Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design, Synthesis, and Insecticidal Activities of Novel Thioether and Oxide Sulfide-containing Diamide Compounds

Author(s): Pengmian Huang*, Xiangwei Liu, Minhua Liu, Liqi Zhou, Minghui Wu and Jiyong Liu*

Volume 21, Issue 3, 2024

Published on: 26 December, 2022

Page: [496 - 503] Pages: 8

DOI: 10.2174/1570180820666221115143850

Price: $65

Abstract

Background: With the emerging resistance to mainstream insecticides, it is necessary to develop new insecticides to tackle the problem of pest threat. Diamide insecticides are widely studied because of their broad spectrum of activities, high efficiency, and low toxicity. Most thioether and oxide sulfide-containing compounds have a wide range of biological activities in agricultural chemicals.

Objective: The main purpose of the study was to explore novel thioether and oxide sulfide-containing diamide compounds possessing outstanding insecticidal activity.

Methods: Based on the “active substructure replacing” method by introducing methylthio groups, 29 sulfide-containing diamide compounds were designed and synthesised. The structures of all synthetic compounds were confirmed by 1H-NMR, 13C-NMR and HRMS. Moreover, the biological activities of all the compounds were tested.

Results: The preliminary bioassay indicated that most of the new compounds did not exhibit better activity than the reference insecticide cyproflanilide. However, compounds 18a and 23a showed markedly potent activity against Tetranychus cinnabarinus at 100 mg/L, which was better than cyproflanilide since these compounds possessed 2-methyl-4-cyanophenyl, which might be the reason for their better internal absorption in the plant.

Conclusion: The structure-activity relationship showed that some compounds were of potential value to be developed as novel insecticides, but the majority of compounds did not show superior insecticidal activity than cyproflanilide.

Graphical Abstract

[1]
Sharma, A.; Shukla, A.; Attri, K.; Kumar, M.; Kumar, P.; Suttee, A.; Singh, G.; Barnwal, R.P.; Singla, N. Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicol. Environ. Saf., 2020, 201, 110812.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110812] [PMID: 32512419]
[2]
Forgash, A.J. History, evolution, and consequences of insecticide resistance. Pestic. Biochem. Physiol., 1984, 22(2), 178-186.
[http://dx.doi.org/10.1016/0048-3575(84)90087-7]
[3]
Sparks, T.C.; Hunter, J.E.; Lorsbach, B.A.; Hanger, G.; Gast, R.E.; Kemmitt, G.; Bryant, R.J. Crop protection discovery: Is being the first best? J. Agric. Food Chem., 2018, 66(40), 10337-10346.
[http://dx.doi.org/10.1021/acs.jafc.8b03484] [PMID: 30205003]
[4]
Sayyed, A.H.; Omar, D.; Wright, D.J. Genetics of spinosad resistance in a multi-resistant field-selected population of Plutella xylostella. Pest Manag. Sci., 2004, 60(8), 827-832.
[http://dx.doi.org/10.1002/ps.869] [PMID: 15307676]
[5]
Tabashnik, B.E.; Mota-Sanchez, D.; Whalon, M.E.; Hollingworth, R.M.; Carrière, Y. Defining terms for proactive management of resistance to Bt crops and pesticides. J. Econ. Entomol., 2014, 107(2), 496-507.
[http://dx.doi.org/10.1603/EC13458] [PMID: 24772527]
[6]
Chen, L.; Yuan, S.K.; Jiang, H.; Zhou, Y.M.; Zhou, X.X.; Wang, S.X.; Wang, X.Z. Zhao, Analysis on environmental risk of bisamide insecticides. Pestic. Sci. and Manag, 2019, 40(3), 19-26.
[7]
Lin, T.; Wei, Y.; Lin, R.H.; Shi, M.Z.; Li, J.Y.; Zhao, J.W.; Chen, Y.X.; Fu, J.W.; Wei, H. Effects of three bisamide insecticide preparations on the growth, development and reproduction of Daphnia magna. J. Ecotoxicol, 2016, (1), 306-312.
[8]
Li, M.; Feng, W.; Cui, Y.; Yuan, G.X.; Xu, C.J.; Yin, Y.J.; Nie, C.Y. Research progress in toxicology of avermectins. A. Agric. Sci. Bul, 2013, 19(20), 29-32.
[9]
Li, Y.; Li, M.; Chai, B.S.; Liu, C.L. A new insecticide flubendiamide. Agrochem, 2005, 45, 697.
[10]
Ou, J.; Zhu, X.; Wang, L.; Xu, C.; Liu, F.; Ren, L.; Xu, X.; Wang, Y.; Rui, C.; Liu, S. Synthesis and bioactivity study of 2-acylamino-substituted N′-benzylbenzohydrazide derivatives. J. Agric. Food Chem., 2012, 60(44), 10942-10951.
[http://dx.doi.org/10.1021/jf303376t] [PMID: 23088717]
[11]
Zhou, Y.; Wang, B.; Di, F.; Xiong, L.; Yang, N.; Li, Y.; Li, Y.; Li, Z. Synthesis and biological activities of 2,3-dihydro-1,3,4-oxadiazole compounds and its derivatives as potential activator of ryanodine receptors. Bioorg. Med. Chem. Lett., 2014, 24(10), 2295-2299.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.077] [PMID: 24736118]
[12]
Kang, S.H.; Song, B.A.; Wu, J.; He, M.; Hu, D.Y.; Jin, L.H.; Zeng, S.; Xue, W.; Yang, S. Synthesis and insecticidal activities of novel acetamido derivatives containing N-pyridylpyrazole carboxamides. Eur. J. Med. Chem., 2013, 67, 14-18.
[13]
Koyanagi, T.; Nakamoto, K. Method for producing anthranilamide compound. WO/2008155990 A1, 2008.
[14]
Lahm, G.P.; Stevenson, T.M.; Selby, T.P.; Freudenberger, J.H.; Cordova, D.; Flexner, L.; Bellin, C.A.; Dubas, C.M.; Smith, B.K.; Hughes, K.A.; Hollingshaus, J.G.; Clark, C.E.; Benner, E.A. Rynaxypyr: A new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator. Bioorg. Med. Chem. Lett., 2007, 17(22), 6274-6279.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.012] [PMID: 17884492]
[15]
Lahm, G.P.; Cordova, D.; Barry, J.D. New and selective ryanodine receptor activators for insect control. Bioorg. Med. Chem., 2009, 17(12), 4127-4133.
[http://dx.doi.org/10.1016/j.bmc.2009.01.018] [PMID: 19186058]
[16]
Ebbinghaus-Kintscher, U.; Luemmen, P.; Lobitz, N.; Schulte, T.; Funke, C.; Fischer, R.; Masaki, T.; Yasokawa, N.; Tohnishi, M. Phthalic acid diamides activate ryanodine-sensitive Ca2+ release channels in insects. Cell Calcium, 2006, 39(1), 21-33.
[http://dx.doi.org/10.1016/j.ceca.2005.09.002] [PMID: 16219348]
[17]
Huang, J.M.; Rao, C.; Wang, S.; He, L.F.; Zhao, S.Q.; Zhou, L.Q.; Zhao, Y.X.; Yang, F.X.; Gao, C.F.; Wu, S.F. Multiple target-site mutations occurring in lepidopterans confer resistance to diamide insecticides. Insect Biochem. Mol. Biol., 2020, 121, 103367.
[http://dx.doi.org/10.1016/j.ibmb.2020.103367] [PMID: 32243905]
[18]
Ward, C.M.; Perry, K.D.; Baker, G.; Powis, K.; Heckel, D.G.; Baxter, S.W. A haploid diamondback moth (Plutella xylostella L.) genome assembly resolves 31 chromosomes and identifies a diamide resistance mutation. Insect Biochem. Mol. Biol., 2021, 138, 103622.
[http://dx.doi.org/10.1016/j.ibmb.2021.103622] [PMID: 34252570]
[19]
Pereira, R.M.; Neto, D.A.; Amado, D.; Durigan, M.R.; Franciscatti, R.A.; Mocheti, M.; Omoto, C. Baseline susceptibility and frequency of resistance to diamide insecticides in helicoverpa armigera (lepidoptera: Noctuidae) populations in Brazil. Crop Prot., 2020, 137, 105266.
[http://dx.doi.org/10.1016/j.cropro.2020.105266]
[20]
Yang, J.C.; Wu, Q.; Wang, X.L.; Song, Y.Q. Design, synthesis and bioactivity of hydrazone containing compounds. Agrochem, 2014, 53(9), 631-632.
[21]
Sparks, T.C.; Crossthwaite, A.J.; Nauen, R.; Banba, S.; Cordova, D.; Earley, F.; Kintscher, U.E.; Fujioka, S.; Hirao, A.; Karmon, D.; Kennedy, R.; Nakao, T.; Popham, H.J.R.; Salgado, V.; Watson, G.B.; Wedel, B.J.; Wessels, F.J. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification-a tool for resistance management. Pestic. Biochem. Physiol., 2020, 167, 104587.
[http://dx.doi.org/10.1016/j.pestbp.2020.104587] [PMID: 32527435]
[22]
Nakao, T.; Banba, S. Broflanilide: A meta-diamide insecticide with a novel mode of action. Bioorg. Med. Chem., 2016, 24(3), 372-377.
[http://dx.doi.org/10.1016/j.bmc.2015.08.008] [PMID: 26361738]
[23]
Nakao, T.; Banba, S.; Nomura, M.; Hirase, K. Meta-diamide insecticides acting on distinct sites of RDL GABA receptor from those for conventional noncompetitive antagonists. Insect Biochem. Mol. Biol., 2013, 43(4), 366-375.
[http://dx.doi.org/10.1016/j.ibmb.2013.02.002] [PMID: 23416568]
[24]
Ozoe, Y.; Kita, T.; Ozoe, F.; Nakao, T.; Sato, K.; Hirase, K. Insecticidal 3-benzamido-N-phenylbenzamides specifically bind with high affinity to a novel allosteric site in housefly GABA receptors. Pestic. Biochem. Physiol., 2013, 107(3), 285-292.
[http://dx.doi.org/10.1016/j.pestbp.2013.09.005] [PMID: 24267689]
[25]
Katsuta, H.; Nomura, M.; Wakita, T.; Daido, H.; Kobayashi, Y.; Kawahara, A.; Banba, S. Discovery of broflanilide, a novel insecticide. J. Pestic. Sci., 2019, 44(2), 120-128.
[http://dx.doi.org/10.1584/jpestics.D18-088] [PMID: 31148938]
[26]
Qi, H.L.; Cui, L.; Wang, Q.Q.; Liu, F.; Rui, C.H. Toxicity of broflanilide to Plutella xylostella and its influence on the activities of related enzymes in P. xylostella. Plant Prott., 2017, 43, 112.
[27]
Lv, L.; Liu, J.Y.; Xiang, J.C.; Ma, W.J.; Zhou, L.Q.; Hou, S.; Ni, Y.P.; Li, Z.C. One inter-species diamide compound and its preparation method and application. 109497062 A, 2019.
[28]
Guo, S.X.; He, F.; Dai, A.L.; Zhang, R.F.; Chen, S.H.; Wu, J. Synthesis and biological activities of novel trifluoromethylpyridine amide derivatives containing sulfur moieties. RSC Advances, 2020, 10(59), 35658-35670.
[http://dx.doi.org/10.1039/D0RA07301F] [PMID: 35517062]
[29]
Zhang, Y.; Li, Y.X.; Li, H.; Shang, J.F.; Li, Z.M.; Wang, B.L. Synthesis and insecticidal evaluation of novel sulfide-containing amide derivatives as potential ryanodine receptor modulators. Chin. Chem. Lett., 2022, 33(1), 501-507.
[http://dx.doi.org/10.1016/j.cclet.2021.05.027]
[30]
Yang, S.; Lai, Q.; Lai, F.; Jiang, X.; Zhao, C.; Xu, H. Design, synthesis, and insecticidal activities of novel 5-substituted 4,5-dihydropyrazolo[1,5-a]quinazoline derivatives. Pest Manag. Sci., 2021, 77(2), 1013-1022.
[http://dx.doi.org/10.1002/ps.6113] [PMID: 33002298]
[31]
Goggin, D.E.; Cawthray, G.R.; Flematti, G.R.; Bringans, S.D.; Lim, H.; Beckie, H.J.; Busi, R. Pyroxasulfone-resistant annual ryegrass (Lolium rigidum) has enhanced capacity for glutathione transferase-mediated pyroxasulfone conjugation. J. Agric. Food Chem., 2021, 69(23), 6414-6422.
[http://dx.doi.org/10.1021/acs.jafc.0c07458] [PMID: 34081453]
[32]
Chen, J.; Luo, Y.; Wei, C.; Wu, S.; Wu, R.; Wang, S.; Hu, D.; Song, B. Novel sulfone derivatives containing a 1,3,4-oxadiazole moiety: Design and synthesis based on the 3D-QSAR model as potential antibacterial agent. Pest Manag. Sci., 2020, 76(9), 3188-3198.
[http://dx.doi.org/10.1002/ps.5873] [PMID: 32343024]
[33]
Lin, J.; Zhou, S.; Xu, J.X.; Yao, W.Q.; Hao, G.F.; Li, Y.T. Design, synthesis, and structure-activity relationship of economical triazole sulfonamide aryl derivatives with high fungicidal activity. J. Agric. Food Chem., 2020, 68(25), 6792-6801.
[http://dx.doi.org/10.1021/acs.jafc.9b07887] [PMID: 32442369]
[34]
Wu, S.; Shi, J.; Chen, J.; Hu, D.; Zang, L.; Song, B. Synthesis, antibacterial activity, and mechanisms of novel 6-sulfonyl-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole derivatives. J. Agric. Food Chem., 2021, 69(16), 4645-4654.
[http://dx.doi.org/10.1021/acs.jafc.1c01204] [PMID: 33871992]
[35]
Wu, Z.; Shi, J.; Chen, J.; Hu, D.; Song, B. Design, synthesis, antibacterial activity, and mechanisms of novel 1, 3, 4-thiadiazole derivatives containing an amide moiety. J. Agric. Food Chem., 2021, 69(31), 8660-8670.
[http://dx.doi.org/10.1021/acs.jafc.1c01626] [PMID: 34319116]
[36]
Zhang, J.; He, F.; Chen, J.; Wang, Y.; Yang, Y.; Hu, D.; Song, B. Purine nucleoside derivatives containing a sulfa ethylamine moiety: Design, synthesis, antiviral activity, and mechanism. J. Agric. Food Chem., 2021, 69(20), 5575-5582.
[http://dx.doi.org/10.1021/acs.jafc.0c06612] [PMID: 33988985]
[37]
Ando, W. Photooxidation of organosulfur compounds. Sulfur. Rep., 1981, 1(3), 147-207.
[http://dx.doi.org/10.1080/17415998109408001]
[38]
Soliman, N.N.; Abd El Salam, M.; Fadda, A.A.; Abdel-Motaal, M. Synthesis, characterization, and biochemical impacts of some new bioactive sulfonamide thiazole derivatives as potential insecticidal agents against the cotton leafworm, spodoptera littoralis. J. Agric. Food Chem., 2020, 68(21), 5790-5805.
[http://dx.doi.org/10.1021/acs.jafc.9b06394] [PMID: 32343563]
[39]
Yang, Y.; Liu, Y.; Song, H.; Li, Y.; Wang, Q. Design, synthesis, and insecticidal activity of novel triazone derivatives containing sulfonamide or sulfonimide moieties. J. Agric. Food Chem., 2021, 69(37), 10790-10796.
[http://dx.doi.org/10.1021/acs.jafc.1c01925] [PMID: 34375105]

© 2024 Bentham Science Publishers | Privacy Policy