Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Nanotechnology: A Potential Approach for Nutraceuticals

Author(s): Steffi Pulikodan Francis, Lowrence Rene Christena*, Mishel Pulikodan Francis and Mohamed Haroon Basha Abdul

Volume 19, Issue 7, 2023

Published on: 29 December, 2022

Page: [673 - 681] Pages: 9

DOI: 10.2174/1573401319666221024162943

Price: $65

conference banner
Abstract

Nutraceuticals in the food sector open doors to the future of “nanoscience” technology that has gained much importance. Nanotechnology has established a new perspective by providing nanomaterials with changed features using nano-formulations and nutritional supplements in the food sector. Nanomaterials show distinctive features owing to their tiny size and high surface/ volume ratio; thus, they are fully utilized as nutraceuticals in the food sector. The present review article provides an exhaustive overview of the application of nanomaterials for developing advanced nanoparticles with increased bioavailability, solubility, improved encapsulation effectiveness, increased stability, sustained and targeted drug supply, degradation prevention, antimicrobials, and improved pharmacological activity. It also underlines the relevance of peptides and enzymes for food packaging and the future use of nanosensors/nano-bio sensors.

Graphical Abstract

[1]
Aalinkeel R, Kutscher HL, Singh A, et al. Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: A potential nanotherapy for Alzheimer’s disease? J Drug Target 2018; 26(2): 182-93.
[http://dx.doi.org/10.1080/1061186X.2017.1354002] [PMID: 28697660]
[2]
Abd-Allah H, Abdel-Aziz RTA, Nasr M. Chitosan nanoparticles making their way to clinical practice: A feasibility study on their topical use for acne treatment. Int J Biol Macromol 2020; 156: 262-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.040] [PMID: 32289418]
[3]
Ahmad MZ, Ahmad J, Zafar S, et al. Omega-3 fatty acids as adjunctive therapeutics: prospective of nanoparticles in its formulation development. Ther Deliv 2020; 11(1): 851-68.
[http://dx.doi.org/10.4155/tde-2019-0072] [PMID: 31840567]
[4]
Ash GI, Kim D, Choudhury M. Promises of nanotherapeutics in obesity. Trends Endocrinol Metab 2019; 30(6): 369-83.
[http://dx.doi.org/10.1016/j.tem.2019.04.004] [PMID: 31126754]
[5]
Bajpai V, Shukla S, Kang SM, et al. Developments of cyanobacteria for nano-marine drugs: Relevance of nanoformulations in cancer therapies. Mar Drugs 2018; 16(6): 179.
[http://dx.doi.org/10.3390/md16060179] [PMID: 29882898]
[6]
Bhavin SE, Anuradha G. Nanosponge Approach-a plethora of opportunities as a promising nanocarrier for novel drug delivery. Recent Pat Nanotechnol 2022; 16(4): 271-82.
[PMID: 34303335]
[7]
Boroumand H, Badie F, Mazaheri S, et al. Chitosan-based nanoparticles against viral infections. Front Cell Infect Microbiol 2021; 11: 643953.
[http://dx.doi.org/10.3389/fcimb.2021.643953] [PMID: 33816349]
[8]
Mishra PK, Shandilya R, Bhargava A, et al. Nano-engineered flavonoids for cancer protection. Front Biosci 2019; 24(6): 1097-157.
[http://dx.doi.org/10.2741/4771] [PMID: 30844733]
[9]
Eftekhari A, Dizaj SM, Chodari L, et al. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother 2018; 103: 1018-27.
[http://dx.doi.org/10.1016/j.biopha.2018.04.126] [PMID: 29710659]
[10]
El-Far A, Al Jaouni S, Li W, Mousa S. Protective roles of thymoquinone nanoformulations: Potential nanonutraceuticals in human diseases. Nutrients 2018; 10(10): 1369.
[http://dx.doi.org/10.3390/nu10101369] [PMID: 30257423]
[11]
Ibrahim D, Neamat-Allah ANF, Ibrahim SM, et al. Dual effect of selenium loaded chitosan nanoparticles on growth, antioxidant, immune related genes expression, transcriptomics modulation of caspase 1, cytochrome P450 and heat shock protein and Aeromonas hydrophila resistance of Nile Tilapia (Oreochromis niloticus). Fish Shellfish Immunol 2021; 110: 91-9.
[http://dx.doi.org/10.1016/j.fsi.2021.01.003] [PMID: 33453383]
[12]
Ibrahim S, Tagami T, Kishi T, Ozeki T. Curcumin marinosomes as promising nano-drug delivery system for lung cancer. Int J Pharm 2018; 540(1-2): 40-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.051] [PMID: 29408473]
[13]
Jaguezeski AM, Gündel SS, Favarin FR, et al. Low‐dose curcumin‐loaded Eudragit L‐100‐nanocapsules in the diet of dairy sheep increases antioxidant levels and reduces lipid peroxidation in milk. J Food Biochem 2019; 43(8): e12942.
[http://dx.doi.org/10.1111/jfbc.12942] [PMID: 31368562]
[14]
Jaguezeski AM, Souza CF, Perin G, et al. Effect of free and nano-encapsulated curcumin on treatment and energetic metabolism of gerbils infected by Listeria monocytogenes. Microb Pathog 2019; 134: 103564.
[http://dx.doi.org/10.1016/j.micpath.2019.103564] [PMID: 31163248]
[15]
Kamal M. Editorial (Thematic Issue: Frontier view on drug discoveries for different diseases - Part I). Curr Drug Metab 2017; 18(1): 3-4.
[http://dx.doi.org/10.2174/138920021801170119203152] [PMID: 28017133]
[16]
Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016; 12(1): 1-222.
[17]
Maan G, Sikdar B, Kumar A, Shukla R, Mishra A. Role of flavonoids in neurodegenerative diseases: limitations and future perspectives. Curr Top Med Chem 2020; 20(13): 1169-94.
[http://dx.doi.org/10.2174/1568026620666200416085330] [PMID: 32297582]
[18]
Manca ML, Casula E, Marongiu F, et al. From waste to health: Sustainable exploitation of grape pomace seed extract to manufacture antioxidant, regenerative and prebiotic nanovesicles within circular economy. Sci Rep 2020; 10(1): 14184.
[http://dx.doi.org/10.1038/s41598-020-71191-8] [PMID: 32843707]
[19]
McClements DJ. Nano-enabled personalized nutrition: Developing multicomponent-bioactive colloidal delivery systems. Adv Colloid Interface Sci 2020; 282: 102211.
[http://dx.doi.org/10.1016/j.cis.2020.102211] [PMID: 32721626]
[20]
Mohammady M. mohammadi Y, Yousefi G. Freeze-Drying of pharmaceutical and nutraceutical nanoparticles: The effects of formulation and technique parameters on nanoparticles characteristics. J Pharm Sci 2020; 109(11): 3235-47.
[http://dx.doi.org/10.1016/j.xphs.2020.07.015] [PMID: 32702373]
[21]
Nafee N, Gaber DM, Elzoghby AO, Helmy MW, Abdallah OY. Promoted antitumor activity of myricetin against lung carcinoma via nanoencapsulated phospholipid complex in respirable microparticles. Pharm Res 2020; 37(4): 82.
[http://dx.doi.org/10.1007/s11095-020-02794-z] [PMID: 32291520]
[22]
Nasr M, Al-Karaki R. Nanotechnological innovations enhancing the topical therapeutic efficacy of quercetin: A succinct review. Curr Drug Deliv 2020; 17(4): 270-8.
[http://dx.doi.org/10.2174/18755704MTA1AMzAr5] [PMID: 32183669]
[23]
Pastore P, Roverso M, Tedesco E, et al. Comparative evaluation of intestinal absorption and functional value of iron dietary supplements and drug with different delivery systems. Molecules 2020; 25(24): 5989.
[http://dx.doi.org/10.3390/molecules25245989] [PMID: 33348818]
[24]
Pillai SC, Borah A, Jacob EM, Kumar DS. Nanotechnological approach to delivering nutraceuticals as promising drug candidates for the treatment of atherosclerosis. Drug Deliv 2021; 28(1): 550-68.
[http://dx.doi.org/10.1080/10717544.2021.1892241] [PMID: 33703990]
[25]
Placha D, Jampilek J. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems. Pharmaceutics 2021; 13(1): 64.
[http://dx.doi.org/10.3390/pharmaceutics13010064] [PMID: 33419176]
[26]
Raychaudhuri R, Naik S, Shreya AB, et al. Pullulan based stimuli responsive and sub cellular targeted nanoplatforms for biomedical application: Synthesis, nanoformulations and toxicological perspective. Int J Biol Macromol 2020; 161: 1189-205.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.262] [PMID: 32504712]
[27]
Abuhassira-Cohen Y, Livney YD. Enhancing the bioavailability of encapsulated hydrophobic nutraceuticals: Insights from in vitro, in vivo, and clinical studies. Curr Opin Food Sci 2022; 45: 100832.
[http://dx.doi.org/10.1016/j.cofs.2022.100832]
[28]
Salama L, Pastor ER, Stone T, Mousa SA. Emerging nanopharmaceuticals and nanonutraceuticals in cancer management. Biomedicines 2020; 8(9): 347.
[http://dx.doi.org/10.3390/biomedicines8090347] [PMID: 32932737]
[29]
Salvia-Trujillo L, Soliva-Fortuny R, Rojas-Graü MA, McClements DJ, Martín-Belloso O. Edible nanoemulsions as carriers of active ingredients: a review. Annu Rev Food Sci Technol 2017; 8(1): 439-66.
[http://dx.doi.org/10.1146/annurev-food-030216-025908] [PMID: 28125342]
[30]
Škrlec K, Zupančič Š, Prpar Mihevc S, Kocbek P, Kristl J, Berlec A. Development of electrospun nanofibers that enable high loading and long-term viability of probiotics. Eur J Pharm Biopharm 2019; 136: 108-19.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.013] [PMID: 30660693]
[31]
Shen P, Zhang R, McClements DJ, Park Y. Nanoemulsion-based delivery systems for testing nutraceutical efficacy using Caenorhabditis elegans: Demonstration of curcumin bioaccumulation and body-fat reduction. Food Res Int 2019; 120: 157-66.
[http://dx.doi.org/10.1016/j.foodres.2019.02.036] [PMID: 31000226]
[32]
Song Q, Zheng C, Jia J, et al. A probiotic spore‐based oral autonomous nanoparticles generator for cancer therapy. Adv Mater 2019; 31(43): 1903793.
[http://dx.doi.org/10.1002/adma.201903793] [PMID: 31490587]
[33]
Zhang Z, Qiu C, Li X, et al. Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols. Trends Food Sci Technol 2021; 116: 492-500.
[http://dx.doi.org/10.1016/j.tifs.2021.08.009]
[34]
Torres-Giner S, Wilkanowicz S, Melendez-Rodriguez B, Lagaron JM. Nanoencapsulation of aloe vera in synthetic and naturally occurring polymers by electrohydrodynamic processing of interest in food technology and bioactive packaging. J Agric Food Chem 2017; 65(22): 4439-48.
[http://dx.doi.org/10.1021/acs.jafc.7b01393] [PMID: 28499089]
[35]
Wani TA, Masoodi FA, Wani IA. The possible nomenclature of encapsulated products. Food Chem 2017; 234: 119-20.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.121] [PMID: 28551214]
[36]
Zamani GA, Rajabzadeh G. The influence of sodium alginate and genipin on physico-chemical properties and stability of WPI coated liposomes. Food Res Int 2020; 130: 108966.
[http://dx.doi.org/10.1016/j.foodres.2019.108966] [PMID: 32156400]
[37]
Zare M, Dziemidowicz K, Williams GR, Ramakrishna S. Encapsulation of pharmaceutical and nutraceutical active ingredients using electrospinning processes. Nanomaterials 2021; 11(8): 1968.
[http://dx.doi.org/10.3390/nano11081968] [PMID: 34443799]
[38]
Zarrabi A, Alipoor Amro Abadi M, Khorasani S, et al. Nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules 2020; 25(3): 638.
[http://dx.doi.org/10.3390/molecules25030638] [PMID: 32024189]
[39]
Zavareze ER, Kringel DH, Dias ARG. Nano-scale polysaccharide materials in food and agricultural applications. Adv Food Nutr Res 2019; 88: 85-128.
[http://dx.doi.org/10.1016/bs.afnr.2019.02.013] [PMID: 31151729]
[40]
Ahmed F, Soliman FM, Adly MA, Soliman HAM, El-Matbouli M, Saleh M. Dietary Chitosan Nanoparticles: Potential role in modulation of rainbow trout (oncorhynchus mykiss) antibacterial defense and intestinal immunity against enteric redmouth disease. Mar Drugs 2021; 19(2): 72.
[http://dx.doi.org/10.3390/md19020072] [PMID: 33572960]
[41]
Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Therapeutic potential of Nicotinamide Adenine Dinucleotide (NAD). Eur J Pharmacol 2020; 879: 173158.
[http://dx.doi.org/10.1016/j.ejphar.2020.173158] [PMID: 32360833]
[42]
Dawood MAO, Gewaily MS, Soliman AA, et al. Marine-derived chitosan nanoparticles improved the intestinal histo-morphometrical features in association with the health and immune response of grey mullet (Liza ramada). Mar Drugs 2020; 18(12): 611.
[http://dx.doi.org/10.3390/md18120611] [PMID: 33271842]
[43]
Bateni Z, Rahimi HR, Hedayati M, Afsharian S, Goudarzi R, Sohrab G. The effects of nano‐curcumin supplementation on glycemic control, blood pressure, lipid profile, and insulin resistance in patients with the metabolic syndrome: A randomized, double‐blind clinical trial. Phytother Res 2021; 35(7): 3945-53.
[http://dx.doi.org/10.1002/ptr.7109] [PMID: 33851448]
[44]
Canale S, Blute N, Xia T, Thomas M, Gee M, Chang CH. Arsenic, cadmium, lead, and mercury in lactation foods and prenatal vitamins: Potentially avoidable exposure for breastfeeding mothers and infants. Breastfeed Med 2021; 16(7): 558-63.
[http://dx.doi.org/10.1089/bfm.2020.0359] [PMID: 33567220]
[45]
El-Sayed A, Kamel M. Bovine mastitis prevention and control in the post-antibiotic era. Trop Anim Health Prod 2021; 53(2): 236.
[http://dx.doi.org/10.1007/s11250-021-02680-9] [PMID: 33788033]
[46]
Faccinetto-Beltrán P, Gómez-Fernández AR, Santacruz A, Jacobo-Velázquez DA. Chocolate as carrier to deliver bioactive ingredients: current advances and future perspectives. Foods 2021; 10(9): 2065.
[http://dx.doi.org/10.3390/foods10092065] [PMID: 34574174]
[47]
Gantait S, Mahanta M, Bera S, Verma S K. Advances in biotechnology of Emblica officinalis Gaertn. syn. Phyllanthus emblica L.: A nutraceuticals-rich fruit tree with multifaceted ethnomedicinal uses. 3 Biotech 2021; 11(2): 62.
[48]
Escobar-García JD, Prieto C, Pardo-Figuerez M, Lagaron JM. Room temperature nanoencapsulation of bioactive eicosapentaenoic acid rich oil within whey protein microparticles. Nanomaterials 2021; 11(3): 575.
[http://dx.doi.org/10.3390/nano11030575] [PMID: 33668857]
[49]
Jamal Z, Das J, Gupta P, Dhar P, Chattopadhyay S, Chatterji U. Self Nano-Emulsifying Curcumin (SNEC30) attenuates arsenic-induced cell death in mice. Toxicol Rep 2021; 8: 1428-36.
[http://dx.doi.org/10.1016/j.toxrep.2021.07.010] [PMID: 34354930]
[50]
Lin HY, Chung TK, Chen YH, Walzem RL, Chen SE. Dietary supplementation of 25-hydroxycholecalciferol improves livability in broiler breeder hens. Poult Sci 2019; 98(11): 6108-16.
[http://dx.doi.org/10.3382/ps/pez330] [PMID: 31222260]
[51]
Guo Z, Cao X, DeLoid GM, et al. Physicochemical and morphological transformations of chitosan nanoparticles across the gastrointestinal tract and cellular toxicity in an in vitro model of the small intestinal epithelium. J Agric Food Chem 2020; 68(1): 358-68.
[http://dx.doi.org/10.1021/acs.jafc.9b05506] [PMID: 31815446]
[52]
Zhang Z, Li X, Sang S, et al. A review of nanostructured delivery systems for the encapsulation, protection, and delivery of silymarin: An emerging nutraceutical. Food Res Int 2022; 156: 0963-9969.
[53]
Kelleni MT. Resveratrol-zinc nanoparticles or pterostilbene-zinc: Potential COVID-19 mono and adjuvant therapy. Biomed Pharmacother 2021; 139: 111626.
[http://dx.doi.org/10.1016/j.biopha.2021.111626] [PMID: 33894625]
[54]
Qu B, Luo Y. Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors – A review. Int J Biol Macromol 2020; 152: 437-48.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.240] [PMID: 32097742]
[55]
Thangapandiyan S, Monika S. Green synthesized zinc oxide nanoparticles as feed additives to improve growth, biochemical, and hematological parameters in freshwater fish labeo rohita. Biol Trace Elem Res 2020; 195(2): 636-47.
[http://dx.doi.org/10.1007/s12011-019-01873-6] [PMID: 31486018]
[56]
Song W, Anselmo AC, Huang L. Nanotechnology intervention of the microbiome for cancer therapy. Nat Nanotechnol 2019; 14(12): 1093-103.
[http://dx.doi.org/10.1038/s41565-019-0589-5] [PMID: 31802032]
[57]
Tang CH. Nano-architectural assembly of soy proteins: A promising strategy to fabricate nutraceutical nanovehicles. Adv Colloid Interface Sci 2021; 291: 102402.
[http://dx.doi.org/10.1016/j.cis.2021.102402] [PMID: 33752139]
[58]
Veisi S, Johari SA, Tyler CR, Mansouri B, Esmaeilbeigi M. Antioxidant properties of dietary supplements of free and nanoencapsulated silymarin and their ameliorative effects on silver nanoparticles induced oxidative stress in Nile tilapia (Oreochromis niloticus). Environ Sci Pollut Res Int 2021; 28(20): 26055-63.
[http://dx.doi.org/10.1007/s11356-021-12568-8] [PMID: 33483926]
[59]
Vigneswari S, Gurusamy TP, Khairul WM. H P S AK, Ramakrishna S, Amirul AA. Surface characterization and physiochemical evaluation of P(3HB-co-4HB)-collagen peptide scaffolds with silver sulfadiazine as antimicrobial agent for potential infection-resistance biomaterial. Polymers 2021; 13(15): 2454.
[http://dx.doi.org/10.3390/polym13152454] [PMID: 34372060]
[60]
Cromwell EA, Osborne JCP, Unnasch TR, et al. Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning. PLoS Negl Trop Dis 2021; 15(7): e0008824.
[http://dx.doi.org/10.1371/journal.pntd.0008824] [PMID: 34319976]
[61]
Vigneswari S, Amelia TSM, Hazwan MH, et al. Transformation of biowaste for medical applications: Incorporation of biologically derived silver nanoparticles as antimicrobial coating. Antibiotics 2021; 10(3): 229.
[http://dx.doi.org/10.3390/antibiotics10030229] [PMID: 33668352]
[62]
Yu F, Goh YT, Li H, et al. A vascular-liver chip for sensitive detection of nutraceutical metabolites from human pluripotent stem cell derivatives. Biomicrofluidics 2020; 14(3): 034108.
[http://dx.doi.org/10.1063/5.0004286] [PMID: 32509050]
[63]
Halasz K, Kelly SJ, Iqbal MT, Pathak Y, Sutariya V. Micro/Nanoparticle delivery systems for ocular diseases. Assay Drug Dev Technol 2019; 17(4): 152-66.
[http://dx.doi.org/10.1089/adt.2018.911] [PMID: 31090439]
[64]
Zhang R, Zhang Z, Li R, Tan Y, Lv S, McClements DJ. Impact of pesticide polarity and lipid phase dimensions on the bioaccessibility of pesticides in agricultural produce consumed with model fatty foods. Food Funct 2020; 11(7): 6028-37.
[http://dx.doi.org/10.1039/C9FO03055G] [PMID: 32697245]
[65]
Stopikowska N, Runowski M, Skwierczyńska M, Lis S. Improving performance of luminescent nanothermometers based on non-thermally and thermally coupled levels of lanthanides by modulating laser power. Nanoscale 2021; 13(33): 14139-46.
[http://dx.doi.org/10.1039/D1NR01395E] [PMID: 34477695]
[66]
Witter S, Samoson A, Vilu R, Witter R. Screening of nutraceuticals and plant extracts for inhibition of Amyloid-β Fibrillation. J Alzheimers Dis 2020; 73(3): 1003-12.
[http://dx.doi.org/10.3233/JAD-190758] [PMID: 31884466]
[67]
Xu J, Li H, Arumugam SS, Rong Y, Wang P, Chen Q. A turn-on fluorescence sensor for rapid sensing of ATP based on luminescence resonance energy transfer between upconversion nanoparticles and Cy3 in vivo or vitro. Spectrochim Acta A Mol Biomol Spectrosc 2022; 265: 120341.
[http://dx.doi.org/10.1016/j.saa.2021.120341] [PMID: 34492515]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy