Abstract
Background: Quinoline derivatives have evinced their biological importance in targeting bacteria by inhibiting Dihydrofolate reductase. H2SO4 was successfully applied as an acid catalyst for a green, efficient, and one-pot solvent-free synthesis of quinoline derivatives using sonochemistry approach from various aromatic amines and glycerol with affording yield up to 96% within 6-10 min.
Objective: In this study, the synthesis, characterization, and biological assessment of fifteen quinoline derivatives (1-15) as potential DHFR inhibitors were carried out. The target compounds were docked to study the molecular interactions and binding affinities with the 1DLS enzyme.
Methods: The synthesized molecules were characterized using IR, MASS, and 1H and 13C NMR. The Insilico molecular docking study was carried out through target Human Dihydrofolate Reductase (DHFR) retrieved from a protein data bank having PDB ID: 1DLS and the antimicrobial activity of all synthesized compounds were tested against Human Dihydrofolate Reductase(DHFR) enzyme by using in-vitro DHFR assay kit.
Results: The molecular docking results revealed that compounds 2 and 6 have the lowest binding energy and good binding affinity with the DHFR enzyme. In-silico ADMET predictions revealed that all bestscored compounds had good absorption and drug-like properties for potential use as DHFR inhibitors to treat bacterial infection. The in vitro studies revealed that compounds 2 and 6 show potent DFHR inhibitory activity against gram-positive and gram-negative with IC50 = 12.05 ± 1.55 μM and 10.04 ± 0.73 μM, respectively. While compounds 12, 13, and 15 exhibited moderate antimicrobial activity through DHFR inhibition with IC50= 16.33 ± 0.73 μM, 17.02 ± 1.55 μM, and 18.04 ± 1.05 μM, respectively.
Conclusion: This environmentally benign sonochemistry-based approach for synthesizing quinoline derivatives could be affordable for large-scale production and become a potential lead candidate for developing a new quinoline-based antimicrobial agent.
Graphical Abstract
[http://dx.doi.org/10.1371/journal.pone.0244967] [PMID: 33449932]
[http://dx.doi.org/10.3390/molecules25010116] [PMID: 31892256]
[http://dx.doi.org/10.1111/j.1478-4408.2012.00363.x]
[http://dx.doi.org/10.1039/C6SC05235E] [PMID: 29967675]
[http://dx.doi.org/10.2165/00003495-198223060-00001] [PMID: 7049657]
[http://dx.doi.org/10.1128/mSphere.00374-20] [PMID: 32581079]
[http://dx.doi.org/10.1016/j.bioorg.2020.103656] [PMID: 32062449]
[http://dx.doi.org/10.1016/j.molstruc.2020.128305]
[http://dx.doi.org/10.1080/17518253.2022.2064194]
[http://dx.doi.org/10.1021/ja052184t] [PMID: 16316228]
[http://dx.doi.org/10.1021/ja801823f] [PMID: 18597437]
[http://dx.doi.org/10.1039/C5CC04013B] [PMID: 26323719]
[http://dx.doi.org/10.1039/C5CC07799K] [PMID: 26489708]
[http://dx.doi.org/10.1021/bi020195i] [PMID: 12162739]
[http://dx.doi.org/10.1016/j.ejmech.2018.10.035] [PMID: 30343191]
[http://dx.doi.org/10.1055/s-2004-820025]
[http://dx.doi.org/10.1016/j.ejmech.2010.04.011] [PMID: 20466465]
[http://dx.doi.org/10.1021/cr010289i] [PMID: 12059268]
[http://dx.doi.org/10.2174/1389557521666210712111331] [PMID: 34254913]
[http://dx.doi.org/10.1016/0040-4020(96)00879-4]
[http://dx.doi.org/10.1021/jm990437l] [PMID: 10649984]
[http://dx.doi.org/10.1107/S1600536810020386] [PMID: 21587784]
[http://dx.doi.org/10.1248/bpb.27.1683] [PMID: 15467220]
[http://dx.doi.org/10.1016/j.ejmech.2008.07.010] [PMID: 18752871]
[http://dx.doi.org/10.1016/0024-3205(81)90375-1] [PMID: 6264247]
[http://dx.doi.org/10.1016/j.ejmech.2013.01.017] [PMID: 23454512]
[http://dx.doi.org/10.1021/np010122k] [PMID: 11575945]
[http://dx.doi.org/10.1055/s-2002-34412] [PMID: 12357388]
[http://dx.doi.org/10.1007/s00203-010-0567-7] [PMID: 20358178]
[http://dx.doi.org/10.1021/jm0493461] [PMID: 15887964]
[http://dx.doi.org/10.1016/S0014-827X(99)00043-9] [PMID: 10443017]
[http://dx.doi.org/10.1016/j.ejmech.2019.111970] [PMID: 31881454]
[http://dx.doi.org/10.1016/0006-2952(96)00306-1] [PMID: 8759027]
[http://dx.doi.org/10.3390/molecules171112771] [PMID: 23114614]
[http://dx.doi.org/10.1016/j.ejmech.2022.114653] [PMID: 35985254]
[http://dx.doi.org/10.1016/j.bmc.2020.115511] [PMID: 32336669]
[http://dx.doi.org/10.1177/2045125316672136] [PMID: 28101322]
[http://dx.doi.org/10.1111/j.1349-7006.1995.tb02468.x] [PMID: 7559102]
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[http://dx.doi.org/10.1016/j.cplett.2018.02.004]
[http://dx.doi.org/10.1016/j.molstruc.2017.08.017]
[http://dx.doi.org/10.1016/j.ejmech.2017.10.025] [PMID: 29102176]
[http://dx.doi.org/10.1007/s10637-015-0218-6] [PMID: 25707361]
[http://dx.doi.org/10.1016/S0040-4039(00)01542-2]
[http://dx.doi.org/10.1002/(SICI)1099-0690(199805)1998:5<785:AID-EJOC785>3.0.CO;2-#]
[http://dx.doi.org/10.1021/cr60111a001]
[http://dx.doi.org/10.1016/j.ejmech.2018.11.026] [PMID: 30594028]
[http://dx.doi.org/10.2174/1570193X17999201211194908]
[http://dx.doi.org/10.3390/i8020070]
[http://dx.doi.org/10.1016/j.tetlet.2014.04.047]
[http://dx.doi.org/10.2174/1570178617999201105162851]
[http://dx.doi.org/10.1016/j.catcom.2018.06.024]
[http://dx.doi.org/10.2174/1385272825666211125102145]
[http://dx.doi.org/10.1080/00397911.2019.1567788]
[http://dx.doi.org/10.2174/1573409914666180426125721] [PMID: 29701158]
[http://dx.doi.org/10.1039/C6QO00059B]
[http://dx.doi.org/10.1039/C9DT00647H] [PMID: 30860245]
[http://dx.doi.org/10.1021/acs.orglett.9b00685] [PMID: 30938158]
[http://dx.doi.org/10.2174/1389557517666170728164620] [PMID: 28758576]
[http://dx.doi.org/10.3390/molecules26051215] [PMID: 33668389]
[http://dx.doi.org/10.1016/j.ultsonch.2013.03.003] [PMID: 23591017]
[http://dx.doi.org/10.1080/00397911.2017.1381742]
[http://dx.doi.org/10.1016/j.ultsonch.2010.07.020] [PMID: 20719553]
[http://dx.doi.org/10.1080/22243682.2016.1164618]
[http://dx.doi.org/10.1016/j.tetlet.2015.11.059]
[http://dx.doi.org/10.1039/D0RA04008H] [PMID: 35517476]
[http://dx.doi.org/10.1590/S0103-50532012005000051]
[http://dx.doi.org/10.1002/cmdc.202000055] [PMID: 32390300]