Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Endogenous AMPKα2 Mediates the Inhibition of Biliary Fibroblasts Proliferation

Author(s): Jiamei Lu, Liang Yu and Jianhua Shi*

Volume 21, Issue 3, 2024

Published on: 06 January, 2023

Page: [520 - 528] Pages: 9

DOI: 10.2174/1570180820666221031094240

Price: $65

conference banner
Abstract

Background: Although it has been established that activating adenosine monophosphateactivated protein kinase (AMPK) inhibits cell proliferation in several cells, it is unknown whether AMPK is involved in inhibiting biliary fibroblast growth.

Objective: The objective of this study is to specifically investigate the influence of AMPK isoforms on proliferation.

Methods: To further address its underlying molecular mechanisms, primary cultured rat biliary fibroblasts were transfected with sequence-specific AMPK1 or AMPK2 siRNA.

Results: Our findings show that knocking down AMPK2 greatly increased the proliferation of primary cultured biliary fibroblasts, accompanied by the activation of mTOR, an increase in S-phase kinaseassociated protein 2 (Skp2) expression, and a decrease in p27 protein levels. AMPK2 inhibition-triggered Skp2 overexpression and concomitant p27 decrease, as well as biliary fibroblast proliferation, were reversed by rapamycin inhibition or previous silencing of Skp2 production by targeted small interfering RNA (siRNA) transfection.

Conclusion: We concluded that AMPK2 regulates the mTOR/Skp2/p27 signaling pathway and causes endogenous suppression of primary cultured biliary fibroblast growth. The reduction of biliary fibroblast proliferation by AMPK2 could be a potential method in treating benign biliary stricture (BBS).

Graphical Abstract

[1]
Ma, M.X.; Jayasekeran, V.; Chong, A.K. Benign biliary strictures: Prevalence, impact, and management strategies. Clin. Exp. Gastroenterol., 2019, 12, 83-92.
[http://dx.doi.org/10.2147/CEG.S165016] [PMID: 30858721]
[2]
Bill, J.G.; Mullady, D.K. Stenting for benign and malignant biliary strictures. Gastrointest. Endosc. Clin. N. Am., 2019, 29(2), 215-235.
[http://dx.doi.org/10.1016/j.giec.2018.12.001] [PMID: 30846150]
[3]
Ali, S.E.; Frandah, W.M.; Su, L.; Fielding, C.; Mardini, H. Should a fully covered self-expandable biliary metal stent be anchored with a double-pigtail plastic stent? A retrospective study. World J. Gastrointest. Endosc., 2019, 11(5), 365-372.
[http://dx.doi.org/10.4253/wjge.v11.i5.365] [PMID: 31205597]
[4]
Grimsrud, M.M.; Folseraas, T. Pathogenesis, diagnosis and treatment of premalignant and malignant stages of cholangiocarcinoma in primary sclerosing cholangitis. Liver Int., 2019, 39(12), 2230-2237.
[http://dx.doi.org/10.1111/liv.14180] [PMID: 31216595]
[5]
Larghi, A.; Tringali, A. Rimbaş M.; Barbaro, F.; Perri, V.; Rizzatti, G.; Gasbarrini, A.; Costamagna, G. Endoscopic management of benign biliary structures after liver transplantation. Liver Transpl., 2019, 25(2), 323-335.
[http://dx.doi.org/10.1002/lt.25358] [PMID: 30329213]
[6]
Bahrambeigi, S.; Yousefi, B.; Rahimi, M.; Shafiei-Irannejad, V. Metformin; an old antidiabetic drug with new potentials in bone disorders. Biomed. Pharmacother., 2019, 109, 1593-1601.
[http://dx.doi.org/10.1016/j.biopha.2018.11.032] [PMID: 30551413]
[7]
Cao, W.; Li, J.; Hao, Q.; Vadgama, J.V.; Wu, Y. AMP-activated protein kinase: A potential therapeutic target for triple-negative breast cancer. Breast Cancer Res., 2019, 21(1), 29-29.
[http://dx.doi.org/10.1186/s13058-019-1107-2] [PMID: 30791936]
[8]
Evans, A.M. AMPK breathing and oxygen supply. Respir. Physiol. Neurobiol., 2019, 265, 112-120.
[http://dx.doi.org/10.1016/j.resp.2018.08.011] [PMID: 30243821]
[9]
Francini, F.; Schinella, G.R.; Ríos, J.L. Activation of AMPK by medicinal plants and natural products: Its role in type 2 diabetes mellitus. Mini Rev. Med. Chem., 2019, 19(11), 880-901.
[http://dx.doi.org/10.2174/1389557519666181128120726] [PMID: 30484403]
[10]
Iranshahy, M.; Rezaee, R.; Karimi, G. Hepatoprotective activity of metformin: A new mission for an old drug? Eur. J. Pharmacol., 2019, 850, 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2019.02.004] [PMID: 30753869]
[11]
Jiang, X.; Tan, H.Y.; Teng, S.; Chan, Y.T.; Wang, D.; Wang, N. The role of AMP-activated krotein kinase as a potential target of treatment of hepatocellular carcinoma. Cancers, 2019, 11(5), 647-652.
[http://dx.doi.org/10.3390/cancers11050647] [PMID: 31083406]
[12]
Ke, R.; Liu, L.; Zhu, Y.; Li, S.; Xie, X.; Li, F.; Song, Y.; Yang, L.; Gao, L.; Li, M. Knockdown of AMPKα2 promotes pulmonary arterial smooth muscle cells proliferation via mTOR/Skp2/p27Kip1 signaling pathway. Int. J. Mol. Sci., 2016, 17(6), 844-851.
[http://dx.doi.org/10.3390/ijms17060844]
[13]
Jacinto, E. Amplifying mTORC2 signals through AMPK during energetic stress. Sci. Signal., 2019, 12(585), eaax5855.
[http://dx.doi.org/10.1126/scisignal.aax5855] [PMID: 31186374]
[14]
Jo, E.K.; Silwal, P.; Yuk, J.M. AMPK-targeted effector networks in mycobacterial infection. Front. Microbiol., 2019, 10, 520-527.
[http://dx.doi.org/10.3389/fmicb.2019.00520] [PMID: 30930886]
[15]
Yang, W.R.; Wang, Y.; Wang, Y.; Zhang, J.J.; Zhang, J.H.; Lu, C.; Wang, X.Z. mTOR is involved in 17β-estradiol-induced, cultured immature boar Sertoli cell proliferation via regulating the expression of SKP2, CCND1, and CCNE1. Mol. Reprod. Dev., 2015, 82(4), 305-314.
[http://dx.doi.org/10.1002/mrd.22473] [PMID: 25739982]
[16]
Wang, H.; Liu, Y.; Wang, D.; Xu, Y.; Dong, R.; Yang, Y.; Lv, Q.; Chen, X.; Zhang, Z. The upstream pathway of mTOR-mediated autophagy in liver diseases. Cells, 2019, 8(12), 1597-1608.
[http://dx.doi.org/10.3390/cells8121597] [PMID: 31835352]
[17]
Cork, G.K.; Thompson, J.; Slawson, C. Real talk: The inter-play between the mTOR, AMPK, and hexosamine biosynthetic pathways in cell signaling. Front. Endocrinol., 2018, 9, 522-533.
[http://dx.doi.org/10.3389/fendo.2018.00522] [PMID: 30237786]
[18]
Hu, Y.B.; Ye, X.T.; Zhou, Q.Q.; Fu, R.Q. Sestrin 2 attenuates rat hepatic stellate cell (HSC) activation and liver fibrosis via an mTOR/AMPK-dependent mechanism. Cell. Physiol. Biochem., 2018, 51(5), 2111-2122.
[http://dx.doi.org/10.1159/000495829] [PMID: 30522100]
[19]
Shi, W.; Xu, D.; Gu, J.; Xue, C.; Yang, B.; Fu, L.; Song, S.; Liu, D.; Zhou, W.; Lv, J.; Sun, K.; Chen, M.; Mei, C. Saikosaponin-d inhibits proliferation by up-regulating autophagy via the CaMKKβ–AMPK–mTOR pathway in ADPKD cells. Mol. Cell. Biochem., 2018, 449(1-2), 219-226.
[http://dx.doi.org/10.1007/s11010-018-3358-0] [PMID: 29675630]
[20]
Zhao, H.; Pan, H.; Wang, H.; Chai, P.; Ge, S.; Jia, R.; Fan, X. SKP2 targeted inhibition suppresses human uveal melanoma progression by blocking ubiquitylation of p27. OncoTargets Ther., 2019, 12, 4297-4308.
[http://dx.doi.org/10.2147/OTT.S203888] [PMID: 31213847]
[21]
Song, P.; Wang, S.; He, C.; Wang, S.; Liang, B.; Viollet, B.; Zou, M.H. AMPKα2 deletion exacerbates neointima formation by upregulating Skp2 in vascular smooth muscle cells. Circ. Res., 2011, 109(11), 1230-1239.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.250423] [PMID: 21980125]
[22]
Chen, H.; He, L.; Li, S.; Zhang, Y.; Huang, J.; Qin, H.; Wang, J.; Li, Q.; Yang, D. A derivate of benzimidazole-isoquinolinone induces SKP2 transcriptional inhibition to exert anti-tumor activity in glioblastoma cells. Molecules, 2019, 24(15), 2722-2735.
[http://dx.doi.org/10.3390/molecules24152722] [PMID: 31357480]
[23]
He, Z.; Chen, L.; Wang, Q.; Yin, C.; Hu, J.; Hu, X.; Fei, F.; Tang, J. MicroRNA-186 targets SKP2 to induce p27 Kip1 -mediated pituitary tumor cell cycle deregulation and modulate cell proliferation. Korean J. Physiol. Pharmacol., 2019, 23(3), 171-179.
[http://dx.doi.org/10.4196/kjpp.2019.23.3.171] [PMID: 31080348]
[24]
Rahabi-Layachi, H.; Ourouda, R.; Boullier, A.; Massy, Z.A.; Amant, C. Distinct effects of inorganic phosphate on cell cycle and apoptosis in human vascular smooth muscle cells. J. Cell. Physiol., 2015, 230(2), 347-355.
[http://dx.doi.org/10.1002/jcp.24715] [PMID: 24976589]
[25]
Zhou, X.; Yang, Y.; Ma, P.; Wang, N.; Yang, D.; Tu, Q.; Sun, B.; Xiang, T.; Zhao, X.; Hou, Z.; Fang, X. TRIM44 is indispensable for glioma cell proliferation and cell cycle progression through AKT/p21/p27 signaling pathway. J. Neurooncol., 2019, 145(2), 211-222.
[http://dx.doi.org/10.1007/s11060-019-03301-0] [PMID: 31605296]
[26]
Shen, X.; Xu, X.; Xie, C.; Liu, H.; Yang, D.; Zhang, J.; Wu, Q.; Feng, W.; Wang, L.; Du, L.; Xuan, L.; Meng, C.; Zhang, H.; Wang, W.; Wang, Y.; Xie, T.; Huang, Z. YAP promotes the proliferation of neuroblastoma cells through decreasing the nuclear location of p27 Kip1 mediated by Akt. Cell Prolif., 2020, 53(2), e12734-e12734.
[http://dx.doi.org/10.1111/cpr.12734] [PMID: 31863533]
[27]
Ding, L.; Shunkwiler, L.B.; Harper, N.W.; Zhao, Y.; Hinohara, K.; Huh, S.J.; Ekram, M.B.; Guz, J.; Kern, M.J.; Awgulewitsch, A.; Shull, J.D.; Smits, B.M.G.; Polyak, K. Deletion of Cdkn1b in ACI rats leads to increased proliferation and pregnancy-associated changes in the mammary gland due to perturbed systemic endocrine environment. PLoS Genet., 2019, 15(3), e1008002-e1008002.
[http://dx.doi.org/10.1371/journal.pgen.1008002] [PMID: 30893315]
[28]
Li, Z.; Yu, Z.; Meng, X.; Zhou, S.; Xiao, S.; Li, X.; Liu, S.; Yu, P. Long noncoding RNA GAS5 impairs the proliferation and invasion of endometrial carcinoma induced by high glucose via targeting miR-222-3p/p27. Am. J. Transl. Res., 2019, 11(4), 2413-2421.
[PMID: 31105847]
[29]
Dai, Y.; Li, X.; Dong, D.; Gu, H.; Kong, C.; Xu, Z. P27 promotes TGF-β-mediated pulmonary fibrosis via interacting with mTORC2. Can. Respir. J., 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/7157861] [PMID: 31641391]
[30]
Chou, C.F.; Hsieh, Y.H.; Grubbs, C.J.; Atigadda, V.R.; Mobley, J.A.; Dummer, R.; Muccio, D.D.; Eto, I.; Elmets, C.A.; Garvey, W.T.; Chang, P.L. The retinoid X receptor agonist, 9-cis UAB30, inhibits cutaneous T-cell lymphoma proliferation through the SKP2-p27kip1 axis. J. Dermatol. Sci., 2018, 90(3), 343-356.
[http://dx.doi.org/10.1016/j.jdermsci.2018.03.006] [PMID: 29599065]
[31]
Li, F.; Dong, X.; Lin, P.; Jiang, J. Regulation of Akt/FoxO3a/Skp2 axis is critically involved in berberine-induced cell cycle arrest in hepatocellular carcinoma cells. Int. J. Mol. Sci., 2018, 19(2), 327-336.
[http://dx.doi.org/10.3390/ijms19020327] [PMID: 29360760]
[32]
Marsan, E.; Baulac, S. Mechanistic target of rapamycin (mTOR) pathway, focal cortical dysplasia and epilepsy. Neuropathol. Appl. Neurobiol., 2018, 44(1), 6-17.
[http://dx.doi.org/10.1111/nan.12463] [PMID: 29359340]
[33]
Wang, C.; Liu, E.; Li, W.; Cui, J.; Li, T. MiR-3188 inhibits non-small cell lung cancer cell proliferation through FOXO1-mediated mTOR-p-PI3K/AKT-c-JUN signaling pathway. Front. Pharmacol., 2018, 9, 1362-1371.
[http://dx.doi.org/10.3389/fphar.2018.01362] [PMID: 30618730]
[34]
Rakhmanova, V.; Jin, M.; Shin, J. Inhibition of mast cell function and proliferation by mTOR activator MHY1485. Immune Netw., 2018, 18(3), e18-e34.
[http://dx.doi.org/10.4110/in.2018.18.e18] [PMID: 29984036]
[35]
Viel, S.; Marçais, A.; Guimaraes, F.S.F.; Loftus, R.; Rabilloud, J.; Grau, M.; Degouve, S.; Djebali, S.; Sanlaville, A.; Charrier, E.; Bienvenu, J.; Marie, J.C.; Caux, C.; Marvel, J.; Town, L.; Huntington, N.D.; Bartholin, L.; Finlay, D.; Smyth, M.J.; Walzer, T. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci. Signal., 2016, 9(415), ra19-ra19.
[http://dx.doi.org/10.1126/scisignal.aad1884] [PMID: 26884601]
[36]
Li, Y.; Li, X.; Liu, J.; Guo, W.; Zhang, H.; Wang, J. Enhanced Rb/E2F and TSC/mTOR pathways induce synergistic inhibition in PDGF-induced proliferationin vascular smooth muscle cells. PLoS One, 2017, 12(1), e0170036-e0170046.
[http://dx.doi.org/10.1371/journal.pone.0170036] [PMID: 28076433]
[37]
Tu, M.; Wange, W.; Cai, L.; Zhu, P.; Gao, Z.; Zheng, W. IL-13 receptor α2 stimulates human glioma cell growth and metastasis through the Src/PI3K/Akt/mTOR signaling pathway. Tumour Biol., 2016, 37(11), 14701-14709.
[http://dx.doi.org/10.1007/s13277-016-5346-x] [PMID: 27623944]
[38]
Ren, P.; Ren, X.; Cheng, L.; Xu, L. Frankincense, pine needle and geranium essential oils suppress tumor progression through the regulation of the AMPK/mTOR pathway in breast cancer. Oncol. Rep., 2018, 39(1), 129-137.
[PMID: 29115548]
[39]
Howell, J.J.; Hellberg, K.; Turner, M.; Talbott, G.; Kolar, M.J.; Ross, D.S.; Hoxhaj, G.; Saghatelian, A.; Shaw, R.J.; Manning, B.D. Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab., 2017, 25(2), 463-471.
[http://dx.doi.org/10.1016/j.cmet.2016.12.009] [PMID: 28089566]
[40]
Yin, H.; Zhao, L.; Li, S.; Xu, L.; Wang, Y.; Chen, H. impaired cellular energy metabolism contributes to duck-enteritis-virus-induced autophagy via the AMPK-TSC2-MTOR signaling pathway. Front. Cell. Infect. Microbiol., 2017, 7, 423-423.
[http://dx.doi.org/10.3389/fcimb.2017.00423] [PMID: 29018776]
[41]
Pelosse, M.; Cottet-Rousselle, C.; Bidan, C.M.; Dupont, A.; Gupta, K.; Berger, I.; Schlattner, U. Synthetic energy sensor AMPfret deciphers adenylate-dependent AMPK activation mechanism. Nat. Commun., 2019, 10(1), 1038-1038.
[http://dx.doi.org/10.1038/s41467-019-08938-z] [PMID: 30833561]
[42]
Neumann, D.; Viollet, B. AMP-activated protein kinase signalling. Int. J. Mol. Sci., 2019, 20(3), 766-776.
[http://dx.doi.org/10.3390/ijms20030766] [PMID: 30759716]
[43]
Park, S.; Kim, D.; Kee, S.H. Metformin activated AMPK regulates β-catenin to reduce cell proliferation in colon carcinoma RKO cells. Oncol. Lett., 2019, 17(3), 2695-2702.
[http://dx.doi.org/10.3892/ol.2019.9892] [PMID: 30854043]
[44]
Zhang, Z.G.; Zhang, H.S.; Sun, H.L.; Liu, H.Y.; Liu, M.Y.; Zhou, Z. KDM5B promotes breast cancer cell proliferation and migration via AMPK-mediated lipid metabolism reprogramming. Exp. Cell Res., 2019, 379(2), 182-190.
[http://dx.doi.org/10.1016/j.yexcr.2019.04.006] [PMID: 30978340]
[45]
Kopsiaftis, S.; Sullivan, K.L.; Garg, I.; Taylor, J.A., III; Claffey, K.P. AMPKa2 regulates bladder cancer growth through SKP2-mediated degradation of p27. Mol. Cancer Res., 2016, 14(12), 1182-1194.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0111] [PMID: 27638620]
[46]
Walter, D.; Albert, J.; Jung, M.; Friedrich-Rust, M. The endoscopic approach to indeterminate biliary stricture: Current practice and future perspective. Z. Gastroenterol., 2020, 58(2), 152-159.
[PMID: 31863426]
[47]
Reddy, P.; Rivas, Y.; Golowa, Y. KoganLiberman, D.; Ho, S.; Jan, D.; Ovchinsky, N. Novel non-surgical interventions for benign inflammatory biliary strictures in infants: A report of two cases and review of current pediatric literature. Pediatr. Gastroenterol. Hepatol. Nutr., 2019, 22(6), 565-570.
[http://dx.doi.org/10.5223/pghn.2019.22.6.565] [PMID: 31777722]
[48]
Mangiavillano, B.; Khashab, M.A.; Eusebi, L.H.; Tarantino, I.; Bianchetti, M.; Semeraro, R.; Pellicano, R.; Traina, M.; Repici, A. Single brand, fully-covered, self-expandable metal stent for the treatment of benign biliary disease: When should stents be removed? Minerva Gastroenterol. Dietol., 2019, 65(1), 63-69.
[http://dx.doi.org/10.23736/S1121-421X.18.02506-0] [PMID: 29856174]
[49]
Desjardins, E.M.; Steinberg, G.R. Emerging role of AMPK in brown and beige adipose tissue (BAT): Implications for obesity, insulin resistance, and type 2 diabetes. Curr. Diab. Rep., 2018, 18(10), 80-89.
[http://dx.doi.org/10.1007/s11892-018-1049-6] [PMID: 30120579]
[50]
Miyamoto, L. AMPK as a metabolic intersection between diet and physical exercise. Yakugaku Zasshi, 2018, 138(10), 1291-1296.
[http://dx.doi.org/10.1248/yakushi.18-00091-6] [PMID: 30270274]
[51]
Kim, Y.; Lim, J.H.; Kim, M.Y.; Kim, E.N.; Yoon, H.E.; Shin, S.J.; Choi, B.S.; Kim, Y.S.; Chang, Y.S.; Park, C.W. The adiponectin receptor agonist adiporon ameliorates diabetic nephropathy in a model of type 2 diabetes. J. Am. Soc. Nephrol., 2018, 29(4), 1108-1127.
[http://dx.doi.org/10.1681/ASN.2017060627] [PMID: 29330340]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy