Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Molecular Docking: Principles, Advances, and Its Applications in Drug Discovery

Author(s): Muhammed Tilahun Muhammed* and Esin Aki-Yalcin

Volume 21, Issue 3, 2024

Published on: 25 October, 2022

Page: [480 - 495] Pages: 16

DOI: 10.2174/1570180819666220922103109

Price: $65

Abstract

Molecular docking is a structure-based computational method that generates the binding pose and affinity between ligands and targets. There are many powerful docking programs. However, there is no single program that is suitable for every system. Hence, an appropriate program is chosen based on availability, need, and computer capacity. Molecular docking has clear steps that should be followed carefully to get a good result.

Molecular docking has many applications at various stages in drug discovery. Although it has various application areas, it is commonly applied in virtual screening and drug repurposing. As a result, it is playing a substantial role in the endeavor to discover a potent drug against COVID-19. There are also approved drugs in the pharmaceutical market that are developed through the use of molecular docking. As the accessible data is increasing and the method is advancing with the contribution of the latest computational developments, its use in drug discovery is also increasing.

Molecular docking has played a crucial role in making drug discovery faster, cheaper, and more effective. More advances in docking algorithms, integration with other computational methods, and the introduction of new approaches are expected. Thus, more applications that will make drug discovery easier are expected.

Keywords: CADD, computational, drug design, drug discovery, molecular docking, molecular modeling

Graphical Abstract

[1]
Prieto-Martínez, F.D.; López-López, E.; Eurídice Juárez-Mercado, K.; Medina-Franco, J.L. Computational drug design methods-Current and future perspectives. Silico Drug Des., 2019, 3(3), 19-44.
[http://dx.doi.org/10.1016/B978-0-12-816125-8.00002-X]
[2]
Kapetanovic, I.M. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chem. Biol. Interact., 2008, 171(2), 165-176.
[http://dx.doi.org/10.1016/j.cbi.2006.12.006] [PMID: 17229415]
[3]
Barril, X. Computer-aided drug design: Time to play with novel chemical matter. Expert Opin. Drug Discov., 2017, 12(10), 977-980.
[http://dx.doi.org/10.1080/17460441.2017.1362386] [PMID: 28756685]
[4]
Deore, A.B.; Dhumane, J.R.; Wagh, R.; Sonawane, R. The stages of drug discovery and development process. Asian J. Pharm. Res. Dev., 2019, 7(6), 62-67.
[http://dx.doi.org/10.22270/ajprd.v7i6.616]
[5]
Muhammed, M.T.; Aki-Yalcin, E. Pharmacophore modeling in drug discovery: Methodology and current status. J. Turkish Chem. Soc. Sect. A Chem., 2021, 8(3), 759-772.
[6]
Surabhi, S.; Singh, B.K. Computer aided drug design  An overview. J. Drug Deliv. Ther., 2018, 8(5), 504-509.
[http://dx.doi.org/10.22270/jddt.v8i5.1894]
[7]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2014, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[8]
Ou-Yang, S.; Lu, J.; Kong, X.; Liang, Z.; Luo, C.; Jiang, H. Computational drug discovery. Acta Pharmacol. Sin., 2012, 33(9), 1131-1140.
[http://dx.doi.org/10.1038/aps.2012.109] [PMID: 22922346]
[9]
Bisht, N.; Singh, B.K. Role of computer aided drug design in drug development and drug discovery. Int. J. Pharm. Sci. Res., 2018, 9(4), 1405-1415.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.9(4).1405-15]
[10]
Salmaso, V.; Moro, S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front. Pharmacol., 2018, 9, 923.
[http://dx.doi.org/10.3389/fphar.2018.00923] [PMID: 30186166]
[11]
Ferreira, L.; dos Santos, R.; Oliva, G.; Andricopulo, A. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[12]
Jones, L.H.; Bunnage, M.E. Applications of chemogenomic library screening in drug discovery. Nat. Rev. Drug Discov., 2017, 16(4), 285-296.
[http://dx.doi.org/10.1038/nrd.2016.244] [PMID: 28104905]
[13]
Chahal, V.; Nirwan, S.; Kakkar, R. Combined approach of homology modeling, molecular dynamics, and docking: Computer-aided drug discovery. Physical Sci. Rev., 2019, 4(10), 1-15.
[http://dx.doi.org/10.1515/psr-2019-0066]
[14]
Macalino, S.J.Y.; Billones, J.B.; Organo, V.G.; Carrillo, M.C.O. In silico strategies in tuberculosis drug discovery. Molecules, 2020, 25(3), 665.
[http://dx.doi.org/10.3390/molecules25030665] [PMID: 32033144]
[15]
Hecht, D.; Fogel, G.B. Computational intelligence methods for docking scores. Curr. Comput. Aided Drug Des., 2009, 5(1), 56-68.
[http://dx.doi.org/10.2174/157340909787580863]
[16]
Meyers, J.; Fabian, B.; Brown, N. De novo molecular design and generative models. Drug Discov. Today, 2021, 26(11), 2707-2715.
[http://dx.doi.org/10.1016/j.drudis.2021.05.019] [PMID: 34082136]
[17]
Mouchlis, V.D.; Afantitis, A.; Serra, A.; Fratello, M.; Papadiamantis, A.G.; Aidinis, V.; Lynch, I.; Greco, D.; Melagraki, G. Advances in de novo drug design  From conventional to machine learning methods. Int. J. Mol. Sci., 2021, 22(4), 1676.
[18]
Sulimov, A.; Kutov, D.; Ilin, I.; Zheltkov, D.; Tyrtyshnikov, E.; Sulimov, V. Supercomputer docking with a large number of degrees of freedom. SAR QSAR Environ. Res., 2019, 30(10), 733-749.
[http://dx.doi.org/10.1080/1062936X.2019.1659412] [PMID: 31547677]
[19]
Muhammed, M.T.; Kuyucuklu, G.; Kaynak-Onurdag, F.; Aki-Yalcin, E. Synthesis, antimicrobial activity, and molecular modeling studies of some benzoxazole derivatives. Lett. Drug Des. Discov., 2022, 19(8), 757-768.
[http://dx.doi.org/10.2174/1570180819666220408133643]
[20]
Chen, Y.C. Beware of docking! Trends Pharmacol. Sci., 2015, 36(2), 78-95.
[http://dx.doi.org/10.1016/j.tips.2014.12.001] [PMID: 25543280]
[21]
Tuccinardi, T.; Poli, G.; Romboli, V.; Giordano, A.; Martinelli, A. Extensive consensus docking evaluation for ligand pose prediction and virtual screening studies. J. Chem. Inf. Model., 2014, 54(10), 2980-2986.
[http://dx.doi.org/10.1021/ci500424n] [PMID: 25211541]
[22]
Dar, A.M.; Mir, S. Molecular docking: Approaches, types, applications and basic challenges. J. Anal. Bioanal. Tech., 2017, 8(2), 8-10.
[http://dx.doi.org/10.4172/2155-9872.1000356]
[23]
Elokely, K.M.; Doerksen, R.J. Docking challenge: Protein sampling and molecular docking performance. J. Chem. Inf. Model., 2013, 53(8), 1934-1945.
[http://dx.doi.org/10.1021/ci400040d] [PMID: 23530568]
[24]
Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[25]
Phillips, M.A.; Stewart, M.A.; Woodling, D.L.; Xie, Z. Has molecular docking ever brought. US Med., 2018, 1, 141-179.
[http://dx.doi.org/10.5772/57353]
[26]
Ludovici, D.W.; De Corte, B.L.; Kukla, M.J.; Ye, H.; Ho, C.Y.; Lichtenstein, M.A.; Kavash, R.W.; Andries, K.; de Béthune, M.P.; Azijn, H.; Pauwels, R.; Lewi, P.J.; Heeres, J.; Koymans, L.M.H.; de Jonge, M.R.; Van Aken, K.J.A.; Daeyaert, F.F.D.; Das, K.; Arnold, E.; Janssen, P.A.J. Evolution of anti-HIV drug candidates. Part 3: Diarylpyrimidine (DAPY) analogues. Bioorg. Med. Chem. Lett., 2001, 11(17), 2235-2239.
[http://dx.doi.org/10.1016/S0960-894X(01)00412-7] [PMID: 11527705]
[27]
Janssen, P.A.J.; Lewi, P.J.; Arnold, E.; Daeyaert, F.; de Jonge, M.; Heeres, J.; Koymans, L.; Vinkers, M.; Guillemont, J.; Pasquier, E.; Kukla, M.; Ludovici, D.; Andries, K.; de Béthune, M.P.; Pauwels, R.; Das, K.; Clark, A.D., Jr; Frenkel, Y.V.; Hughes, S.H.; Medaer, B.; De Knaep, F.; Bohets, H.; De Clerck, F.; Lampo, A.; Williams, P.; Stoffels, P. In search of a novel anti-HIV drug: Multidisciplinary coordination in the discovery of 4-[[4-[[4-[(1E)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2- pyrimidinyl]amino]benzonitrile (R278474, rilpivirine). J. Med. Chem., 2005, 48(6), 1901-1909.
[http://dx.doi.org/10.1021/jm040840e] [PMID: 15771434]
[28]
Zhang, P.; Bao, L.; Fan, J.; Jia, Z.J.; Sinha, U.; Wong, P.W.; Park, G.; Hutchaleelaha, A.; Scarborough, R.M.; Zhu, B.Y.; Anthranilamide-Based, N.; Anthranilamide-based, N. N-dialkylbenzamidines as potent and orally bioavailable factor Xa inhibitors: P4 SAR. Bioorg. Med. Chem. Lett., 2009, 19(8), 2186-2189.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.114] [PMID: 19297158]
[29]
Zhang, P.; Huang, W.; Wang, L.; Bao, L.; Jia, Z.J.; Bauer, S.M.; Goldman, E.A.; Probst, G.D.; Song, Y.; Su, T.; Fan, J.; Wu, Y.; Li, W.; Woolfrey, J.; Sinha, U.; Wong, P.W.; Edwards, S.T.; Arfsten, A.E.; Clizbe, L.A.; Kanter, J.; Pandey, A.; Park, G.; Hutchaleelaha, A.; Lambing, J.L.; Hollenbach, S.J.; Scarborough, R.M.; Zhu, B.Y. Discovery of betrixaban (PRT054021), N-(5-chloropyridin-2-yl)-2-(4-(N,N-dimethylcarbamimidoyl)benzamido)-5-methoxybenzamide, a highly potent, selective, and orally efficacious factor Xa inhibitor. Bioorg. Med. Chem. Lett., 2009, 19(8), 2179-2185.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.111] [PMID: 19297154]
[30]
von Itzstein, M.; Wu, W.Y.; Kok, G.B.; Pegg, M.S.; Dyason, J.C.; Jin, B.; Van Phan, T.; Smythe, M.L.; White, H.F.; Oliver, S.W.; Colman, P.M.; Varghese, J.N.; Ryan, D.M.; Woods, J.M.; Bethell, R.C.; Hotham, V.J.; Cameron, J.M.; Penn, C.R. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature, 1993, 363(6428), 418-423.
[http://dx.doi.org/10.1038/363418a0] [PMID: 8502295]
[31]
Ellingson, S.R.; Miao, Y.; Baudry, J.; Smith, J.C. Multi-conformer ensemble docking to difficult protein targets. J. Phys. Chem. B, 2015, 119(3), 1026-1034.
[http://dx.doi.org/10.1021/jp506511p] [PMID: 25198248]
[32]
Sabe, V.T.; Ntombela, T.; Jhamba, L.A.; Maguire, G.E.M.; Govender, T.; Naicker, T.; Kruger, H.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem., 2021, 224, 113705.
[http://dx.doi.org/10.1016/j.ejmech.2021.113705] [PMID: 34303871]
[33]
Chakraborty, R.; Parvez, S. COVID-19: An overview of the current pharmacological interventions, vaccines, and clinical trials. Biochem. Pharmacol., 2020, 180(July), 114184.
[http://dx.doi.org/10.1016/j.bcp.2020.114184] [PMID: 32739342]
[34]
Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. An updated review of computer-aided drug design and its application to COVID-19. BioMed Res. Int., 2021, 2021, 1-18.
[http://dx.doi.org/10.1155/2021/8853056] [PMID: 34258282]
[35]
Amin, S.A.; Jha, T. Fight against novel coronavirus: A perspective of medicinal chemists. Eur. J. Med. Chem., 2020, 201(June), 112559.
[http://dx.doi.org/10.1016/j.ejmech.2020.112559] [PMID: 32563814]
[36]
A systematic review of RdRp of SARS-CoV-2 through artificial intelligence and machine learning utilizing structure-based drug design strategy. Turk. J. Chem., 2021, 1-30.
[http://dx.doi.org/10.3906/kim-2109-30]
[37]
Peele, K.A.; Potla Durthi, C.; Srihansa, T.; Krupanidhi, S.; Ayyagari, V.S.; Babu, D.J.; Indira, M.; Reddy, A.R.; Venkateswarulu, T.C. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Inform. Med. Unlocked, 2020, 19, 100345.
[http://dx.doi.org/10.1016/j.imu.2020.100345] [PMID: 32395606]
[38]
Serafim, M.S.M.; Gertrudes, J.C.; Costa, D.M.A.; Oliveira, P.R.; Maltarollo, V.G.; Honorio, K.M. Knowing and combating the enemy: A brief review on SARS-CoV-2 and computational approaches applied to the discovery of drug candidates. Biosci. Rep., 2021, 41(3), BSR20202616.
[http://dx.doi.org/10.1042/BSR20202616] [PMID: 33624754]
[39]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[40]
Prieto-Martínez, F.D.; Arciniega, M.; Medina-Franco, J.L. Molecular docking: Current advances and challenges. TIP Revi. Esp. Cienc. Quim. Biol., 2018, 21(Suppl. 1), 1-23.
[http://dx.doi.org/10.22201/fesz.23958723e.2018.0.143]
[41]
Lopes, P.E.M.; Guvench, O.; MacKerell, A.D., Jr Current status of protein force fields for molecular dynamics simulations. Methods Mol. Biol., 2015, 1215, 47-71.
[http://dx.doi.org/10.1007/978-1-4939-1465-4_3] [PMID: 25330958]
[42]
Hamzeh-mivehroud, M.; Sokouti, B.; Dastmalchi, S.; Islamia, J.M.; Delhi, N.; Islamia, J.M.; Delhi, N.; Ambure, P.; Roy, K.; Anderluh, M. The comparison of docking search algorithms and scoring functions: An overview and case studies. In: Dastmalchi, S.; Hamzeh- Mivehroud, M.; Babak, S.; Eds. Methods and Algorithms for Molecular Docking-Based Drug Design and Discovery; Hershey, PA: IGI Global, 2016; pp. 99-127.
[http://dx.doi.org/10.4018/978-1-5225-0115-2]
[43]
Wong, C.F. Flexible receptor docking for drug discovery. Expert Opin. Drug Discov., 2015, 10(11), 1189-1200.
[http://dx.doi.org/10.1517/17460441.2015.1078308] [PMID: 26313123]
[44]
Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys. Rev., 2017, 9(2), 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1] [PMID: 28510083]
[45]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[46]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334.AutoDock] [PMID: 19499576]
[47]
Allen, W.J.; Balius, T.E.; Mukherjee, S.; Brozell, S.R.; Moustakas, D.T.; Lang, P.T.; Case, D.A.; Kuntz, I.D.; Rizzo, R.C. DOCK 6: Impact of new features and current docking performance. J. Comput. Chem., 2015, 36(15), 1132-1156.
[http://dx.doi.org/10.1002/jcc.23905] [PMID: 25914306]
[48]
Unzue, A.; Xu, M.; Dong, J.; Wiedmer, L.; Spiliotopoulos, D.; Caflisch, A.; Nevado, C. Fragment-based design of selective nanomolar ligands of the crebbp bromodomain. J. Med. Chem., 2016, 59(4), 1350-1356.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00172] [PMID: 26043365]
[49]
Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol., 1996, 261(3), 470-489.
[http://dx.doi.org/10.1006/jmbi.1996.0477] [PMID: 8780787]
[50]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[51]
Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins, 2003, 52(4), 609-623.
[http://dx.doi.org/10.1002/prot.10465] [PMID: 12910460]
[52]
Korb, O.; Stützle, T.; Exner, T.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model., 2009, 49(1), 84-96.
[http://dx.doi.org/10.1021/ci800298z] [PMID: 19125657]
[53]
Abagyan, R.; Totrov, M.; Kuznetsov, D. ICM?A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem., 1994, 15(5), 488-506.
[http://dx.doi.org/10.1002/jcc.540150503]
[54]
Vilar, S.; Cozza, G.; Moro, S. Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery. Curr. Top. Med. Chem., 2008, 8(18), 1555-1572.
[http://dx.doi.org/10.2174/156802608786786624] [PMID: 19075767]
[55]
Spitzer, R.; Jain, A.N. Surflex-Dock: Docking benchmarks and real-world application. J. Comput. Aided Mol. Des., 2012, 26(6), 687-699.
[http://dx.doi.org/10.1007/s10822-011-9533-y] [PMID: 22569590]
[56]
Rao, S.N.; Head, M.S.; Kulkarni, A.; LaLonde, J.M. Validation studies of the site-directed docking program LibDock. J. Chem. Inf. Model., 2007, 47(6), 2159-2171.
[http://dx.doi.org/10.1021/ci6004299] [PMID: 17985863]
[57]
Wu, G.; Robertson, D.H.; Brooks, C.L., III; Vieth, M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER?A CHARMm-based MD docking algorithm. J. Comput. Chem., 2003, 24(13), 1549-1562.
[http://dx.doi.org/10.1002/jcc.10306] [PMID: 12925999]
[58]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein–ligand docking and virtual drug screening with the autodock suite. Nat. Protoc., 2016, 11(5), 905-919.
[http://dx.doi.org/10.1038/nprot.2016.051]
[59]
Bitencourt-Ferreira, G.; de Azevedo, W.F., Jr Molegro virtual docker for docking. Methods Mol. Biol., 2019, 2053, 149-167.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_10] [PMID: 31452104]
[60]
McGann, M. FRED and HYBRID docking performance on standardized datasets. J. Comput. Aided Mol. Des., 2012, 26(8), 897-906.
[http://dx.doi.org/10.1007/s10822-012-9584-8] [PMID: 22669221]
[61]
Dong, D.; Xu, Z.; Zhong, W.; Peng, S. Parallelization of molecular docking: A review. Curr. Top. Med. Chem., 2018, 18(12), 1015-1028.
[http://dx.doi.org/10.2174/1568026618666180821145215] [PMID: 30129415]
[62]
Maia, E.H.B.; Medaglia, L.R.; da Silva, A.M.; Taranto, A.G. Molecular architect: A user-friendly workflow for virtual screening. ACS Omega, 2020, 5(12), 6628-6640.
[http://dx.doi.org/10.1021/acsomega.9b04403] [PMID: 32258898]
[63]
Gupta, M.; Sharma, R.; Kumar, A. Docking techniques in pharmacology: How much promising? Comput. Biol. Chem., 2018, 76(June), 210-217.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.06.005] [PMID: 30067954]
[64]
Ramírez, D.; Caballero, J. Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules, 2018, 23(5), 1038.
[http://dx.doi.org/10.3390/molecules23051038] [PMID: 29710787]
[65]
Muhammed, M.T.; Aki-Yalcin, E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem. Biol. Drug Des., 2019, 93(1), 12-20.
[http://dx.doi.org/10.1111/cbdd.13388] [PMID: 30187647]
[66]
Chi, P.B.; Liberles, D.A. Selection on protein structure, interaction, and sequence. Protein Sci., 2016, 25(7), 1168-1178.
[http://dx.doi.org/10.1002/pro.2886] [PMID: 26808055]
[67]
Muhammed, M.T. Son, Ç.D.; İzgü, F. Three dimensional structure prediction of panomycocin, a novel Exo-β-1,3-glucanase isolated from Wickerhamomyces anomalus NCYC 434 and the computational site-directed mutagenesis studies to enhance its thermal stability for therapeutic applications. Comput. Biol. Chem., 2019, 80(1), 270-277.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.04.006] [PMID: 31054539]
[68]
Lohning, A.E.; Levonis, S.M.; Williams-Noonan, B.; Schweiker, S.S. A practical guide to molecular docking and homology modelling for medicinal chemists. Curr. Top. Med. Chem., 2017, 17(18), 2023-2040.
[http://dx.doi.org/10.2174/1568026617666170130110827] [PMID: 28137238]
[69]
Warren, G.L.; Do, T.D.; Kelley, B.P.; Nicholls, A.; Warren, S.D. Essential considerations for using protein–ligand structures in drug discovery. Drug Discov. Today, 2012, 17(23-24), 1270-1281.
[http://dx.doi.org/10.1016/j.drudis.2012.06.011] [PMID: 22728777]
[70]
Voruganti, H.K.; Dasgupta, B. A novel volumetric criterion for optimal shape matching of surfaces for protein-protein docking. J. Comput. Des. Eng., 2018, 5(2), 180-190.
[http://dx.doi.org/10.1016/j.jcde.2017.10.003]
[71]
Feher, M.; Williams, C.I. Numerical errors and chaotic behavior in docking simulations. J. Chem. Inf. Model., 2012, 52(3), 724-738.
[http://dx.doi.org/10.1021/ci200598m] [PMID: 22379951]
[72]
Cousins, K.R. Computer review of chemdraw ultra 12.0. J. Am. Chem. Soc., 2011, 133(21), 8388.
[http://dx.doi.org/10.1021/ja204075s] [PMID: 21561109]
[73]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res., 2019, 47(D1), D1102-D1109.
[http://dx.doi.org/10.1093/nar/gky1033] [PMID: 30371825]
[74]
Sterling, T.; Irwin, J.J. ZINC 15-Ligand discovery for everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337.
[http://dx.doi.org/10.1021/acs.jcim.5b00559] [PMID: 26479676]
[75]
Andricopulo, A.; Guido, R.; Oliva, G. Virtual screening and its integration with modern drug design technologies. Curr. Med. Chem., 2008, 15(1), 37-46.
[http://dx.doi.org/10.2174/092986708783330683] [PMID: 18220761]
[76]
Feinstein, W.P.; Brylinski, M. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. J. Cheminform., 2015, 7(1), 18.
[http://dx.doi.org/10.1186/s13321-015-0067-5] [PMID: 26082804]
[77]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[78]
Cournia, Z.; Allen, B.; Sherman, W. Relative binding free energy calculations in drug discovery: Recent advances and practical considerations. J. Chem. Inf. Model., 2017, 57(12), 2911-2937.
[http://dx.doi.org/10.1021/acs.jcim.7b00564] [PMID: 29243483]
[79]
Luzhkov, V.B. Molecular modelling and free-energy calculations of protein–ligand binding. Russ. Chem. Rev., 2017, 86(3), 211-230.
[http://dx.doi.org/10.1070/RCR4610]
[80]
Kroemer, R.T. Structure-based drug design  Docking and scoring. Curr. Protein Pept. Sci., 2007, 8(4), 312-328.
[81]
Coupez, B.; Lewis, R.A. Docking and scoring-Theoretically easy, Practically Impossible? Curr. Med. Chem., 2006, 13(25), 2995-3003.
[82]
Klepeis, J.L.; Lindorff-Larsen, K.; Dror, R.O.; Shaw, D.E. Long-timescale molecular dynamics simulations of protein structure and function. Curr. Opin. Struct. Biol., 2009, 19(2), 120-127.
[http://dx.doi.org/10.1016/j.sbi.2009.03.004] [PMID: 19361980]
[83]
Torres, P.H.M.; Sodero, A.C.R.; Jofily, P.; Silva-Jr, F.P. Key topics in molecular docking for drug design. Int. J. Mol. Sci., 2019, 20(18), 4574.
[http://dx.doi.org/10.3390/ijms20184574] [PMID: 31540192]
[84]
Lionta, E.; Spyrou, G.; Vassilatis, D.; Cournia, Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr. Top. Med. Chem., 2014, 14(16), 1923-1938.
[http://dx.doi.org/10.2174/1568026614666140929124445] [PMID: 25262799]
[85]
Fan, J.; Fu, A.; Zhang, L. Progress in molecular docking. Quant. Biol., 2019, 7(2), 83-89.
[http://dx.doi.org/10.1007/s40484-019-0172-y]
[86]
Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M.Á.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N.E.; Martinez, A. COVID-19: Drug targets and potential treatments. J. Med. Chem., 2020, 63(21), 12359-12386.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[87]
Saxena, A. Drug targets for COVID-19 therapeutics: Ongoing global efforts. J. Biosci., 2020, 45(1), 87.
[http://dx.doi.org/10.1007/s12038-020-00067-w] [PMID: 32661214]
[88]
Vardhan, S.; Sahoo, S.K. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Comput. Biol. Med., 2020, 124, 103936.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103936] [PMID: 32738628]
[89]
Rubio-Martínez, J.; Jiménez-Alesanco, A.; Ceballos-Laita, L.; Ortega-Alarcón, D.; Vega, S.; Calvo, C.; Benítez, C.; Abian, O.; Velázquez-Campoy, A.; Thomson, T.M.; Granadino-Roldán, J.M.; Gómez-Gutiérrez, P.; Pérez, J.J. Discovery of diverse natural products as inhibitors of SARS-CoV-2 M pro protease through virtual screening. J. Chem. Inf. Model., 2021, 61(12), 6094-6106.
[http://dx.doi.org/10.1021/acs.jcim.1c00951] [PMID: 34806382]
[90]
Sharma, P.; Vijayan, V.; Pant, P.; Sharma, M.; Vikram, N.; Kaur, P.; Singh, T.P.; Sharma, S. Identification of potential drug candidates to combat COVID-19: A structural study using the main protease (Mpro) of SARS-CoV-2. J. Biomol. Struct. Dyn., 2020, 0(0), 1-11.
[http://dx.doi.org/10.1080/07391102.2020.1798286] [PMID: 32741313]
[91]
Gorgulla, C.; Padmanabha Das, K.M.; Leigh, K.E.; Cespugli, M.; Fischer, P.D.; Wang, Z.F.; Tesseyre, G.; Pandita, S.; Shnapir, A.; Calderaio, A.; Gechev, M.; Rose, A.; Lewis, N.; Hutcheson, C.; Yaffe, E.; Luxenburg, R.; Herce, H.D.; Durmaz, V.; Halazonetis, T.D.; Fackeldey, K.; Patten, J.J.; Chuprina, A.; Dziuba, I.; Plekhova, A.; Moroz, Y.; Radchenko, D.; Tarkhanova, O.; Yavnyuk, I.; Gruber, C.; Yust, R.; Payne, D.; Näär, A.M.; Namchuk, M.N.; Davey, R.A.; Wagner, G.; Kinney, J.; Arthanari, H. A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. iScience, 2021, 24(2), 102021.
[http://dx.doi.org/10.1016/j.isci.2020.102021] [PMID: 33426509]
[92]
Ton, A.T.; Gentile, F.; Hsing, M.; Ban, F.; Cherkasov, A. Rapid identification of potential inhibitors of SARS‐CoV‐2 main protease by deep docking of 1.3 billion compounds. Mol. Inform., 2020, 39(8), 2000028.
[http://dx.doi.org/10.1002/minf.202000028] [PMID: 32162456]
[93]
Rossetti, G.G.; Ossorio, M.A.; Rempel, S.; Kratzel, A.; Dionellis, V.S.; Barriot, S.; Tropia, L.; Gorgulla, C.; Arthanari, H.; Thiel, V.; Mohr, P.; Gamboni, R.; Halazonetis, T.D. Non-covalent SARS-CoV-2 Mpro inhibitors developed from in silico screen hits. Sci. Rep., 2022, 12(1), 2505.
[http://dx.doi.org/10.1038/s41598-022-06306-4] [PMID: 35169179]
[94]
Huang, H.; Zhang, G.; Zhou, Y.; Lin, C.; Chen, S.; Lin, Y.; Mai, S.; Huang, Z. Reverse screening methods to search for the protein targets of chemopreventive compounds. Front Chem., 2018, 6(MAY), 138.
[http://dx.doi.org/10.3389/fchem.2018.00138] [PMID: 29868550]
[95]
Xu, X.; Huang, M.; Zou, X. Docking-based inverse virtual screening: Methods, applications, and challenges. Biophys. Rep., 2018, 4(1), 1-16.
[http://dx.doi.org/10.1007/s41048-017-0045-8] [PMID: 29577065]
[96]
Gao, Z.; Li, H.; Zhang, H.; Liu, X.; Kang, L.; Luo, X.; Zhu, W.; Chen, K.; Wang, X.; Jiang, H. PDTD: A web-accessible protein database for drug target identification. BMC Bioinformatics, 2008, 9(1), 104.
[http://dx.doi.org/10.1186/1471-2105-9-104] [PMID: 18282303]
[97]
Chen, X.; Ji, Z.L.; Chen, Y.Z. TTD: Therapeutic target database. Nucleic Acids Res., 2002, 30(1), 412-415.
[http://dx.doi.org/10.1093/nar/30.1.412] [PMID: 11752352]
[98]
Li, H.; Gao, Z.; Kang, L.; Zhang, H.; Yang, K.; Yul, K.; Luo, X.; Zhu, W.; Chen, K.; Shen, J. TarFisDock: A web server for identifying drug targets with docking approach. Nucleic Acids Res., 2006, 34, 219-224.
[http://dx.doi.org/10.1093/nar/gkl114]
[99]
Wang, J.C.; Chu, P.Y.; Chen, C.M.; Lin, J.H. idTarget: A web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach. Nucleic Acids Res., 2012, 40(W1), W393-W399.
[http://dx.doi.org/10.1093/nar/gks496] [PMID: 22649057]
[100]
Chen, Y.Z.; Zhi, D.G. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins, 2001, 43(2), 217-226.
[http://dx.doi.org/10.1002/1097-0134(20010501)43:2<217:AID-PROT1032>3.0.CO;2-G] [PMID: 11276090]
[101]
Bullock, C.; Cornia, N.; Jacob, R.; Remm, A.; Peavey, T.; Weekes, K.; Mallory, C.; Oxford, J.T.; McDougal, O.M.; Andersen, T.L. DockoMatic 2.0: High throughput inverse virtual screening and homology modeling. J. Chem. Inf. Model., 2013, 53(8), 2161-2170.
[http://dx.doi.org/10.1021/ci400047w] [PMID: 23808933]
[102]
Yang, L.; Luo, H.; Chen, J.; Xing, Q.; He, L. SePreSA: A server for the prediction of populations susceptible to serious adverse drug reactions implementing the methodology of a chemical–protein interactome. Nucleic Acids Res., 2009, 37(Suppl. 2), W406-W412.
[http://dx.doi.org/10.1093/nar/gkp312] [PMID: 19417066]
[103]
Zhao, J.; Yang, P.; Li, F.; Tao, L.; Ding, H.; Rui, Y.; Cao, Z.; Zhang, W. Therapeutic effects of astragaloside IV on myocardial injuries: Multi-target identification and network analysis. PLoS One, 2012, 7(9), e44938.
[http://dx.doi.org/10.1371/journal.pone.0044938] [PMID: 23028693]
[104]
Klein, E.; Bourdette, D. Postmarketing adverse drug reactions: A duty to report? Neurol. Clin. Pract., 2013, 3(4), 288-294.
[http://dx.doi.org/10.1212/CPJ.0b013e3182a1b9f0] [PMID: 24195018]
[105]
Yoo, S.; Noh, K.; Shin, M.; Park, J.; Lee, K.H.; Nam, H.; Lee, D. In silico profiling of systemic effects of drugs to predict unexpected interactions. Sci. Rep., 2018, 8(1), 1612.
[http://dx.doi.org/10.1038/s41598-018-19614-5] [PMID: 29371651]
[106]
Fan, S.; Geng, Q.; Pan, Z.; Li, X.; Tie, L.; Pan, Y.; Li, X. Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst. Biol., 2012, 6(1), 152.
[http://dx.doi.org/10.1186/1752-0509-6-152] [PMID: 23228038]
[107]
Kuhn, M.; Letunic, I.; Jensen, L.J.; Bork, P. The SIDER database of drugs and side effects. Nucleic Acids Res., 2016, 44(D1), D1075-D1079.
[http://dx.doi.org/10.1093/nar/gkv1075] [PMID: 26481350]
[108]
Luo, H.; Fokoue-Nkoutche, A.; Singh, N.; Yang, L.; Hu, J.; Zhang, P. Molecular docking for prediction and interpretation of adverse drug reactions. Comb. Chem. High Throughput Screen., 2018, 21(5), 314-322.
[http://dx.doi.org/10.2174/1386207321666180524110013] [PMID: 29792141]
[109]
Ramsay, R.R.; Popovic-Nikolic, M.R.; Nikolic, K.; Uliassi, E.; Bolognesi, M.L. A perspective on multi‐target drug discovery and design for complex diseases. Clin. Transl. Med., 2018, 7(1), 3.
[http://dx.doi.org/10.1186/s40169-017-0181-2] [PMID: 29340951]
[110]
Anighoro, A.; Bajorath, J.; Rastelli, G. Polypharmacology: Challenges and opportunities in drug discovery. J. Med. Chem., 2014, 57(19), 7874-7887.
[http://dx.doi.org/10.1021/jm5006463] [PMID: 24946140]
[111]
Wei, D.; Jiang, X.; Zhou, L.; Chen, J.; Chen, Z.; He, C.; Yang, K.; Liu, Y.; Pei, J.; Lai, L. Discovery of multitarget inhibitors by combining molecular docking with common pharmacophore matching. J. Med. Chem., 2008, 51(24), 7882-7888.
[http://dx.doi.org/10.1021/jm8010096] [PMID: 19090779]
[112]
Zhang, W.; Pei, J.; Lai, L. Computational multitarget drug design. J. Chem. Inf. Model., 2017, 57(3), 403-412.
[http://dx.doi.org/10.1021/acs.jcim.6b00491] [PMID: 28166637]
[113]
Gasymov, O.K.; Celik, S.; Agaeva, G.; Akyuz, S.; Kecel-Gunduz, S.; Qocayev, N.M.; Ozel, A.E.; Agaeva, U.; Bakhishova, M.; Aliyev, J.A. Evaluation of anti-cancer and anti-covid-19 properties of cationic pentapeptide Glu-Gln-Arg-Pro-Arg, from rice bran protein and its d-isomer analogs through molecular docking simulations. J. Mol. Graph. Model., 2021, 108(April), 107999.
[http://dx.doi.org/10.1016/j.jmgm.2021.107999] [PMID: 34352727]
[114]
Anighoro, A.; Pinzi, L.; Marverti, G.; Bajorath, J.; Rastelli, G. Heat shock protein 90 and serine/threonine kinase B-Raf inhibitors have overlapping chemical space. RSC Advances, 2017, 7(49), 31069-31074.
[http://dx.doi.org/10.1039/C7RA05889F]
[115]
Chopra, G.; Samudrala, R. Exploring polypharmacology in drug discovery and repurposing using the CANDO platform. Curr. Pharm. Des., 2016, 22(21), 3109-3123.
[http://dx.doi.org/10.2174/1381612822666160325121943] [PMID: 27013226]
[116]
Luo, H.; Chen, J.; Shi, L.; Mikailov, M.; Zhu, H.; Wang, K.; He, L.; Yang, L. DRAR-CPI: A server for identifying drug repositioning potential and adverse drug reactions via the chemical–protein interactome. Nucleic Acids Res., 2011, 39(Web Server issue)(Suppl. 2), W492-W498.
[http://dx.doi.org/10.1093/nar/gkr299] [PMID: 21558322]
[117]
Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.; Tran, T.B.; Whaley, R.; Glennon, R.A.; Hert, J.; Thomas, K.L.H.; Edwards, D.D.; Shoichet, B.K.; Roth, B.L. Predicting new molecular targets for known drugs. Nature, 2009, 462(7270), 175-181.
[http://dx.doi.org/10.1038/nature08506] [PMID: 19881490]
[118]
March-Vila, E.; Pinzi, L.; Sturm, N.; Tinivella, A.; Engkvist, O.; Chen, H.; Rastelli, G. On the integration of in silico drug design methods for drug repurposing. Front. Pharmacol., 2017, 8(MAY), 298.
[http://dx.doi.org/10.3389/fphar.2017.00298] [PMID: 28588497]
[119]
Kumar, S.; Kumar, S. Molecular Docking: A Structure-Based Approach for Drug Repurposing; Elsevier Inc: Amsterdam, 2019.
[http://dx.doi.org/10.1016/B978-0-12-816125-8.00006-7]
[120]
Dotolo, S.; Marabotti, A.; Facchiano, A.; Tagliaferri, R. A review on drug repurposing applicable to COVID-19. Brief. Bioinform., 2021, 22(2), 726-741.
[http://dx.doi.org/10.1093/bib/bbaa288] [PMID: 33147623]
[121]
Elmezayen, A.D. Al-Obaidi, A.; Şahin, A.T.; Yelekçi, K. Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. J. Biomol. Struct. Dyn., 2020, 39(8), 1-12.
[http://dx.doi.org/10.1080/07391102.2020.1758791] [PMID: 32306862]
[122]
Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Hegazy, M.E.F. In-silico drug repurposing and molecular dynamics puzzled out potential SARS-CoV-2 Main Protease Inhibitors. J. Biomol. Struct. Dyn., 2020, 39(15), 1-12.
[http://dx.doi.org/10.1080/07391102.2020.1791958] [PMID: 32684114]
[123]
Azam, F.; Eid, E.E.M.; Almutairi, A. Targeting SARS-CoV-2 main protease by teicoplanin: A mechanistic insight by docking, MM/GBSA and molecular dynamics simulation. J. Mol. Struct., 2021, 1246, 131124.
[http://dx.doi.org/10.1016/j.molstruc.2021.131124] [PMID: 34305175]
[124]
Uddin, R.; Jalal, K.; Khan, K. ul-Haq, Z. Re-purposing of hepatitis C virus FDA approved direct acting antivirals as potential SARS-CoV-2 protease inhibitors. J. Mol. Struct., 2022, 1250, 131920.
[http://dx.doi.org/10.1016/j.molstruc.2021.131920] [PMID: 34815586]
[125]
Hall, D.C., Jr; Ji, H.F. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Med. Infect. Dis., 2020, 35(March), 101646.
[http://dx.doi.org/10.1016/j.tmaid.2020.101646] [PMID: 32294562]
[126]
Tober, M. PubMed, ScienceDirect, Scopus or Google Scholar – Which is the best search engine for an effective literature research in laser medicine? Med. Laser Appl., 2011, 26(3), 139-144.
[http://dx.doi.org/10.1016/j.mla.2011.05.006]
[127]
Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Protein-ligand docking: Current status and future challenges. Proteins, 2006, 65(1), 15-26.
[http://dx.doi.org/10.1002/prot.21082] [PMID: 16862531]
[128]
Vieira, T.F.; Sousa, S.F. Comparing autodock and vina in ligand/decoy discrimination for virtual screening. Appl. Sci. (Basel), 2019, 9(21), 4538.
[http://dx.doi.org/10.3390/app9214538]
[129]
Chen, H.; Lyne, P.D.; Giordanetto, F.; Lovell, T.; Li, J. On evaluating molecular-docking methods for pose prediction and enrichment factors. J. Chem. Inf. Model., 2006, 46(1), 401-415.
[http://dx.doi.org/10.1021/ci0503255] [PMID: 16426074]
[130]
Kumar, A.; Zhang, K.Y.J. Advances in the development of shape similarity methods and their application in drug discovery. Front Chem., 2018, 6(JUL), 315.
[http://dx.doi.org/10.3389/fchem.2018.00315] [PMID: 30090808]
[131]
Pinzi, L.; Caporuscio, F.; Rastelli, G. Selection of protein conformations for structure-based polypharmacology studies. Drug Discov. Today, 2018, 23(11), 1889-1896.
[http://dx.doi.org/10.1016/j.drudis.2018.08.007] [PMID: 30099123]
[132]
Talevi, A.; Gavernet, L.; Bruno-Blanch, L. Combined virtual screening strategies. Curr. Comput. Aided Drug Des., 2009, 5(1), 23-37.
[http://dx.doi.org/10.2174/157340909787580854]
[133]
Degliesposti, G.; Portioli, C.; Parenti, M.D.; Rastelli, G. BEAR, a novel virtual screening methodology for drug discovery. SLAS Discov., 2011, 16(1), 129-133.
[http://dx.doi.org/10.1177/1087057110388276] [PMID: 21084717]
[134]
Guedes, I.A.; Pereira, F.S.S.; Dardenne, L.E. Empirical scoring functions for structure-based virtual screening: Applications, critical aspects, and challenges. Front. Pharmacol., 2018, 9(Sep), 1089.
[http://dx.doi.org/10.3389/fphar.2018.01089] [PMID: 30319422]
[135]
Adeniyi, A.A.; Soliman, M.E.S. Implementing QM in docking calculations: Is it a waste of computational time? Drug Discov. Today, 2017, 22(8), 1216-1223.
[http://dx.doi.org/10.1016/j.drudis.2017.06.012] [PMID: 28689054]
[136]
Caballero, J. The latest automated docking technologies for novel drug discovery. Expert Opin. Drug Discov., 2020, 16(6), 1-21.
[http://dx.doi.org/10.1080/17460441.2021.1858793] [PMID: 33353444]
[137]
Ryde, U.; Söderhjelm, P. Ligand-binding affinity estimates supported by quantum-mechanical methods. Chem. Rev., 2016, 116(9), 5520-5566.
[http://dx.doi.org/10.1021/acs.chemrev.5b00630] [PMID: 27077817]
[138]
Ballester, P.J.; Mitchell, J.B.O. A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics, 2010, 26(9), 1169-1175.
[http://dx.doi.org/10.1093/bioinformatics/btq112] [PMID: 20236947]
[139]
Ain, Q.U.; Aleksandrova, A.; Roessler, F.D.; Ballester, P.J. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2015, 5(6), 405-424.
[http://dx.doi.org/10.1002/wcms.1225] [PMID: 27110292]
[140]
Korkmaz, S.; Zararsiz, G.; Goksuluk, D. MLViS: A web tool for machine learning-based virtual screening in early-phase of drug discovery and development. PLoS One, 2015, 10(4), e0124600.
[http://dx.doi.org/10.1371/journal.pone.0124600] [PMID: 25928885]
[141]
Chandak, T.; Mayginnes, J.P.; Mayes, H.; Wong, C.F. Using machine learning to improve ensemble docking for drug discovery. Proteins, 2020, 88(10), 1263-1270.
[http://dx.doi.org/10.1002/prot.25899] [PMID: 32401384]
[142]
Yang, X.; Wang, Y.; Byrne, R.; Schneider, G.; Yang, S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev., 2019, 119(18), 10520-10594.
[http://dx.doi.org/10.1021/acs.chemrev.8b00728] [PMID: 31294972]
[143]
Mogollon, D.C.; Fuentes, O.; Sirimulla, S. DLSCORE: A deep learning model for predicting protein-ligand binding affinities. ChemRxiv, 2018.
[http://dx.doi.org/10.26434/chemrxiv.6159143.v1]
[144]
Jiménez, J. Škalič M.; Martínez-Rosell, G.; De Fabritiis, G. KDEEP: Protein–ligand absolute binding affinity prediction via 3D-convolutional neural networks. J. Chem. Inf. Model., 2018, 58(2), 287-296.
[http://dx.doi.org/10.1021/acs.jcim.7b00650] [PMID: 29309725]
[145]
Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackermann, Z.; Tran, V.M.; Chiappino-Pepe, A.; Badran, A.H.; Andrews, I.W.; Chory, E.J.; Church, G.M.; Brown, E.D.; Jaakkola, T.S.; Barzilay, R.; Collins, J.J. A deep learning approach to antibiotic discovery. Cell, 2020, 180(4), 688-702.e13.
[http://dx.doi.org/10.1016/j.cell.2020.01.021] [PMID: 32084340]
[146]
Jamal, S.; Khubaib, M.; Gangwar, R.; Grover, S.; Grover, A.; Hasnain, S.E. Artificial Intelligence and Machine learning based prediction of resistant and susceptible mutations in Mycobacterium tuberculosis. Sci. Rep., 2020, 10(1), 5487.
[http://dx.doi.org/10.1038/s41598-020-62368-2]
[147]
Huang, S.Y. Comprehensive assessment of flexible-ligand docking algorithms: Current effectiveness and challenges. Brief. Bioinform., 2018, 19(5), 982-994.
[http://dx.doi.org/10.1093/bib/bbx030] [PMID: 28334282]
[148]
Sarkar, A.; Sen, S. A comparative analysis of the molecular interaction techniques for in silico drug design. Int. J. Pept. Res. Ther., 2020, 26(1), 209-223.
[http://dx.doi.org/10.1007/s10989-019-09830-6]
[149]
Rose, P.W. Prlić A.; Altunkaya, A.; Bi, C.; Bradley, A.R.; Christie, C.H.; Costanzo, L.D.; Duarte, J.M.; Dutta, S.; Feng, Z.; Green, R.K.; Goodsell, D.S.; Hudson, B.; Kalro, T.; Lowe, R.; Peisach, E.; Randle, C.; Rose, A.S.; Shao, C.; Tao, Y.P.; Valasatava, Y.; Voigt, M.; Westbrook, J.D.; Woo, J.; Yang, H.; Young, J.Y.; Zardecki, C.; Berman, H.M.; Burley, S.K. The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Res., 2017, 45(D1), D271-D281.
[http://dx.doi.org/10.1093/nar/gkw1000] [PMID: 27794042]
[150]
Prinz, F.; Schlange, T.; Asadullah, K. Believe it or not: How much can we rely on published data on potential drug targets? Nat. Rev. Drug Discov., 2011, 10(9), 712-713.
[http://dx.doi.org/10.1038/nrd3439-c1] [PMID: 21892149]
[151]
Markosian, C.; Di Costanzo, L.; Sekharan, M.; Shao, C.; Burley, S.K.; Zardecki, C. Analysis of impact metrics for the Protein Data Bank. Sci. Data, 2018, 5(1), 180212.
[http://dx.doi.org/10.1038/sdata.2018.212] [PMID: 30325351]
[152]
Wang, G.; Zhu, W. Molecular docking for drug discovery and development: A widely used approach but far from perfect. Future Med. Chem., 2016, 8(14), 1707-1710.
[http://dx.doi.org/10.4155/fmc-2016-0143] [PMID: 27578269]
[153]
Menchaca, T.M.; Juarez-Portilla, C.; Zepeda, R.C. Past, present, and future of molecular docking. In: Gaitonde, V.; Karmakar, P.; Trivedi, A. Drug Discovery and Development-New Advances; London: IntechOpen, 2020; pp. 1-13.
[154]
Ewing, T.J.A.; Kuntz, I.D. Critical evaluation of search algorithms used in automated molecular docking. Comput. Appl. Biosci., 1997, 18, 1175-1189.
[155]
Pyrkov, T.V.; Priestle, J.P.; Jacoby, E.; Efremov, R.G. Ligand-specific scoring functions: Improved ranking of docking solutions. SAR QSAR Environ. Res., 2008, 19(1-2), 91-99.
[http://dx.doi.org/10.1080/10629360701844092] [PMID: 18311637]
[156]
Yadava, U. Search algorithms and scoring methods in protein-ligand docking. Endocrinol. Metabol. Inter. J., 2018, 6(6)
[http://dx.doi.org/10.15406/emij.2018.06.00212]
[157]
Wang, R.; Lu, Y.; Wang, S. Comparative evaluation of 11 scoring functions for molecular docking. J. Med. Chem., 2003, 46(12), 2287-2303.
[http://dx.doi.org/10.1021/jm0203783] [PMID: 12773034]

© 2025 Bentham Science Publishers | Privacy Policy