimental human endotoxemia. J. Leukoc. Biol., 2020, 108(5), 1665-1671.
[http://dx.doi.org/10.1002/JLB.1AB1219-493R] [PMID: 31922294]
[34]
Jensen, H.K.; Donskov, F.; Marcussen, N.; Nordsmark, M.; Lundbeck, F.; von der Maase, H. Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J. Clin. Oncol., 2009, 27(28), 4709-4717.
[http://dx.doi.org/10.1200/JCO.2008.18.9498] [PMID: 19720929]
[35]
Koh, V.; Chakrabarti, J.; Torvund, M.; Steele, N.; Hawkins, J.A.; Ito, Y.; Wang, J.; Helmrath, M.A.; Merchant, J.L.; Ahmed, S.A.; Shabbir, A.; Yan So, J.B.; Yong, W.P.; Zavros, Y. Hedgehog transcriptional effector GLI mediates mTOR-Induced PD-L1 expression in gastric cancer organoids. Cancer Lett., 2021, 518, 59-71.
[http://dx.doi.org/10.1016/j.canlet.2021.06.007] [PMID: 34126195]
[36]
Hamada, S.; Miyamoto, J.; Oshiro, T.; Yagi, T.; Kiyuna, S.; Uehara, T.; Matsuda, T.; Higa, T.; Hyakuna, N.; Nakanishi, K. Possible involvement of IL-6-producing tissue-resident macrophages in early-onset pericardial effusion pathogenesis after hematopoietic stem cell transplantation. Pediatr. Blood Cancer, 2018, 65(6), e26982.
[http://dx.doi.org/10.1002/pbc.26982] [PMID: 29384263]
[37]
Perez, C.; Botta, C.; Zabaleta, A.; Puig, N.; Cedena, M.T.; Goicoechea, I.; Alameda, D.; San José-Eneriz, E.; Merino, J.; Rodríguez-Otero, P.; Maia, C.; Alignani, D.; Maiso, P.; Manrique, I.; Lara-Astiaso, D.; Vilas-Zornoza, A.; Sarvide, S.; Riillo, C.; Rossi, M.; Rosiñol, L.; Oriol, A.; Blanchard, M.J.; Rios, R.; Sureda, A.; Martin, J.; Martinez, R.; Bargay, J.; de la Rubia, J.; Hernandez, M.T.; Martinez-Lopez, J.; Orfao, A.; Agirre, X.; Prosper, F.; Mateos, M.V.; Lahuerta, J.J.; Blade, J.; San-Miguel, J.F.; Paiva, B. Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma. Blood, 2020, 136(2), 199-209.
[http://dx.doi.org/10.1182/blood.2019004537] [PMID: 32325491]
[38]
Alhussien, M.N.; Panda, B.S.K.; Kamboj, A.; Dang, A.K. Peripartum changes in the activity and expression of neutrophils may predispose to the postpartum occurrence of metritis in dairy cows. Res. Vet. Sci., 2021, 135, 456-468.
[http://dx.doi.org/10.1016/j.rvsc.2020.11.003] [PMID: 33229058]
[39]
Ko, J.S.; Jeong, D.; Koh, J.; Jung, H.; Jung, K.C.; Jeon, Y.K.; Kim, H.Y.; Yi, E.C.; Lee, H.; Lee, C.W.; Chung, D.H. Ssu72 phosphatase directly binds to ZAP-70, thereby providing fine-tuning of TCR signaling and preventing spontaneous inflammation Proceedings of the National Academy of Sciences of the United States of America, 1182021,
[http://dx.doi.org/10.1073/pnas.2102374118]
[40]
Perez-Lucendo, I.; Gomez Torrijos, E.; Donado, P.; Melero, R.; Feo-Brito, F.; Urra, J.M. Low expression of ICAM-1 in blood eosinophils in patients with active eosinophilic esophagitis. J. Investig. Allergol. Clin. Immunol., 2021, 31(4), 316-321.
[http://dx.doi.org/10.18176/jiaci.0489] [PMID: 31983676]
[41]
Dellon, E.S.; Peterson, K.A.; Murray, J.A.; Falk, G.W.; Gonsalves, N.; Chehade, M.; Genta, R.M.; Leung, J.; Khoury, P.; Klion, A.D.; Hazan, S.; Vaezi, M.; Bledsoe, A.C.; Durrani, S.R.; Wang, C.; Shaw, C.; Chang, A.T.; Singh, B.; Kamboj, A.P.; Rasmussen, H.S.; Rothenberg, M.E.; Hirano, I. Anti–Siglec-8 antibody for eosinophilic gastritis and duodenitis. N. Engl. J. Med., 2020, 383(17), 1624-1634.
[http://dx.doi.org/10.1056/NEJMoa2012047] [PMID: 33085861]
[42]
Holgate, S.T. New strategies with anti-IgE in allergic diseases. World Allergy Organ. J., 2014, 7(1), 17.
[http://dx.doi.org/10.1186/1939-4551-7-17] [PMID: 25097719]
[43]
Konczalla, L.; Ghadban, T.; Effenberger, K.E.; Wöstemeier, A.; Riethdorf, S.; Uzunoglu, F.G.; Izbicki, J.R.; Pantel, K.; Bockhorn, M.; Reeh, M. Prospective comparison of the prognostic relevance of circulating tumor cells in blood and disseminated tumor cells in bone marrow of a single patient’s cohort with esophageal cancer. Ann. Surg., 2021, 273(2), 299-305.
[http://dx.doi.org/10.1097/SLA.0000000000003406] [PMID: 31188197]
[44]
Xie, R.; Kessler, T.; Grosch, J.; Hai, L.; Venkataramani, V.; Huang, L.; Hoffmann, D.C.; Solecki, G.; Ratliff, M.; Schlesner, M.; Wick, W.; Winkler, F. Tumor cell network integration in glioma represents a stemness feature. Neuro-oncol., 2020.
[PMID: 33320195]
[45]
Roth, H.; Samereier, M.; Begandt, D.; Pick, R.; Salvermoser, M.; Brechtefeld, D.; Schleicher, M.; Walzog, B.; Müller-Taubenberger, A. Filamin A promotes efficient migration and phagocytosis of neutrophil-like HL-60 cells. Eur. J. Cell Biol., 2017, 96(6), 553-566.
[http://dx.doi.org/10.1016/j.ejcb.2017.05.004] [PMID: 28595776]
[46]
Yago, T.; Liu, Z.; Ahamed, J.; McEver, R.P. Cooperative PSGL-1 and CXCR2 signaling in neutrophils promotes deep vein thrombosis in mice. Blood, 2018, 132(13), 1426-1437.
[http://dx.doi.org/10.1182/blood-2018-05-850859] [PMID: 30068506]
[47]
Matkawala, F.; Nighojkar, S.; Kumar, A.; Nighojkar, A. Microbial alkaline serine proteases: Production, properties and applications. World J. Microbiol. Biotechnol., 2021, 37(4), 63.
[http://dx.doi.org/10.1007/s11274-021-03036-z] [PMID: 33730214]
[48]
Razzaq, A.; Shamsi, S.; Ali, A.; Ali, Q.; Sajjad, M.; Malik, A.; Ashraf, M. Microbial proteases applications. Front. Bioeng. Biotechnol., 2019, 7, 110.
[http://dx.doi.org/10.3389/fbioe.2019.00110] [PMID: 31263696]
[49]
Ktari, N.; Khaled, H.B.; Younes, I.; Bkhairia, I.; Mhamdi, S.; Hamza, I.; Nasri, M. Zebra blenny (Salaria basilisca) viscera as a source of solvent-stable proteases: characteristics, potential application in the deproteinization of shrimp wastes and evaluation in liquid laundry commercial detergents. J. Food Sci. Technol., 2014, 51(11), 3094-3103.
[http://dx.doi.org/10.1007/s13197-012-0817-6] [PMID: 26396301]
[50]
Zubčić, Ž.; Mendeš, T.; Včeva, A.; Mihalj, H.; Bogović, V.; Milanković, S.G. Presence of pepsin in laryngeal tissue and saliva in benign and malignant neoplasms. Biosci. Rep., 2020, 40(11), BSR20200216.
[http://dx.doi.org/10.1042/BSR20200216] [PMID: 33103719]
[51]
Hu, R.; Chen, G.; Li, Y. Production and characterization of antioxidative hydrolysates and peptides from corn gluten meal using papain, ficin, and bromelain. Molecules, 2020, 25(18), 4091.
[http://dx.doi.org/10.3390/molecules25184091] [PMID: 32906778]
[52]
Bhushan, S.; Theas, M.S.; Guazzone, V.A.; Jacobo, P.; Wang, M.; Fijak, M.; Meinhardt, A.; Lustig, L. Immune cell subtypes and their function in the testis. Front. Immunol., 2020, 11, 583304.
[http://dx.doi.org/10.3389/fimmu.2020.583304] [PMID: 33101311]
[53]
McMenamin, P.G.; Saban, D.R.; Dando, S.J. Immune cells in the retina and choroid: Two different tissue environments that require different defenses and surveillance. Prog. Retin. Eye Res., 2019, 70, 85-98.
[http://dx.doi.org/10.1016/j.preteyeres.2018.12.002] [PMID: 30552975]
[54]
Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150.
[http://dx.doi.org/10.1038/nrneurol.2017.188] [PMID: 29377008]
[55]
Gao, Y.; Zhang, H.; Zhou, N.; Xu, P.; Wang, J.; Gao, Y.; Jin, X.; Liang, X.; Lv, J.; Zhang, Y.; Tang, K.; Ma, J.; Zhang, H.; Xie, J.; Yao, F.; Tong, W.; Liu, Y.; Wang, X.; Huang, B. Methotrexate-loaded tumour-cell-derived microvesicles can relieve biliary obstruction in patients with extrahepatic cholangiocarcinoma. Nat. Biomed. Eng., 2020, 4(7), 743-753.
[http://dx.doi.org/10.1038/s41551-020-0583-0] [PMID: 32632227]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy