Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Geiparvarin Inhibits the Progression of Osteosarcoma by Down-regulating COX2 Expression

Author(s): Bin Wang, Jia Du, Zhiming Zhang, Ping Huang, Shu Chen* and Hua Zou*

Volume 23, Issue 5, 2023

Published on: 09 January, 2023

Page: [379 - 387] Pages: 9

DOI: 10.2174/1568009623666221208113432

Price: $65

Abstract

Background: Geiparvarin (GN) is a natural compound isolated from the leaves of Geijera parviflora and exhibits anticancer activity. Nevertheless, little is known about its anticancer mechanism and anti-osteosarcoma (OS) effects.

Aim: This study explored whether GN effectively inhibits the growth and metastasis of osteosarcoma (OS) through a series of in vitro and in vivo experiments.

Methods: Cell proliferation was measured by colony formation and MTT assays, and cell invasion was detected by Transwell assay. Flow cytometry and caspase-3 activity assays were carried out to examine cell apoptosis, and western blot analysis was performed to assess protein expression. In the animal experiments, the changes in relevant indexes were determined by immunohistochemistry and tumor vessel imaging.

Results: Animal experiments showed that GN treatment significantly inhibited the growth and lung metastasis of OS, accompanied by increased apoptosis. In addition, GN treatment notably diminished COX2 expression and angiogenesis in OS. Moreover, COX2 overexpression nullified GN-induced decline in angiogenesis, growth, and lung metastasis and increased apoptosis in OS. Of note, the body weight of mice was enhanced after GN treatment, and the pathological examination manifested that GN treatment did not cause any damage to major organs.

Conclusion: Our data indicated that GN might depress the growth, metastasis, and angiogenesis of OS by decreasing COX2 expression, suggesting GN is a favorable candidate drug for OS treatment without side effects. Hence, it can be concluded that geiparvarin inhibits OS progression by reducing COX2 expression.

Graphical Abstract

[1]
Jafari, F.; Javdansirat, S.; Sanaie, S.; Naseri, A.; Shamekh, A.; Rostamzadeh, D.; Dolati, S. Osteosarcoma: A comprehensive review of management and treatment strategies. Ann. Diagn. Pathol., 2020, 49, 151654.
[http://dx.doi.org/10.1016/j.anndiagpath.2020.151654] [PMID: 33130384]
[2]
Marina, N.; Gebhardt, M.; Teot, L.; Gorlick, R. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist, 2004, 9(4), 422-441.
[http://dx.doi.org/10.1634/theoncologist.9-4-422] [PMID: 15266096]
[3]
Mialou, V.; Philip, T.; Kalifa, C.; Perol, D.; Gentet, J.C.; Marec-Berard, P.; Pacquement, H.; Chastagner, P.; Defaschelles, A.S.; Hartmann, O. Metastatic osteosarcoma at diagnosis. Cancer, 2005, 104(5), 1100-1109.
[http://dx.doi.org/10.1002/cncr.21263] [PMID: 16015627]
[4]
Longhi, A.; Broll, V.; Righi, A.; Carella, A.; Pierini, M.; Ferrari, C.; Cesari, M.; Hakim, R.; Paioli, A.; Palmerini, E. Metastatic osteosarcoma at diagnosis: Analysis of 92 cases from a single institution. J. Clin. Oncol., 2021, 39(15_suppl.), e23506.
[http://dx.doi.org/10.1200/JCO.2021.39.15_suppl.e23506]
[5]
Tobeiha, M.; Rajabi, A.; Raisi, A.; Mohajeri, M.; Yazdi, S.M.; Davoodvandi, A.; Aslanbeigi, F.; Vaziri, M.; Hamblin, M.R.; Mirzaei, H. Potential of natural products in osteosarcoma treatment: Focus on molecular mechanisms. Biomed. Pharmacother., 2021, 144, 112257.
[http://dx.doi.org/10.1016/j.biopha.2021.112257] [PMID: 34688081]
[6]
Gupta, S.C.; Prasad, S.; Sethumadhavan, D.R.; Nair, M.S.; Mo, Y.Y.; Aggarwal, B.B. Nimbolide, a limonoid triterpene, inhibits growth of human colorectal cancer xenografts by suppressing the proinflammatory microenvironment. Clin. Cancer Res., 2013, 19(16), 4465-4476.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0080] [PMID: 23766363]
[7]
Bocca, C.; Gabriel, L.; Miglietta, A. Cytoskeleton-interacting activity of geiparvarin, diethylstilbestrol and conjugates. Chem. Biol. Interact., 2001, 137(3), 285-305.
[http://dx.doi.org/10.1016/S0009-2797(01)00261-7] [PMID: 11566295]
[8]
Zhang, Y.; Lv, Z.; Zhong, H.; Geng, D.; Zhang, M.; Zhang, T.; Li, Y.; Li, K. Convenient synthesis of novel geiparvarin analogs with potential anti-cancer activity via click chemistry. Eur. J. Med. Chem., 2012, 53, 356-363.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.026] [PMID: 22579780]
[9]
Valenti, P.; Rampa, A.; Bisi, A.; Belluti, F.; Da Re, P.; Carrara, M.; Cima, L. Some geiparvarin bioisosteres and homologues: synthesis and biological evaluation against human colon carcinoma cells (LoVo). Anticancer Drug Des., 1997, 12(2), 137-144.
[PMID: 9113068]
[10]
Zhao, Z.; Jia, Q.; Wu, M.S.; Xie, X.; Wang, Y.; Song, G.; Zou, C.Y.; Tang, Q.; Lu, J.; Huang, G.; Wang, J.; Lin, D.C.; Koeffler, H.P.; Yin, J.Q.; Shen, J. Degalactotigonin, a natural compound from Solanum nigrum L., inhibits growth and metastasis of osteosarcoma through GSK3β inactivation–mediated repression of the hedgehog/gli1 pathway. Clin. Cancer Res., 2018, 24(1), 130-144.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0692] [PMID: 28951519]
[11]
Thaker, P.H.; Han, L.Y.; Kamat, A.A.; Arevalo, J.M.; Takahashi, R.; Lu, C.; Jennings, N.B.; Armaiz-Pena, G.; Bankson, J.A.; Ravoori, M.; Merritt, W.M.; Lin, Y.G.; Mangala, L.S.; Kim, T.J.; Coleman, R.L.; Landen, C.N.; Li, Y.; Felix, E.; Sanguino, A.M.; Newman, R.A.; Lloyd, M.; Gershenson, D.M.; Kundra, V.; Lopez-Berestein, G.; Lutgendorf, S.K.; Cole, S.W.; Sood, A.K. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat. Med., 2006, 12(8), 939-944.
[http://dx.doi.org/10.1038/nm1447] [PMID: 16862152]
[12]
Wang, S.N.; Luo, S.; Liu, C.; Piao, Z.; Gou, W.; Wang, Y.; Guan, W.; Li, Q.; Zou, H.; Yang, Z.Z.; Wang, D.; Wang, Y.; Xu, M.; Jin, H.; Xu, C.X. miR-491 inhibits osteosarcoma lung metastasis and chemoresistance by targeting αB-crystallin. Mol. Ther., 2017, 25(9), 2140-2149.
[http://dx.doi.org/10.1016/j.ymthe.2017.05.018] [PMID: 28648665]
[13]
Han, Y.; Guo, W.; Ren, T.; Huang, Y.; Wang, S.; Liu, K.; Zheng, B.; Yang, K.; Zhang, H.; Liang, X. Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis. Cancer Lett., 2019, 440-441, 116-125.
[http://dx.doi.org/10.1016/j.canlet.2018.10.011] [PMID: 30343113]
[14]
Qu, L.; Liu, B. Cyclooxygeanse-2 promotes metastasis in osteosarcoma. Cancer Cell Int., 2015, 15(1), 69.
[http://dx.doi.org/10.1186/s12935-015-0220-2] [PMID: 26180515]
[15]
Liu, B.; Shi, Z.; Feng, J.; Tao, H. Celecoxib, a cyclooxygenase-2 inhibitor, induces apoptosis in human osteosarcoma cell line MG-63 via down-regulation of PI3K/Akt. Cell Biol. Int., 2008, 32(5), 494-501.
[http://dx.doi.org/10.1016/j.cellbi.2007.10.008] [PMID: 18078766]
[16]
Iñiguez, M.A.; Rodríguez, A.; Volpert, O.V.; Fresno, M.; Redondo, J.M. Cyclooxygenase-2: A therapeutic target in angiogenesis. Trends Mol. Med., 2003, 9(2), 73-78.
[http://dx.doi.org/10.1016/S1471-4914(02)00011-4] [PMID: 12615041]
[17]
Lipskar, A.M.; Glick, R.D.; Huang, J.; Fisher, J.C.; DeVoti, J.; Pica, R.; Edelman, M.; Steinberg, B.M.; Soffer, S.Z. Cyclooxygenase 2 mediates the antiangiogenic effect of rapamycin in Ewing sarcoma. J. Pediatr. Surg., 2009, 44(6), 1139-1147.
[http://dx.doi.org/10.1016/j.jpedsurg.2009.02.037] [PMID: 19524730]
[18]
Goldar, S.; Khaniani, M.S.; Derakhshan, S.M.; Baradaran, B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac. J. Cancer Prev., 2015, 16(6), 2129-2144.
[http://dx.doi.org/10.7314/APJCP.2015.16.6.2129] [PMID: 25824729]
[19]
Ghavami, S.; Hashemi, M.; Ande, S.R.; Yeganeh, B.; Xiao, W.; Eshraghi, M.; Bus, C.J.; Kadkhoda, K.; Wiechec, E.; Halayko, A.J.; Los, M. Apoptosis and cancer: Mutations within caspase genes. J. Med. Genet., 2009, 46(8), 497-510.
[http://dx.doi.org/10.1136/jmg.2009.066944] [PMID: 19505876]
[20]
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging, 2016, 8(4), 603-619.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[21]
Viallard, C.; Larrivée, B. Tumor angiogenesis and vascular normalization: Alternative therapeutic targets. Angiogenesis, 2017, 20(4), 409-426.
[http://dx.doi.org/10.1007/s10456-017-9562-9] [PMID: 28660302]
[22]
Xie, L.; Ji, T.; Guo, W. Anti-angiogenesis target therapy for advanced osteosarcoma. Oncol. Rep., 2017, 38(2), 625-636.
[http://dx.doi.org/10.3892/or.2017.5735] [PMID: 28656259]
[23]
Hawkey, C.J. COX-1 and COX-2 inhibitors. Best Pract. Res. Clin. Gastroenterol., 2001, 15(5), 801-820.
[http://dx.doi.org/10.1053/bega.2001.0236] [PMID: 11566042]
[24]
Hashemi Goradel, N.; Najafi, M.; Salehi, E.; Farhood, B.; Mortezaee, K. Cyclooxygenase‐2 in cancer: A review. J. Cell. Physiol., 2019, 234(5), 5683-5699.
[http://dx.doi.org/10.1002/jcp.27411] [PMID: 30341914]
[25]
Wang, S.; Gao, H.; Zuo, J.; Gao, Z. Cyclooxygenase‐2 expression correlates with development, progression, metastasis, and prognosis of osteosarcoma: A meta‐analysis and trial sequential analysis. FEBS Open Bio, 2019, 9(2), 226-240.
[http://dx.doi.org/10.1002/2211-5463.12560] [PMID: 30761249]
[26]
Duan, D.P.; Dang, X.Q.; Wang, K.Z.; Wang, Y.P.; Zhang, H.; You, W.L. The cyclooxygenase-2 inhibitor NS-398 inhibits proliferation and induces apoptosis in human osteosarcoma cells via downregulation of the survivin pathway. Oncol. Rep., 2012, 28(5), 1693-1700.
[http://dx.doi.org/10.3892/or.2012.1992] [PMID: 22922684]
[27]
Klenke, F.M.; Gebhard, M.M.; Ewerbeck, V.; Abdollahi, A.; Huber, P.E.; Sckell, A. The selective Cox-2 inhibitor Celecoxib suppresses angiogenesis and growth of secondary bone tumors: An intravital microscopy study in mice. BMC Cancer, 2006, 6(1), 9.
[http://dx.doi.org/10.1186/1471-2407-6-9] [PMID: 16409625]
[28]
Ruzzolini, J.; Chioccioli, S.; Monaco, N.; Peppicelli, S.; Andreucci, E.; Urciuoli, S.; Romani, A.; Luceri, C.; Tortora, K.; Calorini, L.; Caderni, G.; Nediani, C.; Bianchini, F. Oleuropein-rich leaf extract as a broad inhibitor of tumour and macrophage iNOS in an Apc mutant rat model. Antioxidants, 2021, 10(10), 1577.
[http://dx.doi.org/10.3390/antiox10101577] [PMID: 34679712]
[29]
Habib, E.S.; El-Bsoumy, E.; Ibrahim, A.K.; Helal, M.A.; El-Magd, M.A.; Ahmed, S.A. Anti-inflammatory effect of methoxyflavonoids from Chiliadenus montanus (Jasonia Montana) growing in Egypt. Nat. Prod. Res., 2021, 35(24), 5909-5913.
[http://dx.doi.org/10.1080/14786419.2020.1802272] [PMID: 32746641]
[30]
Khalil, H.E.; Ibrahim, H.I.M.; Ahmed, E.A.; Emeka, P.M.; Alhaider, I.A. Orientin, a bio-flavonoid from Trigonella hamosa L., regulates COX-2/PGE-2 in A549 cell lines via miR-26b and miR-146a. Pharmaceuticals, 2022, 15(2), 154.
[http://dx.doi.org/10.3390/ph15020154] [PMID: 35215267]
[31]
Sobolewski, C.; Legrand, N. Celecoxib analogues for cancer treatment: An update on OSU-03012 and 2,5-dimethyl-celecoxib. Biomolecules, 2021, 11(7), 1049.
[http://dx.doi.org/10.3390/biom11071049] [PMID: 34356673]
[32]
Güngör, T.; Ozleyen, A.; Yılmaz, Y.B.; Siyah, P.; Ay, M.; Durdağı, S.; Tumer, T.B. New nimesulide derivatives with amide/sulfonamide moieties: Selective COX-2 inhibition and antitumor effects. Eur. J. Med. Chem., 2021, 221, 113566.
[http://dx.doi.org/10.1016/j.ejmech.2021.113566] [PMID: 34077833]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy