Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Molecular Docking, In silico ADMET Study and Synthesis of Quinoline Derivatives as Dihydrofolate Reductase (DHFR) Inhibitors: A Solvent-free One-pot Green Approach Through Sonochemistry

Author(s): Meshwa Mehta, Stuti Patel, Ashish Patel*, Yug Patel, Drashti Shah, Keyur Rathod, Umang Shah, Mehul Patel and Tushar Bambharoliya

Volume 21, Issue 3, 2024

Published on: 28 November, 2022

Page: [504 - 519] Pages: 16

DOI: 10.2174/1570180820666221107090046

Price: $65

conference banner
Abstract

Background: Quinoline derivatives have evinced their biological importance in targeting bacteria by inhibiting Dihydrofolate reductase. H2SO4 was successfully applied as an acid catalyst for a green, efficient, and one-pot solvent-free synthesis of quinoline derivatives using sonochemistry approach from various aromatic amines and glycerol with affording yield up to 96% within 6-10 min.

Objective: In this study, the synthesis, characterization, and biological assessment of fifteen quinoline derivatives (1-15) as potential DHFR inhibitors were carried out. The target compounds were docked to study the molecular interactions and binding affinities with the 1DLS enzyme.

Methods: The synthesized molecules were characterized using IR, MASS, and 1H and 13C NMR. The Insilico molecular docking study was carried out through target Human Dihydrofolate Reductase (DHFR) retrieved from a protein data bank having PDB ID: 1DLS and the antimicrobial activity of all synthesized compounds were tested against Human Dihydrofolate Reductase(DHFR) enzyme by using in-vitro DHFR assay kit.

Results: The molecular docking results revealed that compounds 2 and 6 have the lowest binding energy and good binding affinity with the DHFR enzyme. In-silico ADMET predictions revealed that all bestscored compounds had good absorption and drug-like properties for potential use as DHFR inhibitors to treat bacterial infection. The in vitro studies revealed that compounds 2 and 6 show potent DFHR inhibitory activity against gram-positive and gram-negative with IC50 = 12.05 ± 1.55 μM and 10.04 ± 0.73 μM, respectively. While compounds 12, 13, and 15 exhibited moderate antimicrobial activity through DHFR inhibition with IC50= 16.33 ± 0.73 μM, 17.02 ± 1.55 μM, and 18.04 ± 1.05 μM, respectively.

Conclusion: This environmentally benign sonochemistry-based approach for synthesizing quinoline derivatives could be affordable for large-scale production and become a potential lead candidate for developing a new quinoline-based antimicrobial agent.

Graphical Abstract

[1]
Parvaiz, N.; Ahmad, F.; Yu, W.; MacKerell, A.D., Jr; Azam, S.S. Discovery of beta-lactamase CMY-10 inhibitors for combination therapy against multi-drug resistant Enterobacteriaceae. PLoS One, 2021, 16(1), e0244967.
[http://dx.doi.org/10.1371/journal.pone.0244967] [PMID: 33449932]
[2]
Wróbel, A.; Maliszewski, D.; Baradyn, M.; Drozdowska, D. Trimethoprim: An old antibacterial drug as a template to search for new targets. Synthesis, biological activity and molecular modeling study of novel trimethoprim analogs. Molecules, 2019, 25(1), 116.
[http://dx.doi.org/10.3390/molecules25010116] [PMID: 31892256]
[3]
Lam, P.; Kan, C.; Yuen, M.C.; Cheung, S.; Gambari, R.; Lam, K.; Tang, J.C.; Chui, C. Studies on quinoline type dyes and their characterisation studies on acrylic fabric. Color. Technol., 2012, 128(3), 192-198.
[http://dx.doi.org/10.1111/j.1478-4408.2012.00363.x]
[4]
Cammarata, M.; Thyer, R.; Lombardo, M.; Anderson, A.; Wright, D.; Ellington, A.; Brodbelt, J.S. Characterization of trimethoprim resistant E. coli dihydrofolate reductase mutants by mass spectrometry and inhibition by propargyl-linked antifolates. Chem. Sci. (Camb.), 2017, 8(5), 4062-4072.
[http://dx.doi.org/10.1039/C6SC05235E] [PMID: 29967675]
[5]
Brogden, R.N.; Carmine, A.A.; Heel, R.C.; Speight, T.M.; Avery, G.S. Trimethoprim. Drugs, 1982, 23(6), 405-430.
[http://dx.doi.org/10.2165/00003495-198223060-00001] [PMID: 7049657]
[6]
DeJarnette, C.; Luna-Tapia, A.; Estredge, L.R.; Palmer, G.E. Dihydrofolate reductase is a valid target for antifungal development in the human pathogen Candida albicans. MSphere, 2020, 5(3), e00374-e20.
[http://dx.doi.org/10.1128/mSphere.00374-20] [PMID: 32581079]
[7]
Omar, A.M.; Alswah, M.; Ahmed, H.E.A.; Bayoumi, A.H.; El-Gamal, K.M.; El-Morsy, A.; Ghiaty, A.; Afifi, T.H.; Sherbiny, F.F.; Mohammed, A.S.; Mansour, B.A. Antimicrobial screening and pharmacokinetic profiling of novel phenyl-[1,2,4]triazolo[4,3-a]quinoxaline analogues targeting DHFR and E. coli DNA gyrase B. Bioorg. Chem., 2020, 96, 103656.
[http://dx.doi.org/10.1016/j.bioorg.2020.103656] [PMID: 32062449]
[8]
Douadi, K.; Chafaa, S.; Douadi, T.; Al-Noaimi, M.; Kaabi, I. Azoimine quinoline derivatives: Synthesis, classical and electrochemical evaluation of antioxidant, anti-inflammatory, antimicrobial activities and the DNA/BSA binding. J. Mol. Struct., 2020, 1217, 128305.
[http://dx.doi.org/10.1016/j.molstruc.2020.128305]
[9]
Mh, E-S.; Km, E-G.; Ah, B. Synthesis, antimicrobial evaluation, DNA gyrase inhibition, and in silico pharmacokinetic studies of novel quinoline derivatives. Arch. Pharm. (Weinheim), 2021, 354(2)
[10]
Patel, A.; Patel, S.; Mehta, M.; Patel, Y.; Patel, R.; Shah, D.; Patel, D.; Shah, U.; Patel, M.; Patel, S.; Solanki, N.; Bambharoliya, T.; Patel, S.; Nagani, A.; Patel, H.; Vaghasiya, J.; Shah, H.; Prajapati, B.; Rathod, M.; Bhimani, B.; Patel, R.; Bhavsar, V.; Rakholiya, B.; Patel, M.; Patel, P. A review on synthetic investigation for quinoline- recent green approaches. Green Chem. Lett. Rev., 2022, 15(2), 337-372.
[http://dx.doi.org/10.1080/17518253.2022.2064194]
[11]
Nolan, E.M.; Jaworski, J.; Okamoto, K.I.; Hayashi, Y.; Sheng, M.; Lippard, S.J. QZ1 and QZ2: rapid, reversible quinoline-derivatized fluoresceins for sensing biological Zn(II). J. Am. Chem. Soc., 2005, 127(48), 16812-16823.
[http://dx.doi.org/10.1021/ja052184t] [PMID: 16316228]
[12]
Rose, M.J.; Fry, N.L.; Marlow, R.; Hinck, L.; Mascharak, P.K. Sensitization of ruthenium nitrosyls to visible light via direct coordination of the dye resorufin: trackable NO donors for light-triggered NO delivery to cellular targets. J. Am. Chem. Soc., 2008, 130(27), 8834-8846.
[http://dx.doi.org/10.1021/ja801823f] [PMID: 18597437]
[13]
Sharma, K.K.; Patel, D.I.; Jain, R. Metal-free synthesis of N-fused heterocyclic iodides via C-H functionalization mediated by tert-butylhydroperoxide. Chem. Commun. (Camb.), 2015, 51(82), 15129-15132.
[http://dx.doi.org/10.1039/C5CC04013B] [PMID: 26323719]
[14]
Dutta, U.; Deb, A.; Lupton, D.W.; Maiti, D. The regioselective iodination of quinolines, quinolones, pyridones, pyridines and uracil. Chem. Commun. (Camb.), 2015, 51(100), 17744-17747.
[http://dx.doi.org/10.1039/C5CC07799K] [PMID: 26489708]
[15]
Leed, A.; DuBay, K.; Ursos, L.M.B.; Sears, D.; de Dios, A.C.; Roepe, P.D. Solution structures of antimalarial drug-heme complexes. Biochemistry, 2002, 41(32), 10245-10255.
[http://dx.doi.org/10.1021/bi020195i] [PMID: 12162739]
[16]
Chu, X.M.; Wang, C.; Liu, W.; Liang, L.L.; Gong, K.K.; Zhao, C.Y.; Sun, K.L. Quinoline and quinolone dimers and their biological activities: An overview. Eur. J. Med. Chem., 2019, 161, 101-117.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.035] [PMID: 30343191]
[17]
Jin, T.S.; Wang, A.Q.; Wang, X.; Zhang, J.S.; Li, T.S. A clean onepot synthesis of tetrahydrobenzo[b]pyran derivatives catalyzed by hexadecyltrimethyl ammonium bromide in aqueous media. Synlett, 2004, 2004(5), 0871-0873.
[http://dx.doi.org/10.1055/s-2004-820025]
[18]
Kaur, K.; Jain, M.; Reddy, R.P.; Jain, R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med. Chem., 2010, 45(8), 3245-3264.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.011] [PMID: 20466465]
[19]
Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W.W.L. Rare-earth metal triflates in organic synthesis. Chem. Rev., 2002, 102(6), 2227-2302.
[http://dx.doi.org/10.1021/cr010289i] [PMID: 12059268]
[20]
Patel, A.; Vanecha, R.; Patel, J.; Patel, D.; Shah, U.; Bambharoliya, T. Development of natural bioactive alkaloids: Anticancer perspective. Mini Rev. Med. Chem., 2022, 22(2), 200-212.
[http://dx.doi.org/10.2174/1389557521666210712111331] [PMID: 34254913]
[21]
Singh, K.; Singh, J.; Singh, H. A synthetic entry into fused pyran derivatives through carbon transfer reactions of 1,3-oxazinanes and oxazolidines with carbon nucleophiles. Tetrahedron, 1996, 52(45), 14273-14280.
[http://dx.doi.org/10.1016/0040-4020(96)00879-4]
[22]
Egan, T.J.; Hunter, R.; Kaschula, C.H.; Marques, H.M.; Misplon, A.; Walden, J. Structure-function relationships in aminoquinolines: effect of amino and chloro groups on quinoline-hematin complex formation, inhibition of beta-hematin formation, and antiplasmodial activity. J. Med. Chem., 2000, 43(2), 283-291.
[http://dx.doi.org/10.1021/jm990437l] [PMID: 10649984]
[23]
Subashini, R.; Khan, F.N.; Reddy, T.R.; Hathwar, V.R.; Akkurt, M. 2,4-Dichloro-7,8-dimethylquinoline. Acta Crystallogr. Sect. E Struct. Rep. Online, 2010, 66(7), o1535-o1535.
[http://dx.doi.org/10.1107/S1600536810020386] [PMID: 21587784]
[24]
Muruganantham, N.; Sivakumar, R.; Anbalagan, N.; Gunasekaran, V.; Leonard, J.T. Synthesis, anticonvulsant and antihypertensive activities of 8-substituted quinoline derivatives. Biol. Pharm. Bull., 2004, 27(10), 1683-1687.
[http://dx.doi.org/10.1248/bpb.27.1683] [PMID: 15467220]
[25]
Guo, L.J.; Wei, C.X.; Jia, J.H.; Zhao, L.M.; Quan, Z.S. Design and synthesis of 5-alkoxy-[1,2,4]triazolo[4,3-a]quinoline derivatives with anticonvulsant activity. Eur. J. Med. Chem., 2009, 44(3), 954-958.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.010] [PMID: 18752871]
[26]
Le Fur, G.; Mizoule, J.; Burgevin, M.C.; Ferris, O.; Heaulme, M.; Gauthier, A.; Guérémy, C.; Uzan, A. Multiple benzodiazepine receptors: Evidence of a dissociation between anticonflict and anticonvulsant properties by PK 8165 and PK 9084 (two quinoline derivatives). Life Sci., 1981, 28(13), 1439-1448.
[http://dx.doi.org/10.1016/0024-3205(81)90375-1] [PMID: 6264247]
[27]
Chauhan, K.; Sharma, M.; Saxena, J.; Singh, S.V.; Trivedi, P.; Srivastava, K.; Puri, S.K.; Saxena, J.K.; Chaturvedi, V.; Chauhan, P.M.S. Synthesis and biological evaluation of a new class of 4-aminoquinoline-rhodanine hybrid as potent anti-infective agents. Eur. J. Med. Chem., 2013, 62, 693-704.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.017] [PMID: 23454512]
[28]
Chen, I.S.; Chen, H.F.; Cheng, M.J.; Chang, Y.L.; Teng, C.M.; Tsutomu, I.; Chen, J.J.; Tsai, I.L. Quinoline alkaloids and other constituents of Melicope semecarpifolia with antiplatelet aggregation activity. J. Nat. Prod., 2001, 64(9), 1143-1147.
[http://dx.doi.org/10.1021/np010122k] [PMID: 11575945]
[29]
Chen, J.J.; Chang, Y.L.; Teng, C.M.; Su, C.C.; Chen, I.S. Quinoline alkaloids and anti-platelet aggregation constituents from the leaves of Melicope semecarpifolia. Planta Med., 2002, 68(9), 790-793.
[http://dx.doi.org/10.1055/s-2002-34412] [PMID: 12357388]
[30]
Mazzaferro, L.; Piñuel, L.; Minig, M.; Breccia, J.D. Extracellular monoenzyme deglycosylation system of 7-O-linked flavonoid β-rutinosides and its disaccharide transglycosylation activity from Stilbella fimetaria. Arch. Microbiol., 2010, 192(5), 383-393.
[http://dx.doi.org/10.1007/s00203-010-0567-7] [PMID: 20358178]
[31]
Cappelli, A.; Gallelli, A.; Manini, M.; Anzini, M.; Mennuni, L.; Makovec, F.; Menziani, M.C.; Alcaro, S.; Ortuso, F.; Vomero, S. Further studies on the interaction of the 5-hydroxytryptamine3 (5-HT3) receptor with arylpiperazine ligands. development of a new 5-HT3 receptor ligand showing potent acetylcholinesterase inhibitory properties. J. Med. Chem., 2005, 48(10), 3564-3575.
[http://dx.doi.org/10.1021/jm0493461] [PMID: 15887964]
[32]
Giardina, G.A.M.; Artico, M.; Cavagnera, S.; Cerri, A.; Consolandi, E.; Gagliardi, S.; Graziani, D.; Grugni, M.; Hay, D.W.P.; Luttmann, M.A.; Mena, R.; Raveglia, L.F.; Rigolio, R.; Sarau, H.M.; Schmidt, D.B.; Zanoni, G.; Farina, C. Replacement of the quinoline system in 2-phenyl-4-quinolinecarboxamide NK-3 receptor antagonists. Farmaco, 1999, 54(6), 364-374.
[http://dx.doi.org/10.1016/S0014-827X(99)00043-9] [PMID: 10443017]
[33]
Ahadi, H.; Emami, S. Modification of 7-piperazinylquinolone antibacterials to promising anticancer lead compounds: Synthesis and in vitro studies. Eur. J. Med. Chem., 2020, 187, 111970.
[http://dx.doi.org/10.1016/j.ejmech.2019.111970] [PMID: 31881454]
[34]
Raynes, K.; Foley, M.; Tilley, L.; Deady, L.W. Novel bisquinoline antimalarials. Biochem. Pharmacol., 1996, 52(4), 551-559.
[http://dx.doi.org/10.1016/0006-2952(96)00306-1] [PMID: 8759027]
[35]
Wink, M. Medicinal plants: a source of anti-parasitic secondary metabolites. Molecules, 2012, 17(11), 12771-12791.
[http://dx.doi.org/10.3390/molecules171112771] [PMID: 23114614]
[36]
Rathod, G.K.; Jain, M.; Sharma, K.K.; Das, S.; Basak, A.; Jain, R. New structural classes of antimalarials. Eur. J. Med. Chem., 2022, 242(242), 114653.
[http://dx.doi.org/10.1016/j.ejmech.2022.114653] [PMID: 35985254]
[37]
Costa, C.A.; Lopes, R.M.; Ferraz, L.S.; Esteves, G.N.N.; Di Iorio, J.F.; Souza, A.A.; de Oliveira, I.M.; Manarin, F.; Judice, W.A.S.; Stefani, H.A.; Rodrigues, T. Cytotoxicity of 4-substituted quinoline derivatives: Anticancer and antileishmanial potential. Bioorg. Med. Chem., 2020, 28(11), 115511.
[http://dx.doi.org/10.1016/j.bmc.2020.115511] [PMID: 32336669]
[38]
Frankel, J.S.; Schwartz, T.L. Brexpiprazole and cariprazine: distinguishing two new atypical antipsychotics from the original dopamine stabilizer aripiprazole. Ther. Adv. Psychopharmacol., 2017, 7(1), 29-41.
[http://dx.doi.org/10.1177/2045125316672136] [PMID: 28101322]
[39]
Mitsui, I.; Kumazawa, E.; Hirota, Y.; Aonuma, M.; Sugimori, M.; Ohsuki, S.; Uoto, K.; Ejima, A.; Terasawa, H.; Sato, K. A new water-soluble camptothecin derivative, DX-8951f, exhibits potent antitumor activity against human tumors in vitro and in vivo. Jpn. J. Cancer Res., 1995, 86(8), 776-782.
[http://dx.doi.org/10.1111/j.1349-7006.1995.tb02468.x] [PMID: 7559102]
[40]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[41]
Lamhasni, T.; Barbache, S.; Ait Lyazidi, S.; Haddad, M.; Hnach, M.; Desmaële, D. Photo-physics study of a styrylquinoline as inhibitor of Pim-1 kinase: Solvent and concentration effects. Chem. Phys. Lett., 2018, 695, 59-62.
[http://dx.doi.org/10.1016/j.cplett.2018.02.004]
[42]
Murugesan, A.; Gengan, R.M.; Rajamanikandan, R.; Ilanchelian, M. One-pot synthesis via 1, 3-dipolar cycloaddition reaction to piperazinyl-quinolinyl dispiro heterocyclic derivatives and spectrofluorometric and molecular docking studies on their binding with human serum albumin. J. Mol. Struct., 2017, 1149, 439-451.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.017]
[43]
Duroux, R.; Rami, M.; Landagaray, E.; Ettaoussi, M.; Caignard, D.H.; Delagrange, P.; Melnyk, P.; Yous, S. Synthesis and biological evaluation of new naphtho- and quinolinocyclopentane derivatives as potent melatoninergic (MT1/MT2) and serotoninergic (5-HT 2C) dual ligands. Eur. J. Med. Chem., 2017, 141, 552-566.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.025] [PMID: 29102176]
[44]
Biot, C.; Nosten, F.; Fraisse, L.; Ter-Minassian, D.; Khalife, J.; Dive, D. The antimalarial ferroquine: From bench to clinic. Parasite: journal de la Societe Francaise de Parasitologie, 2011, 18, 207-214.
[45]
Bendell, J.C.; Kurkjian, C.; Infante, J.R.; Bauer, T.M.; Burris, H.A., III; Greco, F.A.; Shih, K.C.; Thompson, D.S.; Lane, C.M.; Finney, L.H.; Jones, S.F. A phase 1 study of the sachet formulation of the oral dual PI3K/mTOR inhibitor BEZ235 given twice daily (BID) in patients with advanced solid tumors. Invest. New Drugs, 2015, 33(2), 463-471.
[http://dx.doi.org/10.1007/s10637-015-0218-6] [PMID: 25707361]
[46]
Skraup, Z.H. Eine Synthese des Chinolins. Chem. Ber., 1881, 2, 139-170.
[47]
Matsugi, M.; Tabusa, F.; Minamikawa, J. Doebner-Miller synthesis in a two-phase system: practical preparation of quinolines. Tetrahedron Lett., 2000, 41(44), 8523-8525.
[http://dx.doi.org/10.1016/S0040-4039(00)01542-2]
[48]
Schmittel, M.; Ammon, H. A short synthetic route to 4,7‐dihalogenated 1,10‐phenanthrolines with additional groups in 3,8‐position: Soluble precursors for macrocyclic oligophenanthrolines. Eur. J. Org. Chem., 1998, 1998(5), 785-792.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199805)1998:5<785:AID-EJOC785>3.0.CO;2-#]
[49]
Bergstrom, F.W. Heterocyclic Nitrogen Compounds. Part IIA. Hexacyclic Compounds: Pyridine, Quinoline, and Isoquinoline. Chem. Rev., 1944, 35(2), 77-277.
[http://dx.doi.org/10.1021/cr60111a001]
[50]
Cheng, C-C.; Yan, S-J. The Friedlander Synthesis of Quinolines. Organic Reactions; John Wiley & Sons, Ltd: USA, 2005, pp. 37-201.
[51]
Bhuyan, D. Microwave assisted synthesis of quinoline derivatives by three components one pot aza-diels-alder reaction strategy. J. emerg. technol., 2019, 6(6), 5.
[52]
Nainwal, L.M.; Tasneem, S.; Akhtar, W.; Verma, G.; Khan, M.F.; Parvez, S.; Shaquiquzzaman, M.; Akhter, M.; Alam, M.M. Green recipes to quinoline: A review. Eur. J. Med. Chem., 2019, 164, 121-170.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.026] [PMID: 30594028]
[53]
Patel, A.; Shah, D.; Patel, N.; Patel, K.; Soni, N.; Nagani, A.; Parikh, V.; Shah, H.; Bambharoliya, T. Benzimidazole as ubiquitous structural fragment: An update on development of its green synthetic approaches. Mini Rev. Org. Chem., 2021, 18(8), 1064-1085.
[http://dx.doi.org/10.2174/1570193X17999201211194908]
[54]
Găină L.; Cristea, C.; Moldovan, C.; Porumb, D.; Surducan, E.; Deleanu, C.; Mahamoud, A.; Barbe, J.; Silberg, I. Microwave-assisted synthesis of phenothiazine and qinoline derivatives. Int. J. Mol. Sci., 2007, 8(2), 70-80.
[http://dx.doi.org/10.3390/i8020070]
[55]
Amarasekara, A.S.; Hasan, M.A. 1-(1-Alkylsulfonic)-3-methylimidazolium chloride Brönsted acidic ionic liquid catalyzed Skraup synthesis of quinolines under microwave heating. Tetrahedron Lett., 2014, 55(22), 3319-3321.
[http://dx.doi.org/10.1016/j.tetlet.2014.04.047]
[56]
Patel, A.; Shah, J.; Patel, K.; Patel, K.; Patel, H.; Dobaria, D.; Shah, U.; Patel, M.; Chokshi, A.; Patel, S.; Parekh, N.; Shah, H.; Patel, H.; Bambharoliya, T. Ultrasound-assisted one-pot synthesis of tetrahydropyrimidne derivatives through biginelli condensation: A catalyst free green chemistry approach. Lett. Org. Chem., 2021, 18(9), 749-756.
[http://dx.doi.org/10.2174/1570178617999201105162851]
[57]
Li, A.; Yang, Z.; Yang, T.; Luo, C.W.; Chao, Z.S.; Zhou, C.S. High efficiency microwave-assisted synthesis of quinoline from acrolein diethyl acetal and aniline utilizing Ni/Beta catalyst. Catal. Commun., 2018, 115, 21-25.
[http://dx.doi.org/10.1016/j.catcom.2018.06.024]
[58]
Patel, A.; Shah, D.; Patel, N.; Patel, K.; Soni, N.; Nagai, A.; Shah, U.; Patel, M.; Patel, S.; Bhimani, B.; Bambharoliya, T. Quinoxaline as ubiquitous structural fragment: An update on the recent development of its green synthetic approaches. Curr. Org. Chem., 2021, 25(24), 3004-3016.
[http://dx.doi.org/10.2174/1385272825666211125102145]
[59]
Hu, W.; Yang, W.; Yan, T.; Cai, M. An efficient heterogeneous gold(I)-catalyzed intermolecular cycloaddition of 2-aminoaryl carbonyls and internal alkynes leading to polyfunctionalized quinolines. Synth. Commun., 2019, 49(6), 799-813.
[http://dx.doi.org/10.1080/00397911.2019.1567788]
[60]
Patel, A.; Panchal, I.; Parmar, I.; Mishtry, B. Synthesis of new flavanoid and chalcone derivatives as antimicrobial agent by green chemistry approach. Int. J. Pharma Sci., 2017, 8, 2725-2730.
[61]
Patel, A.D.; Barot, R.; Parmar, I.; Panchal, I.; Shah, U.; Patel, M.; Mishtry, B. Molecular docking, in-silico ADMET study and development of 1,6- dihydropyrimidine derivative as protein tyrosine phosphatase inhibitor: An approach to design and develop antidiabetic agents. Curr. Computeraided Drug Des., 2018, 14(4), 349-362.
[http://dx.doi.org/10.2174/1573409914666180426125721] [PMID: 29701158]
[62]
Yan, Q.; Chen, Z.; Liu, Z.; Zhang, Y. Cobalt-catalyzed synthesis of quinolines from the redox-neutral annulation of anilides and alkynes. Org. Chem. Front., 2016, 3(6), 678-682.
[http://dx.doi.org/10.1039/C6QO00059B]
[63]
Dadhania, H.; Raval, D.; Dadhania, A. A highly efficient and solvent-free approach for the synthesis of quinolines and fused polycyclic quinolines catalyzed by magnetite nanoparticle-supported acidic ionic liquid. Polycycl. Aromat. Compd., 2019, 41, 1-14.
[64]
Wang, C.; Yang, J.; Meng, X.; Sun, Y.; Man, X.; Li, J.; Sun, F. Manganese(II)-catalysed dehydrogenative annulation involving C-C bond formation: highly regioselective synthesis of quinolines. Dalton Trans., 2019, 48(14), 4474-4478.
[http://dx.doi.org/10.1039/C9DT00647H] [PMID: 30860245]
[65]
Zhao, P.; Wu, X.; Zhou, Y.; Geng, X.; Wang, C.; Wu, Y.; Wu, A.X. Direct synthesis of 2,3-diaroyl quinolines and pyridazino[4,5- b]quinolines via an I2 -promoted one-pot multicomponent reaction. Org. Lett., 2019, 21(8), 2708-2711.
[http://dx.doi.org/10.1021/acs.orglett.9b00685] [PMID: 30938158]
[66]
Suman, K.; Bharath, Y.; Anuradha, V.; Rao, M.V.B.; Pal, M. Ultrasound assisted one-pot and sequential synthesis of 3-methyleneisoindolin- 1-ones and their in vitro evaluation. Mini Rev. Med. Chem., 2018, 18(17), 1498-1505.
[http://dx.doi.org/10.2174/1389557517666170728164620] [PMID: 28758576]
[67]
Borsoi, A.F.; Paz, J.D.; Pissinate, K.; Rambo, R.S.; Pestana, V.Z.; Bizarro, C.V.; Basso, L.A.; Machado, P. Ultrasound-assisted synthesis of 4-alkoxy-2-methylquinolines: An efficient method toward antitubercular drug candidates. Molecules, 2021, 26(5), 1215.
[http://dx.doi.org/10.3390/molecules26051215] [PMID: 33668389]
[68]
Al-Bogami, A.S.; Saleh, T.S.; Zayed, E.M. Divergent reaction pathways for one-pot, three-component synthesis of novel 4H-pyrano[3,2-h]quinolines under ultrasound irradiation. Ultrason. Sonochem., 2013, 20(5), 1194-1202.
[http://dx.doi.org/10.1016/j.ultsonch.2013.03.003] [PMID: 23591017]
[69]
Thangaraj, M.; Gengan, R.M. Ultrasonicated synthesis of novel quinoline-lipoyl peptides through Ugi-four component condensation by using Ca/BN catalyst. Synth. Commun., 2017, 00397911.2017.1381742.
[http://dx.doi.org/10.1080/00397911.2017.1381742]
[70]
Kowsari, E.; Mallakmohammadi, M. Ultrasound promoted synthesis of quinolines using basic ionic liquids in aqueous media as a green procedure. Ultrason. Sonochem., 2011, 18(1), 447-454.
[http://dx.doi.org/10.1016/j.ultsonch.2010.07.020] [PMID: 20719553]
[71]
Bandaru, S.; Korupolu, R.B.; Sanasi, P.D. Magnetic Nano Copper Ferrite Catalyzed One Pot Synthesis of Substituted Quinoline Derivatives under Ultrasonication. IOSR Journal of Applied Chemistry, 2018, 11, 28-37.
[72]
Tanna, J.A.; Chaudhary, R.G.; Sonkusare, V.N.; Juneja, H.D. CuO nanoparticles: synthesis, characterization and reusable catalyst for polyhydroquinoline derivatives under ultrasonication. Journal of the Chinese Advanced Materials Society, 2016, 4(2), 110-122.
[http://dx.doi.org/10.1080/22243682.2016.1164618]
[73]
Pal, R.; Chatterjee, N.; Roy, M.; Nouh, E.S.A.; Sarkar, S.; Jaisankar, P.; Sarkar, S.; Sen, A.K. Reusable palladium nanoparticles in one-pot domino Sonogashira-cyclization: regio- and stereo-selective syntheses of (Z)-3-methyleneisoindoline-1-ones and furo[3,2- h]quinolines in water. Tetrahedron Lett., 2016, 57(1), 43-47.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.059]
[74]
Nguyen, H.T.; Truong, V.A.; Tran, P.H. Synthesis of polyhydroquinolines and propargylamines through one-pot multicomponent reactions using an acidic ionic liquid immobilized onto magnetic Fe3O4 as an efficient heterogeneous catalyst under solvent-free sonication. RSC Advances, 2020, 10(42), 25358-25363.
[http://dx.doi.org/10.1039/D0RA04008H] [PMID: 35517476]
[75]
Patel, D.S.; Avalani, J.R.; Raval, D.K. Ionic liquid catalyzed convenient synthesis of imidazo[1,2-a]quinoline under sonic condition. J. Braz. Chem. Soc., 2012, 23(10), 1951-1954.
[http://dx.doi.org/10.1590/S0103-50532012005000051]
[76]
Patel, A.; Panchal, A.; Patel, V.; Nagar, A. FTIR spectroscopic method for quantitative analysis of Cilnidipine in tablet dosage form. Int. J. Pharm. Sci. Res., 2015, 6(7), 1033-1039.
[77]
Patel, A.D.; Pasha, T.Y.; Lunagariya, P.; Shah, U.; Bhambharoliya, T.; Tripathi, R.K.P. A library of thiazolidin‐4‐one derivatives as protein tyrosine phosphatase 1B (PTP1B) inhibitors: An attempt to discover novel antidiabetic agents. ChemMedChem, 2020, 15(13), 1229-1242.
[http://dx.doi.org/10.1002/cmdc.202000055] [PMID: 32390300]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy