Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Pathomechanism of the IVDs Degeneration and the Role of Neurotrophic Factors and Concentration of Selected Elements in Genesis of Low Back Pain

Author(s): Rafał Staszkiewicz*, Dorian Gładysz, Marcin Gralewski, Michał Garczarek, Marcin Gadzieliński and Beniamin Oskar Grabarek

Volume 24, Issue 9, 2023

Published on: 04 November, 2022

Page: [1164 - 1177] Pages: 14

DOI: 10.2174/1389201024666221021142904

Price: $65

conference banner
Abstract

Degenerative disc disease of the lumbosacral spine is a very common medical problem. An episode of sciatica occurs at least once in the life of 60-90% of the human population.

A phenomenon that is closely related to the process of lowering the pH of the extracellular matrix degenerating the intervertebral disc (IVD) is the precipitation of calcium salts, especially pyrophosphate dehydrate and hydroxyapatite.

In such an altered environment of the IVD, we can observe an increased influx of monocytes, macrophages, T-lymphocytes, as well as non-immunocompetent cells, which are a source of cytokines, e.g., tumor necrosis alpha (TNF-α), interleukin- (IL-1β, IL-8). The above-mentioned mediators of an inflammatory condition contribute to an increase in the expression of Brain-Derived Neurotrophic Factor (BDNF) and Glial cell Derived Neurotrophic Factor (GDNF) in mast cells and chondrocytes, as well as to the descending transport of these mediators along the nerve endings.

In the process of degeneration of the IVD as a result of repeated and even slight injuries, there is damage to the connections of the endplate of the vertebral bodies with the IVD, which results in an impairment of the penetration of nutritional substances and water into the disc. As a consequence, there is an overexpression of the brain-derived neurotrophic factor GDNF, as well as neuromodulin (GAP-43) in the mast cells and chondrocytes of the IVDs, while descending transport of these mediators along the nerve fibers is also observed.

Graphical Abstract

[1]
James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; Abdollahpour, I.; Abdulkader, R.S.; Abebe, Z.; Abera, S.F.; Abil, O.Z.; Abraha, H.N.; Abu-Raddad, L.J.; Abu-Rmeileh, N.M.E.; Accrombessi, M.M.K.; Acharya, D.; Acharya, P.; Ackerman, I.N.; Adamu, A.A.; Adebayo, O.M.; Adekanmbi, V.; Adetokunboh, O.O.; Adib, M.G.; Adsuar, J.C.; Afanvi, K.A.; Afarideh, M.; Afshin, A.; Agarwal, G.; Agesa, K.M.; Aggarwal, R.; Aghayan, S.A.; Agrawal, S.; Ahmadi, A.; Ahmadi, M.; Ahmadieh, H.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akinyemiju, T.; Akseer, N.; Al-Aly, Z.; Al-Eyadhy, A.; Al-Mekhlafi, H.M.; Al-Raddadi, R.M.; Alahdab, F.; Alam, K.; Alam, T.; Alashi, A.; Alavian, S.M.; Alene, K.A.; Alijanzadeh, M.; Alizadeh-Navaei, R.; Aljunid, S.M.; Alkerwi, A.; Alla, F.; Allebeck, P.; Alouani, M.M.L.; Altirkawi, K.; Alvis-Guzman, N.; Amare, A.T.; Aminde, L.N.; Ammar, W.; Amoako, Y.A.; Anber, N.H.; Andrei, C.L.; Androudi, S.; Animut, M.D.; Anjomshoa, M.; Ansha, M.G.; Antonio, C.A.T.; Anwari, P.; Arabloo, J.; Arauz, A.; Aremu, O.; Ariani, F.; Armoon, B.; Ärnlöv, J.; Arora, A.; Artaman, A.; Aryal, K.K.; Asayesh, H.; Asghar, R.J.; Ataro, Z.; Atre, S.R.; Ausloos, M.; Avila-Burgos, L.; Avokpaho, E.F.G.A.; Awasthi, A.; Ayala Quintanilla, B.P.; Ayer, R.; Azzopardi, P.S.; Babazadeh, A.; Badali, H.; Badawi, A.; Bali, A.G.; Ballesteros, K.E.; Ballew, S.H.; Banach, M.; Banoub, J.A.M.; Banstola, A.; Barac, A.; Barboza, M.A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Barrero, L.H.; Baune, B.T.; Bazargan-Hejazi, S.; Bedi, N.; Beghi, E.; Behzadifar, M.; Behzadifar, M.; Béjot, Y.; Belachew, A.B.; Belay, Y.A.; Bell, M.L.; Bello, A.K.; Bensenor, I.M.; Bernabe, E.; Bernstein, R.S.; Beuran, M.; Beyranvand, T.; Bhala, N.; Bhattarai, S.; Bhaumik, S.; Bhutta, Z.A.; Biadgo, B.; Bijani, A.; Bikbov, B.; Bilano, V.; Bililign, N.; Bin Sayeed, M.S.; Bisanzio, D.; Blacker, B.F.; Blyth, F.M.; Bou-Orm, I.R.; Boufous, S.; Bourne, R.; Brady, O.J.; Brainin, M.; Brant, L.C.; Brazinova, A.; Breitborde, N.J.K.; Brenner, H.; Briant, P.S.; Briggs, A.M.; Briko, A.N.; Britton, G.; Brugha, T.; Buchbinder, R.; Busse, R.; Butt, Z.A.; Cahuana-Hurtado, L.; Cano, J.; Cárdenas, R.; Carrero, J.J.; Carter, A.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castillo Rivas, J.; Castro, F.; Catalá-López, F.; Cercy, K.M.; Cerin, E.; Chaiah, Y.; Chang, A.R.; Chang, H-Y.; Chang, J-C.; Charlson, F.J.; Chattopadhyay, A.; Chattu, V.K.; Chaturvedi, P.; Chiang, P.P-C.; Chin, K.L.; Chitheer, A.; Choi, J-Y.J.; Chowdhury, R.; Christensen, H.; Christopher, D.J.; Cicuttini, F.M.; Ciobanu, L.G.; Cirillo, M.; Claro, R.M.; Collado-Mateo, D.; Cooper, C.; Coresh, J.; Cortesi, P.A.; Cortinovis, M.; Costa, M.; Cousin, E.; Criqui, M.H.; Cromwell, E.A.; Cross, M.; Crump, J.A.; Dadi, A.F.; Dandona, L.; Dandona, R.; Dargan, P.I.; Daryani, A.; Das Gupta, R.; Das Neves, J.; Dasa, T.T.; Davey, G.; Davis, A.C.; Davitoiu, D.V.; De Courten, B.; De La Hoz, F.P.; De Leo, D.; De Neve, J.W.; Degefa, M.G.; Degenhardt, L.; Deiparine, S.; Dellavalle, R.P.; Demoz, G.T.; Deribe, K.; Dervenis, N.; Des Jarlais, D.C.; Dessie, G.A.; Dey, S.; Dharmaratne, S.D.; Dinberu, M.T.; Dirac, M.A.; Djalalinia, S.; Doan, L.; Dokova, K.; Doku, D.T.; Dorsey, E.R.; Doyle, K.E.; Driscoll, T.R.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Duncan, B.B.; Duraes, A.R.; Ebrahimi, H.; Ebrahimpour, S.; Echko, M.M.; Edvardsson, D.; Effiong, A.; Ehrlich, J.R.; El Bcheraoui, C.; El Sayed Zaki, M.; El-Khatib, Z.; Elkout, H.; Elyazar, I.R.F.; Enayati, A.; Endries, A.Y.; Er, B.; Erskine, H.E.; Eshrati, B.; Eskandarieh, S.; Esteghamati, A.; Esteghamati, S.; Fakhim, H.; Fallah Omrani, V.; Faramarzi, M.; Fareed, M.; Farhadi, F.; Farid, T.A.; Farinha, C.S.E.; Farioli, A.; Faro, A.; Farvid, M.S.; Farzadfar, F.; Feigin, V.L.; Fentahun, N.; Fereshtehnejad, S.M.; Fernandes, E.; Fernandes, J.C.; Ferrari, A.J.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fitzmaurice, C.; Foigt, N.A.; Foreman, K.J.; Fox, J.; Frank, T.D.; Fukumoto, T.; Fullman, N.; Fürst, T.; Furtado, J.M.; Futran, N.D.; Gall, S.; Ganji, M.; Gankpe, F.G.; Garcia-Basteiro, A.L.; Gardner, W.M.; Gebre, A.K.; Gebremedhin, A.T.; Gebremichael, T.G.; Gelano, T.F.; Geleijnse, J.M.; Genova-Maleras, R.; Geramo, Y.C.D.; Gething, P.W.; Gezae, K.E.; Ghadiri, K.; Ghasemi Falavarjani, K.; Ghasemi-Kasman, M.; Ghimire, M.; Ghosh, R.; Ghoshal, A.G.; Giampaoli, S.; Gill, P.S.; Gill, T.K.; Ginawi, I.A.; Giussani, G.; Gnedovskaya, E.V.; Goldberg, E.M.; Goli, S.; Gómez-Dantés, H.; Gona, P.N.; Gopalani, S.V.; Gorman, T.M.; Goulart, A.C.; Goulart, B.N.G.; Grada, A.; Grams, M.E.; Grosso, G.; Gugnani, H.C.; Guo, Y.; Gupta, P.C.; Gupta, R.; Gupta, R.; Gupta, T.; Gyawali, B.; Haagsma, J.A.; Hachinski, V.; Hafezi-Nejad, N.; Haghparast Bidgoli, H.; Hagos, T.B.; Hailu, G.B.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Handal, A.J.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Harikrishnan, S.; Haro, J.M.; Hasan, M.; Hassankhani, H.; Hassen, H.Y.; Havmoeller, R.; Hawley, C.N.; Hay, R.J.; Hay, S.I.; Hedayatizadeh-Omran, A.; Heibati, B.; Hendrie, D.; Henok, A.; Herteliu, C.; Heydarpour, S.; Hibstu, D.T.; Hoang, H.T.; Hoek, H.W.; Hoffman, H.J.; Hole, M.K.; Homaie Rad, E.; Hoogar, P.; Hosgood, H.D.; Hosseini, S.M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Hotez, P.J.; Hoy, D.G.; Hsairi, M.; Htet, A.S.; Hu, G.; Huang, J.J.; Huynh, C.K.; Iburg, K.M.; Ikeda, C.T.; Ileanu, B.; Ilesanmi, O.S.; Iqbal, U.; Irvani, S.S.N.; Irvine, C.M.S.; Islam, S.M.S.; Islami, F.; Jacobsen, K.H.; Jahangiry, L.; Jahanmehr, N.; Jain, S.K.; Jakovljevic, M.; Javanbakht, M.; Jayatilleke, A.U.; Jeemon, P.; Jha, R.P.; Jha, V.; Ji, J.S.; Johnson, C.O.; Jonas, J.B.; Jozwiak, J.J.; Jungari, S.B.; Jürisson, M.; Kabir, Z.; Kadel, R.; Kahsay, A.; Kalani, R.; Kanchan, T.; Karami, M.; Karami Matin, B.; Karch, A.; Karema, C.; Karimi, N.; Karimi, S.M.; Kasaeian, A.; Kassa, D.H.; Kassa, G.M.; Kassa, T.D.; Kassebaum, N.J.; Katikireddi, S.V.; Kawakami, N.; Karyani, A.K.; Keighobadi, M.M.; Keiyoro, P.N.; Kemmer, L.; Kemp, G.R.; Kengne, A.P.; Keren, A.; Khader, Y.S.; Khafaei, B.; Khafaie, M.A.; Khajavi, A.; Khalil, I.A.; Khan, E.A.; Khan, M.S.; Khan, M.A.; Khang, Y-H.; Khazaei, M.; Khoja, A.T.; Khosravi, A.; Khosravi, M.H.; Kiadaliri, A.A.; Kiirithio, D.N.; Kim, C-I.; Kim, D.; Kim, P.; Kim, Y-E.; Kim, Y.J.; Kimokoti, R.W.; Kinfu, Y.; Kisa, A.; Kissimova-Skarbek, K.; Kivimäki, M.; Knudsen, A.K.S.; Kocarnik, J.M.; Kochhar, S.; Kokubo, Y.; Kolola, T.; Kopec, J.A.; Kosen, S.; Kotsakis, G.A.; Koul, P.A.; Koyanagi, A.; Kravchenko, M.A.; Krishan, K.; Krohn, K.J.; Defo, K.B.; Kucuk Bicer, B.; Kumar, G.A.; Kumar, M.; Kyu, H.H.; Lad, D.P.; Lad, S.D.; Lafranconi, A.; Lalloo, R.; Lallukka, T.; Lami, F.H.; Lansingh, V.C.; Latifi, A.; Lau, K.M-M.; Lazarus, J.V.; Leasher, J.L.; Ledesma, J.R.; Lee, P.H.; Leigh, J.; Leung, J.; Levi, M.; Lewycka, S.; Li, S.; Li, Y.; Liao, Y.; Liben, M.L.; Lim, L-L.; Lim, S.S.; Liu, S.; Lodha, R.; Looker, K.J.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Low, N.; Lozano, R.; Lucas, T.C.D.; Lucchesi, L.R.; Lunevicius, R.; Lyons, R.A.; Ma, S.; Macarayan, E.R.K.; Mackay, M.T.; Madotto, F.; Magdy Abd El Razek, H.; Magdy Abd El Razek, M.; Maghavani, D.P.; Mahotra, N.B.; Mai, H.T.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Mamun, A.A.; Manda, A-L.; Manguerra, H.; Manhertz, T.; Mansournia, M.A.; Mantovani, L.G.; Mapoma, C.C.; Maravilla, J.C.; Marcenes, W.; Marks, A.; Martins-Melo, F.R.; Martopullo, I.; März, W.; Marzan, M.B.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Mathur, M.R.; Matsushita, K.; Maulik, P.K.; Mazidi, M.; McAlinden, C.; McGrath, J.J.; McKee, M.; Mehndiratta, M.M.; Mehrotra, R.; Mehta, K.M.; Mehta, V.; Mejia-Rodriguez, F.; Mekonen, T.; Melese, A.; Melku, M.; Meltzer, M.; Memiah, P.T.N.; Memish, Z.A.; Mendoza, W.; Mengistu, D.T.; Mengistu, G.; Mensah, G.A.; Mereta, S.T.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Mezerji, N.M.G.; Miazgowski, B.; Miazgowski, T.; Millear, A.I.; Miller, T.R.; Miltz, B.; Mini, G.K.; Mirarefin, M.; Mirrakhimov, E.M.; Misganaw, A.T.; Mitchell, P.B.; Mitiku, H.; Moazen, B.; Mohajer, B.; Mohammad, K.A.; Mohammadifard, N.; Mohammadnia-Afrouzi, M.; Mohammed, M.A.; Mohammed, S.; Mohebi, F.; Moitra, M.; Mokdad, A.H.; Molokhia, M.; Monasta, L.; Moodley, Y.; Moosazadeh, M.; Moradi, G.; Moradi-Lakeh, M.; Moradinazar, M.; Moraga, P.; Morawska, L.; Moreno Velásquez, I.; Morgado-Da-Costa, J.; Morrison, S.D.; Moschos, M.M.; Mountjoy-Venning, W.C.; Mousavi, S.M.; Mruts, K.B.; Muche, A.A.; Muchie, K.F.; Mueller, U.O.; Muhammed, O.S.; Mukhopadhyay, S.; Muller, K.; Mumford, J.E.; Murhekar, M.; Musa, J.; Musa, K.I.; Mustafa, G.; Nabhan, A.F.; Nagata, C.; Naghavi, M.; Naheed, A.; Nahvijou, A.; Naik, G.; Naik, N.; Najafi, F.; Naldi, L.; Nam, H.S.; Nangia, V.; Nansseu, J.R.; Nascimento, B.R.; Natarajan, G.; Neamati, N.; Negoi, I.; Negoi, R.I.; Neupane, S.; Newton, C.R.J.; Ngunjiri, J.W.; Nguyen, A.Q.; Nguyen, H.T.; Nguyen, H.L.T.; Nguyen, H.T.; Nguyen, L.H.; Nguyen, M.; Nguyen, N.B.; Nguyen, S.H.; Nichols, E.; Ningrum, D.N.A.; Nixon, M.R.; Nolutshungu, N.; Nomura, S.; Norheim, O.F.; Noroozi, M.; Norrving, B.; Noubiap, J.J.; Nouri, H.R.; Nourollahpour Shiadeh, M.; Nowroozi, M.R.; Nsoesie, E.O.; Nyasulu, P.S.; Odell, C.M.; Ofori-Asenso, R.; Ogbo, F.A.; Oh, I-H.; Oladimeji, O.; Olagunju, A.T.; Olagunju, T.O.; Olivares, P.R.; Olsen, H.E.; Olusanya, B.O.; Ong, K.L.; Ong, S.K.; Oren, E.; Ortiz, A.; Ota, E.; Otstavnov, S.S.; Øverland, S.; Owolabi, M.O.; P A, M.; Pacella, R.; Pakpour, A.H.; Pana, A.; Panda-Jonas, S.; Parisi, A.; Park, E-K.; Parry, C.D.H.; Patel, S.; Pati, S.; Patil, S.T.; Patle, A.; Patton, G.C.; Paturi, V.R.; Paulson, K.R.; Pearce, N.; Pereira, D.M.; Perico, N.; Pesudovs, K.; Pham, H.Q.; Phillips, M.R.; Pigott, D.M.; Pillay, J.D.; Piradov, M.A.; Pirsaheb, M.; Pishgar, F.; Plana-Ripoll, O.; Plass, D.; Polinder, S.; Popova, S.; Postma, M.J.; Pourshams, A.; Poustchi, H.; Prabhakaran, D.; Prakash, S.; Prakash, V.; Purcell, C.A.; Purwar, M.B.; Qorbani, M.; Quistberg, D.A.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahim, F.; Rahimi, K.; Rahimi-Movaghar, A.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.; Rahman, M.A.; Rahman, S.U.; Rai, R.K.; Rajati, F.; Ram, U.; Ranjan, P.; Ranta, A.; Rao, P.C.; Rawaf, D.L.; Rawaf, S.; Reddy, K.S.; Reiner, R.C.; Reinig, N.; Reitsma, M.B.; Remuzzi, G.; Renzaho, A.M.N.; Resnikoff, S.; Rezaei, S.; Rezai, M.S.; Ribeiro, A.L.P.; Roberts, N.L.S.; Robinson, S.R.; Roever, L.; Ronfani, L.; Roshandel, G.; Rostami, A.; Roth, G.A.; Roy, A.; Rubagotti, E.; Sachdev, P.S.; Sadat, N.; Saddik, B.; Sadeghi, E.; Saeedi Moghaddam, S.; Safari, H.; Safari, Y.; Safari-Faramani, R.; Safdarian, M.; Safi, S.; Safiri, S.; Sagar, R.; Sahebkar, A.; Sahraian, M.A.; Sajadi, H.S.; Salam, N.; Salama, J.S.; Salamati, P.; Saleem, K.; Saleem, Z.; Salimi, Y.; Salomon, J.A.; Salvi, S.S.; Salz, I.; Samy, A.M.; Sanabria, J.; Sang, Y.; Santomauro, D.F.; Santos, I.S.; Santos, J.V.; Santric Milicevic, M.M.; Sao Jose, B.P.; Sardana, M.; Sarker, A.R.; Sarrafzadegan, N.; Sartorius, B.; Sarvi, S.; Sathian, B.; Satpathy, M.; Sawant, A.R.; Sawhney, M.; Saxena, S.; Saylan, M.; Schaeffner, E.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Schwendicke, F.; Scott, J.G.; Sekerija, M.; Sepanlou, S.G.; Serván-Mori, E.; Seyedmousavi, S.; Shabaninejad, H.; Shafieesabet, A.; Shahbazi, M.; Shaheen, A.A.; Shaikh, M.A.; Shams-Beyranvand, M.; Shamsi, M.; Shamsizadeh, M.; Sharafi, H.; Sharafi, K.; Sharif, M.; Sharif-Alhoseini, M.; Sharma, M.; Sharma, R.; She, J.; Sheikh, A.; Shi, P.; Shibuya, K.; Shigematsu, M.; Shiri, R.; Shirkoohi, R.; Shishani, K.; Shiue, I.; Shokraneh, F.; Shoman, H.; Shrime, M.G.; Si, S.; Siabani, S.; Siddiqi, T.J.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silva, J.P.; Silveira, D.G.A.; Singam, N.S.V.; Singh, J.A.; Singh, N.P.; Singh, V.; Sinha, D.N.; Skiadaresi, E.; Slepak, E.L.N.; Sliwa, K.; Smith, D.L.; Smith, M.; Soares Filho, A.M.; Sobaih, B.H.; Sobhani, S.; Sobngwi, E.; Soneji, S.S.; Soofi, M.; Soosaraei, M.; Sorensen, R.J.D.; Soriano, J.B.; Soyiri, I.N.; Sposato, L.A.; Sreeramareddy, C.T.; Srinivasan, V.; Stanaway, J.D.; Stein, D.J.; Steiner, C.; Steiner, T.J.; Stokes, M.A.; Stovner, L.J.; Subart, M.L.; Sudaryanto, A.; Sufiyan, M.B.; Sunguya, B.F.; Sur, P.J.; Sutradhar, I.; Sykes, B.L.; Sylte, D.O.; Tabarés-Seisdedos, R.; Tadakamadla, S.K.; Tadesse, B.T.; Tandon, N.; Tassew, S.G.; Tavakkoli, M.; Taveira, N.; Taylor, H.R.; Tehrani-Banihashemi, A.; Tekalign, T.G.; Tekelemedhin, S.W.; Tekle, M.G.; Temesgen, H.; Temsah, M-H.; Temsah, O.; Terkawi, A.S.; Teweldemedhin, M.; Thankappan, K.R.; Thomas, N.; Tilahun, B.; To, Q.G.; Tonelli, M.; Topor-Madry, R.; Topouzis, F.; Torre, A.E.; Tortajada-Girbés, M.; Touvier, M.; Tovani-Palone, M.R.; Towbin, J.A.; Tran, B.X.; Tran, K.B.; Troeger, C.E.; Truelsen, T.C.; Tsilimbaris, M.K.; Tsoi, D.; Tudor Car, L.; Tuzcu, E.M.; Ukwaja, K.N.; Ullah, I.; Undurraga, E.A.; Unutzer, J.; Updike, R.L.; Usman, M.S.; Uthman, O.A.; Vaduganathan, M.; Vaezi, A.; Valdez, P.R.; Varughese, S.; Vasankari, T.J.; Venketasubramanian, N.; Villafaina, S.; Violante, F.S.; Vladimirov, S.K.; Vlassov, V.; Vollset, S.E.; Vosoughi, K.; Vujcic, I.S.; Wagnew, F.S.; Waheed, Y.; Waller, S.G.; Wang, Y.; Wang, Y-P.; Weiderpass, E.; Weintraub, R.G.; Weiss, D.J.; Weldegebreal, F.; Weldegwergs, K.G.; Werdecker, A.; West, T.E.; Whiteford, H.A.; Widecka, J.; Wijeratne, T.; Wilner, L.B.; Wilson, S.; Winkler, A.S.; Wiyeh, A.B.; Wiysonge, C.S.; Wolfe, C.D.A.; Woolf, A.D.; Wu, S.; Wu, Y-C.; Wyper, G.M.A.; Xavier, D.; Xu, G.; Yadgir, S.; Yadollahpour, A.; Yahyazadeh Jabbari, S.H.; Yamada, T.; Yan, L.L.; Yano, Y.; Yaseri, M.; Yasin, Y.J.; Yeshaneh, A.; Yimer, E.M.; Yip, P.; Yisma, E.; Yonemoto, N.; Yoon, S-J.; Yotebieng, M.; Younis, M.Z.; Yousefifard, M.; Yu, C.; Zadnik, V.; Zaidi, Z.; Zaman, S.B.; Zamani, M.; Zare, Z.; Zeleke, A.J.; Zenebe, Z.M.; Zhang, K.; Zhao, Z.; Zhou, M.; Zodpey, S.; Zucker, I.; Vos, T.; Murray, C.J.L. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159), 1789-1858.
[http://dx.doi.org/10.1016/S0140-6736(18)32279-7] [PMID: 30496104]
[2]
Truumees, E. A history of lumbar disc herniation from Hippocrates to the 1990s. Clin. Orthop. Relat. Res., 2015, 473(6), 1885-1895.
[http://dx.doi.org/10.1007/s11999-014-3633-7] [PMID: 24752913]
[3]
Walker, M.H.; Anderson, D.G. Molecular basis of intervertebral disc degeneration. Spine J., 2004, 4(S6), S158-S166.
[http://dx.doi.org/10.1016/j.spinee.2004.07.010] [PMID: 15541661]
[4]
Kepler, C.K.; Ponnappan, R.K.; Tannoury, C.A.; Risbud, M.V.; Anderson, D.G. The molecular basis of intervertebral disc degeneration. Spine J., 2013, 13(3), 318-330.
[http://dx.doi.org/10.1016/j.spinee.2012.12.003] [PMID: 23537454]
[5]
Amelot, A.; Mazel, C. The intervertebral disc: Physiology and pathology of a brittle joint. World Neurosurg., 2018, 120, 265-273.
[http://dx.doi.org/10.1016/j.wneu.2018.09.032] [PMID: 30218798]
[6]
González Martínez, E.; García-Cosamalón, J.; Cosamalón-Gan, I.; Esteban Blanco, M.; García-Suarez, O.; Vega, J.A. Biology and mechanobiology of the intervertebral disc. Neurosurgery, 2017, 28(3), 135-140.
[http://dx.doi.org/10.1016/j.neucir.2016.12.002] [PMID: 28130014]
[7]
Ciapetti, G.; Granchi, D.; Devescovi, V.; Leonardi, E.; Greggi, T.; Di Silvestre, M.; Baldini, N. Ex vivo observation of human intervertebral disc tissue and cells isolated from degenerated intervertebral discs. Eur. Spine J., 2012, 21(S1), 10-19.
[http://dx.doi.org/10.1007/s00586-012-2234-y] [PMID: 22395304]
[8]
Yamabe, D.; Murakami, H.; Chokan, K.; Endo, H.; Oikawa, R.; Sawamura, S.; Doita, M. Evaluation of water content in lumbar intervertebral discs and facet joints before and after physiological loading using T2 mapping MRI. Spine, 2017, 42(24), E1423-E1428.
[http://dx.doi.org/10.1097/BRS.0000000000002204] [PMID: 28422800]
[9]
Abu-Awwad, A.; Folescu, R.; Pop, D.L.; Motoc, A.G.M.; Oprea, D.M.; Tudoran, M.; Zamfir, C.L.; Faur, C.I.; Vermeşan, D.; Deleanu, B.N.; Andor, B.C.; Hărăguş, H.G. Morphometric characteristics of fibrocartilaginous tissue in the herniated intervertebral disc. Romanian J. Morphol. Embryol. Rev. Roum. Morphol. Embryol., 2019, 60(2), 629-634.
[PMID: 31658337]
[10]
Adams, M.A.; Roughley, P.J. What is intervertebral disc degeneration, and what causes it? Spine, 2006, 31(18), 2151-2161.
[http://dx.doi.org/10.1097/01.brs.0000231761.73859.2c] [PMID: 16915105]
[11]
Iozzo, R.V.; Gubbiotti, M.A. Extracellular matrix: The driving force of mammalian diseases. Matrix Biol., 2018, 71-72, 1-9.
[http://dx.doi.org/10.1016/j.matbio.2018.03.023] [PMID: 29625183]
[12]
Dowdell, J.; Erwin, M.; Choma, T.; Vaccaro, A.; Iatridis, J.; Cho, S.K. Intervertebral disk degeneration and repair. Neurosurgery, 2017, 80(3S), S46-S54.
[http://dx.doi.org/10.1093/neuros/nyw078] [PMID: 28350945]
[13]
Romereim, S.M.; Johnston, C.A.; Redwine, A.L.; Wachs, R.A. Development of an in vitro intervertebral disc innervation model to screen neuroinhibitory biomaterials. J. Orthop. Res., 2020, 38(5), 1016-1026.
[http://dx.doi.org/10.1002/jor.24557] [PMID: 31825104]
[14]
Clouet, J.; Vinatier, C.; Merceron, C.; Pot-Vaucel, M.; Hamel, O.; Weiss, P.; Grimandi, G.; Guicheux, J. The intervertebral disc: From pathophysiology to tissue engineering. Joint Bone Spine, 2009, 76(6), 614-618.
[http://dx.doi.org/10.1016/j.jbspin.2009.07.002] [PMID: 19819178]
[15]
Lama, P.; Le Maitre, C.L.; Harding, I.J.; Dolan, P.; Adams, M.A. Nerves and blood vessels in degenerated intervertebral discs are confined to physically disrupted tissue. J. Anat., 2018, 233(1), 86-97.
[http://dx.doi.org/10.1111/joa.12817] [PMID: 29708266]
[16]
Frost, B.; Camarero-Espinosa, S.; Foster, E. Materials for the spine: Anatomy, problems, and solutions. Materials, 2019, 12(2), 253.
[http://dx.doi.org/10.3390/ma12020253] [PMID: 30646556]
[17]
Groen, G.J.; Baljet, B.; Drukker, J. Nerves and nerve plexuses of the human vertebral column. Am. J. Anat., 1990, 188(3), 282-296.
[http://dx.doi.org/10.1002/aja.1001880307] [PMID: 2371968]
[18]
Wu, B.; Yang, L.; Peng, B. Ingrowth of nociceptive receptors into diseased cervical intervertebral disc is associated with discogenic neck pain. Pain Med., 2019, 20(6), 1072-1077.
[http://dx.doi.org/10.1093/pm/pnz013] [PMID: 30848823]
[19]
Holahan, M.R. A shift from a pivotal to supporting role for the Growth-Associated Protein (GAP-43) in the coordination of axonal structural and functional plasticity. Front. Cell. Neurosci., 2017, 11, 266.
[http://dx.doi.org/10.3389/fncel.2017.00266] [PMID: 28912688]
[20]
Huygen, F.; Liem, L.; Cusack, W.; Kramer, J. Stimulation of the L2-L3 dorsal root ganglia induces effective pain relief in the low back. Pain Pract., 2018, 18(2), 205-213.
[http://dx.doi.org/10.1111/papr.12591] [PMID: 28486758]
[21]
Li, X.F.; Jin, L.Y.; Lv, Z.D.; Su, X.J.; Wang, K.; Song, X.X.; Shen, H.X. Endoscopic ventral decompression for spinal stenosis with degenerative spondylolisthesis by partially removing posterosuperior margin underneath the slipping vertebral body: Technical note and outcome evaluation. World Neurosurg., 2019, 126, e517-e525.
[http://dx.doi.org/10.1016/j.wneu.2019.02.083] [PMID: 30825627]
[22]
Chapman, K.B.; Groenen, P.S.; Vissers, K.C.; van Helmond, N.; Stanton-Hicks, M.D. The pathways and processes underlying spinal transmission of low back pain: Observations from dorsal root ganglion stimulation treatment. Neuromodulation, 2021, 24(4), 610-621.
[http://dx.doi.org/10.1111/ner.13150] [PMID: 32329155]
[23]
Luz, L.L.; Fernandes, E.C.; Dora, F.; Lukoyanov, N.V.; Szucs, P.; Safronov, B.V. Trigeminal Aδ- and C-afferent supply of lamina I neurons in the trigeminocervical complex. Pain, 2019, 160(11), 2612-2623.
[http://dx.doi.org/10.1097/j.pain.0000000000001659] [PMID: 31356449]
[24]
Kelm, N.E.; Aftab, M.A. Vacuum phenomenon in the lumbar spine: A useful tool for neuroradiologists and spine surgeons? Neurographics, 2021, 11(1), 59-64.
[http://dx.doi.org/10.3174/ng.2000048]
[25]
Bernstein, S.G.; Voet, R.L.; Lifshitz, S.; Buchsbaum, H.J. Adenoid cystic carcinoma of Bartholin’s gland. Am. J. Obstet. Gynecol., 1983, 147(4), 385-390.
[http://dx.doi.org/10.1016/S0002-9378(16)32230-X] [PMID: 6312799]
[26]
Kettler, A.; Wilke, H.J. Review of existing grading systems for cervical or lumbar disc and facet joint degeneration. Eur. Spine J., 2006, 15(6), 705-718.
[http://dx.doi.org/10.1007/s00586-005-0954-y] [PMID: 16172902]
[27]
Ohtori, S.; Inoue, G.; Miyagi, M.; Takahashi, K. Pathomechanisms of discogenic low back pain in humans and animal models. Spine J., 2015, 15(6), 1347-1355.
[http://dx.doi.org/10.1016/j.spinee.2013.07.490] [PMID: 24657737]
[28]
Brazill, J.M.; Beeve, A.T.; Craft, C.S.; Ivanusic, J.J.; Scheller, E.L. Nerves in bone: Evolving concepts in pain and anabolism. J. Bone Miner. Res., 2019, 34(8), 1393-1406.
[http://dx.doi.org/10.1002/jbmr.3822] [PMID: 31247122]
[29]
Wei, Q.; Zhang, X.; Zhou, C.; Ren, Q.; Zhang, Y. Roles of large aggregating proteoglycans in human intervertebral disc degeneration. Connect. Tissue Res., 2019, 60(3), 209-218.
[http://dx.doi.org/10.1080/03008207.2018.1499731] [PMID: 29992840]
[30]
Ashinsky, B.; Smith, H.E.; Mauck, R.L.; Gullbrand, S.E. Intervertebral disc degeneration and regeneration: A motion segment perspective. Eur. Cell. Mater., 2021, 41, 370-387.
[http://dx.doi.org/10.22203/eCM.v041a24] [PMID: 33763848]
[31]
Cohen, S.P.; Bhaskar, A.; Bhatia, A.; Buvanendran, A.; Deer, T.; Garg, S.; Hooten, W.M.; Hurley, R.W.; Kennedy, D.J.; McLean, B.C.; Moon, J.Y.; Narouze, S.; Pangarkar, S.; Provenzano, D.A.; Rauck, R.; Sitzman, B.T.; Smuck, M.; van Zundert, J.; Vorenkamp, K.; Wallace, M.S.; Zhao, Z. Consensus practice guidelines on interventions for lumbar facet joint pain from a multispecialty, international working group. Reg. Anesth. Pain Med., 2020, 45(6), 424-467.
[http://dx.doi.org/10.1136/rapm-2019-101243] [PMID: 32245841]
[32]
McCARTHY, P.W.; Carruthers, B.; Martin, D.; Petts, P. Immunohistochemical demonstration of sensory nerve fibers and endings in lumbar intervertebral discs of the rat. Spine, 1991, 16(6), 653-655.
[http://dx.doi.org/10.1097/00007632-199106000-00010] [PMID: 1862405]
[33]
Peng, B.; Hao, J.; Hou, S.; Wu, W.; Jiang, D.; Fu, X.; Yang, Y. Possible pathogenesis of painful intervertebral disc degeneration. Spine, 2006, 31(5), 560-566.
[http://dx.doi.org/10.1097/01.brs.0000201324.45537.46] [PMID: 16508552]
[34]
Bracker, M.D.; Dark, D.; Achar, M.D.; Suraj, A.; Pana, M.D.; Andrea, L.; Taylor, M.D.; Keeneth, S. The 5-Minute Sports Medicine Consult (5 Minute Consult Series); Lippincott Williams And Wilkins, 2011.
[35]
Coggon, D.; Ntani, G.; Walker-Bone, K.; Felli, V.E.; Harari, R.; Barrero, L.H.; Felknor, S.A.; Rojas, M.; Cattrell, A.; Serra, C.; Bonzini, M.; Solidaki, E.; Merisalu, E.; Habib, R.R.; Sadeghian, F.; Kadir, M.M.; Wickremasinghe, A.R.; Matsudaira, K.; Nyantumbu-Mkhize, B.; Kelsall, H.L.; Harcombe, H. Associations of sickness absence for pain in the low back, neck and shoulders with wider propensity to pain. Occup. Environ. Med., 2020, 77(5), 301-308.
[http://dx.doi.org/10.1136/oemed-2019-106193] [PMID: 32079717]
[36]
Geurts, J.W.; Willems, P.C.; Kallewaard, J.W.; van Kleef, M.; Dirksen, C. The impact of chronic discogenic low back pain: Costs and patients’ burden. Pain Res. Manag., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/4696180] [PMID: 30364097]
[37]
Genevay, S.; Courvoisier, D.S.; Konstantinou, K.; Kovacs, F.M.; Marty, M.; Rainville, J.; Norberg, M.; Kaux, J.F.; Cha, T.D.; Katz, J.N.; Atlas, S.J. Clinical classification criteria for neurogenic claudication caused by lumbar spinal stenosis. The N-CLASS criteria. Spine J., 2018, 18(6), 941-947.
[http://dx.doi.org/10.1016/j.spinee.2017.10.003] [PMID: 29031994]
[38]
Patel, E.; Perloff, M. Radicular pain syndromes: Cervical, lumbar, and spinal stenosis. Semin. Neurol., 2018, 38(6), 634-639.
[http://dx.doi.org/10.1055/s-0038-1673680] [PMID: 30522138]
[39]
Wang, F.; Cai, F.; Shi, R.; Wang, X.H.; Wu, X.T. Aging and age related stresses: A senescence mechanism of intervertebral disc degeneration. Osteoarthritis Cartilage, 2016, 24(3), 398-408.
[http://dx.doi.org/10.1016/j.joca.2015.09.019] [PMID: 26455958]
[40]
Feng, C.; Yang, M.; Lan, M.; Liu, C.; Zhang, Y.; Huang, B.; Liu, H.; Zhou, Y. ROS: Crucial intermediators in the pathogenesis of intervertebral disc degeneration. Oxid. Med. Cell. Longev., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/5601593] [PMID: 28392887]
[41]
Peng, Y.; Lv, F.J. Symptomatic versus asymptomatic intervertebral disc degeneration: Is inflammation the key? Crit. Rev. Eukaryot. Gene Expr., 2015, 25(1), 13-21.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2015012369] [PMID: 25955814]
[42]
Oichi, T.; Taniguchi, Y.; Oshima, Y.; Tanaka, S.; Saito, T. Pathomechanism of intervertebral disc degeneration. JOR Spine, 2020, 3(1), e1076.
[http://dx.doi.org/10.1002/jsp2.1076] [PMID: 32211588]
[43]
Gilbert, H.T.J.; Hodson, N.; Baird, P.; Richardson, S.M.; Hoyland, J.A.; Acidic, P.H. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target. Sci. Rep., 2016, 6(1), 37360.
[http://dx.doi.org/10.1038/srep37360] [PMID: 27853274]
[44]
Wong, A.Y.L.; Karppinen, J.; Samartzis, D. Low back pain in older adults: Risk factors, management options and future directions. Scoliosis Spinal Disord., 2017, 12(1), 14.
[http://dx.doi.org/10.1186/s13013-017-0121-3] [PMID: 28435906]
[45]
Liu, B.; Sun, C.; Xing, Y.; Zhou, F.; Tian, Y.; Yang, Z.; Hou, G. Intervertebral bridging ossification after percutaneous kyphoplasty in osteoporotic vertebral compression fractures. World Neurosurg., 2019, 127, 633-636.e1.
[http://dx.doi.org/10.1016/j.wneu.2019.04.014] [PMID: 30965166]
[46]
Zioła-Frankowska, A.; Kubaszewski, Ł.; Dąbrowski, M.; Frankowski, M. Interrelationship between silicon, aluminum, and elements associated with tissue metabolism and degenerative processes in degenerated human intervertebral disc tissue. Environ. Sci. Pollut. Res. Int., 2017, 24(24), 19777-19784.
[http://dx.doi.org/10.1007/s11356-017-9588-y] [PMID: 28685335]
[47]
Cheng, L.; de la Monte, S.; Ma, J.; Hong, J.; Tong, M.; Cao, W.; Behar, J.; Biancani, P.; Harnett, K.M. HCl-activated neural and epithelial vanilloid receptors (TRPV1) in cat esophageal mucosa. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 297(1), G135-G143.
[http://dx.doi.org/10.1152/ajpgi.90386.2008] [PMID: 19389802]
[48]
Schmelz, M.; Mantyh, P.; Malfait, A.M.; Farrar, J.; Yaksh, T.; Tive, L.; Viktrup, L. Nerve growth factor antibody for the treatment of osteoarthritis pain and chronic low-back pain: Mechanism of action in the context of efficacy and safety. Pain, 2019, 160(10), 2210-2220.
[http://dx.doi.org/10.1097/j.pain.0000000000001625] [PMID: 31145219]
[49]
Takahashi, T.; Hanakita, J.; Minami, M. Pathophysiology of calcification and ossification of the ligamentum flavum in the cervical spine. Neurosurg. Clin. N. Am., 2018, 29(1), 47-54.
[http://dx.doi.org/10.1016/j.nec.2017.09.016] [PMID: 29173435]
[50]
Nowakowski, A.; Kubaszewski, Ł.; Frankowski, M.; Wilk-Frańczuk, M.; Zioła-Frankowska, A.; Czabak-Garbacz, R.; Kaczmarczyk, J.; Gasik, R. Analysis of trace element in intervertebral disc by atomic absorption spectrometry techniques in degenerative disc disease in the Polish population. Ann. Agric. Environ. Med., 2015, 22(2), 362-367.
[http://dx.doi.org/10.5604/12321966.1152096] [PMID: 26094540]
[51]
Zioła-frankowska, A.; Gasik, R. Atomic absorption spectrometry analysis of trace elements in degenerated intervertebral disc tissue. Med. Sci. Monit., 2014, 20, 2157-2164.
[http://dx.doi.org/10.12659/MSM.890654]
[52]
Grant, M.P.; Epure, L.M.; Bokhari, R.; Roughley, P.; Antoniou, J.; Mwale, F. Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc. Eur. Cell. Mater., 2016, 32, 137-151.
[http://dx.doi.org/10.22203/eCM.v032a09] [PMID: 27452962]
[53]
Dolor, A.; Sampson, S.L.; Lazar, A.A.; Lotz, J.C.; Szoka, F.C.; Fields, A.J. Matrix modification for enhancing the transport properties of the human cartilage endplate to improve disc nutrition. PLoS One, 2019, 14(4), e0215218.
[http://dx.doi.org/10.1371/journal.pone.0215218] [PMID: 30970007]
[54]
Karamouzian, S.; Eskandary, H.; Faramarzee, M.; Saba, M.; Safizade, H.; Ghadipasha, M.; Malekpoor, A.R.; Ohadi, A. Frequency of lumbar intervertebral disc calcification and angiogenesis, and their correlation with clinical, surgical, and magnetic resonance imaging findings. Spine, 2010, 35(8), 881-886.
[http://dx.doi.org/10.1097/BRS.0b013e3181b9c986] [PMID: 20354479]
[55]
Gruber, H.E.; Norton, H.J.; Sun, Y.; Hanley, E.N., Jr Crystal deposits in the human intervertebral disc: implications for disc degeneration. Spine J., 2007, 7(4), 444-450.
[http://dx.doi.org/10.1016/j.spinee.2006.08.015] [PMID: 17630142]
[56]
Pytel, P.; Wollmann, R.L.; Fessler, R.G.; Krausz, T.N.; Montag, A.G. Degenerative spine disease: Pathologic findings in 985 surgical specimens. Am. J. Clin. Pathol., 2006, 125(2), 193-202.
[http://dx.doi.org/10.1309/89FVRT04EGBVEUD9] [PMID: 16393686]
[57]
Lee, R.S.; Kayser, M.V.; Ali, S.Y. Calcium phosphate microcrystal deposition in the human intervertebral disc. J. Anat., 2006, 208(1), 13-19.
[http://dx.doi.org/10.1111/j.1469-7580.2006.00504.x] [PMID: 16420375]
[58]
Skup, M. Neurotrophins: Evolution of concepts on rational therapeutic approaches. Postepy Biochem., 2018, 64(3), 231-241.
[http://dx.doi.org/10.18388/pb.2018_135] [PMID: 30656908]
[59]
Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in neuronal development and function. Annu. Rev. Neurosci., 2001, 24(1), 677-736.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.677] [PMID: 11520916]
[60]
Lu, B.; Pang, P.T.; Woo, N.H. The yin and yang of neurotrophin action. Nat. Rev. Neurosci., 2005, 6(8), 603-614.
[http://dx.doi.org/10.1038/nrn1726] [PMID: 16062169]
[61]
Dicou, E. High levels of the proNGF peptides LIP1 and LIP2 in the serum and synovial fluid of rheumatoid arthritis patients: Evidence for two new cytokines. J. Neuroimmunol., 2008, 194(1-2), 143-146.
[http://dx.doi.org/10.1016/j.jneuroim.2007.11.002] [PMID: 18162190]
[62]
Sahay, A.S.; Jadhav, A.T.; Sundrani, D.P.; Wagh, G.N.; Joshi, S.R. Differential Expression of Nerve Growth Factor (NGF) and Brain Derived Neurotrophic Factor (BDNF) in different regions of normal and preeclampsia placentae. Clin. Exp. Hypertens. N. Y. N 1993, 2020, 42, 360-364.
[http://dx.doi.org/10.1080/10641963.2019.1665677]
[63]
Ahmed, F.; Hristova, K. Dimerization of the Trk receptors in the plasma membrane: Effects of their cognate ligands. Biochem. J., 2018, 475(22), 3669-3685.
[http://dx.doi.org/10.1042/BCJ20180637] [PMID: 30366959]
[64]
Ateaque, S.; Merkouris, S.; Wyatt, S.; Allen, N.D.; Xie, J.; DiStefano, P.S.; Lindsay, R.M.; Barde, Y.A. Selective activation and down-regulation of Trk receptors by neurotrophins in human neurons co-expressing TRKB and TRKC. J. Neurochem., 2022, 161(6), 463-477.
[http://dx.doi.org/10.1111/jnc.15617] [PMID: 35536742]
[65]
Darcq, E.; Morisot, N.; Phamluong, K.; Warnault, V.; Jeanblanc, J.; Longo, F.M.; Massa, S.M.; Ron, D. The neurotrophic factor receptor p75 in the rat dorsolateral striatum drives excessive alcohol drinking. J. Neurosci., 2016, 36(39), 10116-10127.
[http://dx.doi.org/10.1523/JNEUROSCI.4597-14.2016] [PMID: 27683907]
[66]
Castrén, E.; Zafra, F.; Thoenen, H.; Lindholm, D. Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Proc. Natl. Acad. Sci., 1992, 89(20), 9444-9448.
[http://dx.doi.org/10.1073/pnas.89.20.9444] [PMID: 1409655]
[67]
Abe, Y.; Akeda, K.; An, H.S.; Aoki, Y.; Pichika, R.; Muehleman, C.; Kimura, T.; Masuda, K. Proinflammatory cytokines stimulate the expression of nerve growth factor by human intervertebral disc cells. Spine, 2007, 32(6), 635-642.
[http://dx.doi.org/10.1097/01.brs.0000257556.90850.53] [PMID: 17413467]
[68]
Freemont, A.J.; Watkins, A.; Le Maitre, C.; Baird, P.; Jeziorska, M.; Knight, M.T.N.; Ross, E.R.S.; O’Brien, J.P.; Hoyland, J.A. Nerve growth factor expression and innervation of the painful intervertebral disc. J. Pathol., 2002, 197(3), 286-292.
[http://dx.doi.org/10.1002/path.1108] [PMID: 12115873]
[69]
Purmessur, D.; Freemont, A.J.; Hoyland, J.A. Expression and regulation of neurotrophins in the nondegenerate and degenerate human intervertebral disc. Arthritis Res. Ther., 2008, 10(4), R99.
[http://dx.doi.org/10.1186/ar2487] [PMID: 18727839]
[70]
José, G-C.; Del Valle, M.E.; Calavia, M.G.; Olivia, G-S.; Alfonso, L-M.; Jesús, O.; José, A.V. Intervertebral disc, sensory nerves and neurotrophins: Who is who in discogenic pain? J. Anat., 2010, 217(1), 1-15.
[71]
Vega, J.A.; García-Suárez, O.; Hannestad, J. Neurotrophins and the immune system. J. Anatomy., 2003, 203(1), 1-19.
[72]
Aoki, Y.; Takahashi, Y.; Takahashi, K.; Chiba, T.; Kurokawa, M.; Ozawa, T.; Moriya, H. Sensory innervation of the lateral portion of the lumbar intervertebral disc in rats. Spine J., 2004, 4(3), 275-280.
[http://dx.doi.org/10.1016/j.spinee.2003.10.005] [PMID: 15125848]
[73]
Feng, H.; Danfelter, M.; Strömqvist, B.; Heinegård, D. Extracellular matrix in disc degeneration. J. Bone Joint Surg. Am., 2006, 88(S2), 25-29.
[http://dx.doi.org/10.2106/JBJS.E.01341] [PMID: 16595439]
[74]
Liao, Z.; Wu, X.; Song, Y.; Luo, R.; Yin, H.; Zhan, S.; Li, S.; Wang, K.; Zhang, Y.; Yang, C. Angiopoietin-like protein 8 expression and association with extracellular matrix metabolism and inflammation during intervertebral disc degeneration. J. Cell. Mol. Med., 2019, 23(8), 5737-5750.
[http://dx.doi.org/10.1111/jcmm.14488] [PMID: 31211513]
[75]
Ruiz-Fernández, C.; Francisco, V.; Pino, J.; Mera, A.; González-Gay, M.A.; Gómez, R.; Lago, F.; Gualillo, O. Molecular relationships among obesity, inflammation and intervertebral disc degeneration: Are adipokines the common link? Int. J. Mol. Sci., 2019, 20(8), 2030.
[http://dx.doi.org/10.3390/ijms20082030] [PMID: 31027158]
[76]
Gruber, H.E.; Hoelscher, G.L.; Bullock, L.; Ingram, J.A.; Norton, H.J.; Hanley, E.N., Jr Human annulus signaling cues for nerve outgrowth: In vitro studies. J. Orthop. Res., 2016, 34(8), 1456-1465.
[http://dx.doi.org/10.1002/jor.23286] [PMID: 27155444]
[77]
Krock, E.; Rosenzweig, D.H.; Chabot-Doré, A.J.; Jarzem, P.; Weber, M.H.; Ouellet, J.A.; Stone, L.S.; Haglund, L. Painful, degenerating intervertebral discs up-regulate neurite sprouting and CGRP through nociceptive factors. J. Cell. Mol. Med., 2014, 18(6), 1213-1225.
[http://dx.doi.org/10.1111/jcmm.12268] [PMID: 24650225]
[78]
Sharma, A.; Kaur, G. Tinospora cordifolia as a potential neuroregenerative candidate against glutamate induced excitotoxicity: An in vitro perspective. BMC Complement. Altern. Med., 2018, 18(1), 268.
[http://dx.doi.org/10.1186/s12906-018-2330-6] [PMID: 30285727]
[79]
Risbud, M.V.; Shapiro, I.M. Role of cytokines in intervertebral disc degeneration: Pain and disc content. Nat. Rev. Rheumatol., 2014, 10(1), 44-56.
[http://dx.doi.org/10.1038/nrrheum.2013.160] [PMID: 24166242]
[80]
Maynard, K.R.; Hobbs, J.W.; Sukumar, M.; Kardian, A.S.; Jimenez, D.V.; Schloesser, R.J.; Martinowich, K. Bdnf mRNA splice variants differentially impact CA1 and CA3 dendrite complexity and spine morphology in the hippocampus. Brain Struct. Funct., 2017, 222(7), 3295-3307.
[http://dx.doi.org/10.1007/s00429-017-1405-3] [PMID: 28324222]
[81]
Kowiański, P.; Lietzau, G.; Czuba, E.; Waśkow, M.; Steliga, A.; Moryś, J. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol., 2018, 38(3), 579-593.
[http://dx.doi.org/10.1007/s10571-017-0510-4] [PMID: 28623429]
[82]
Anatomy of Intervertebral Disc and Pathophysiology of Herniated Disc Disease. Available from: https://pubmed.ncbi.nlm.nih.gov/10150636/ [Accessed on: 7 August 2022
[83]
Liang, J.; Deng, G.; Huang, H. The activation of BDNF reduced inflammation in a spinal cord injury model by TrkB/p38 MAPK signaling. Exp. Ther. Med., 2018, 17(3), 1688-1696.
[http://dx.doi.org/10.3892/etm.2018.7109] [PMID: 30783437]
[84]
Palasz, E.; Wysocka, A.; Gasiorowska, A.; Chalimoniuk, M.; Niewiadomski, W.; Niewiadomska, G. BDNF as a Promising Therapeutic Agent in Parkinson’s Disease. Int. J. Mol. Sci., 2020, 21(3), 1170.
[http://dx.doi.org/10.3390/ijms21031170] [PMID: 32050617]
[85]
Kartha, S.; Zeeman, M.E.; Baig, H.A.; Guarino, B.B.; Winkelstein, B.A. Upregulation of BDNF and NGF in cervical intervertebral discs exposed to painful whole-body vibration. Spine, 2014, 39(19), 1542-1548.
[http://dx.doi.org/10.1097/BRS.0000000000000457] [PMID: 24921856]
[86]
Chen, K.W.; Chen, L. Epigenetic regulation of BDNF gene during development and diseases. Int. J. Mol. Sci., 2017, 18(3), 571.
[http://dx.doi.org/10.3390/ijms18030571] [PMID: 28272318]
[87]
Popova, N.K.; Naumenko, V.S. Neuronal and behavioral plasticity: The role of serotonin and BDNF systems tandem. Expert Opin. Ther. Targets, 2019, 23(3), 227-239.
[http://dx.doi.org/10.1080/14728222.2019.1572747] [PMID: 30661441]
[88]
Naumenko, V.S.; Kulikov, A.V.; Kondaurova, E.M.; Tsybko, A.S.; Kulikova, E.A.; Krasnov, I.B.; Shenkman, B.S.; Sychev, V.N.; Bazhenova, E.Y.; Sinyakova, N.A.; Popova, N.K. Effect of actual long-term spaceflight on BDNF, TrkB, p75, BAX and BCL-XL genes expression in mouse brain regions. Neuroscience, 2015, 284, 730-736.
[http://dx.doi.org/10.1016/j.neuroscience.2014.10.045] [PMID: 25451288]
[89]
Orita, S.; Eguchi, Y.; Kamoda, H.; Arai, G.; Ishikawa, T.; Miyagi, M.; Inoue, G.; Suzuki, M.; Toyone, T.; Aoki, Y.; Takahashi, K.; Ohtori, S. Brain-derived neurotrophic factor inhibition at the punctured intervertebral disc downregulates the production of calcitonin gene-related peptide in dorsal root ganglia in rats. Spine, 2011, 36(21), 1737-1743.
[http://dx.doi.org/10.1097/BRS.0b013e31821d7b9f] [PMID: 21540781]
[90]
Kirkeby, A.; Barker, R.A. Parkinson disease and growth factors—is GDNF good enough? Nat. Rev. Neurol., 2019, 15(6), 312-314.
[http://dx.doi.org/10.1038/s41582-019-0180-6] [PMID: 30948845]
[91]
Parekh, P.; Garcia, T.X.; Hofmann, M. Regulation of GDNF expression in Sertoli cells. Reproduction, 2019, 157(3), R95-R107.
[http://dx.doi.org/10.1530/REP-18-0239] [PMID: 30620720]
[92]
Donnelly, C.R.; Shah, A.A.; Mistretta, C.M.; Bradley, R.M.; Pierchala, B.A. Biphasic functions for the GDNF-Ret signaling pathway in chemosensory neuron development and diversification. Proc. Natl. Acad. Sci., 2018, 115(3), E516-E525.
[http://dx.doi.org/10.1073/pnas.1708838115] [PMID: 29282324]
[93]
Cintrón-Colón, A.F.; Almeida-Alves, G.; Boynton, A.M.; Spitsbergen, J.M. GDNF synthesis, signaling, and retrograde transport in motor neurons. Cell Tissue Res., 2020, 382(1), 47-56.
[http://dx.doi.org/10.1007/s00441-020-03287-6] [PMID: 32897420]
[94]
Jung, W.W.; Kim, H.S.; Shon, J.R.; Lee, M.; Lee, S.H.; Sul, D.; Na, H.S.; Kim, J.H.; Kim, B.J. Intervertebral disc degeneration-induced expression of pain-related molecules: Glial cell-derived neurotropic factor as a key factor. J. Neurosurg. Anesthesiol., 2011, 23(4), 329-334.
[http://dx.doi.org/10.1097/ANA.0b013e318220f033] [PMID: 21659885]
[95]
Chung, D.; Shum, A.; Caraveo, G. GAP-43 and BASP1 in axon regeneration: Implications for the treatment of neurodegenerative diseases. Front. Cell Dev. Biol., 2020, 8, 567537.
[http://dx.doi.org/10.3389/fcell.2020.567537] [PMID: 33015061]
[96]
Zhu, X.; Wang, P.; Liu, H.; Zhan, J.; Wang, J.; Li, M.; Zeng, L.; Xu, P. Changes and significance of SYP and GAP-43 expression in the hippocampus of CIH rats. Int. J. Med. Sci., 2019, 16(3), 394-402.
[http://dx.doi.org/10.7150/ijms.28359] [PMID: 30911273]
[97]
Huang, R.; Zhao, J.; Ju, L.; Wen, Y.; Xu, Q. The influence of GAP-43 on orientation of cell division through G proteins. Int. J. Dev. Neurosci., 2015, 47, 333-339.
[http://dx.doi.org/10.1016/j.ijdevneu.2015.07.013] [PMID: 26380950]
[98]
Merino, P.; Diaz, A.; Torre, E.R.; Yepes, M. Urokinase-type Plasminogen Activator (uPA) regulates the expression and function of Growth-Associated Protein 43 (GAP-43) in the synapse. J. Biol. Chem., 2020, 295(2), 619-630.
[http://dx.doi.org/10.1074/jbc.RA119.010644] [PMID: 31819012]
[99]
Kawasaki, A.; Okada, M.; Tamada, A.; Okuda, S.; Nozumi, M.; Ito, Y.; Kobayashi, D.; Yamasaki, T.; Yokoyama, R.; Shibata, T.; Nishina, H.; Yoshida, Y.; Fujii, Y.; Takeuchi, K.; Igarashi, M. Growth cone phosphoproteomics reveals that GAP-43 phosphorylated by JNK is a marker of axon growth and regeneration. iScience, 2018, 4, 190-203.
[http://dx.doi.org/10.1016/j.isci.2018.05.019] [PMID: 30240740]
[100]
Baptista, J.F.A.; Gomez, R.S.; Paulo, D.N.S.; Carraretto, A.R.; Brocco, M.C.; Silva, J.J. Epidural anesthesia with ropivacaine with or without clonidine and postoperative pain in hemorrhoidectomies. Acta Cir. Bras., 2014, 29(3), 201-208.
[http://dx.doi.org/10.1590/S0102-86502014000300009] [PMID: 24626733]
[101]
Colburn, T.D.; Holdsworth, C.T.; Craig, J.C.; Hirai, D.M.; Montgomery, S.; Poole, D.C.; Musch, T.I.; Kenney, M.J. ATP-sensitive K+ channel inhibition in rats decreases kidney and skeletal muscle blood flow without increasing sympathetic nerve discharge. Respir. Physiol. Neurobiol., 2020, 278, 103444.
[http://dx.doi.org/10.1016/j.resp.2020.103444] [PMID: 32330600]
[102]
Toroudi, H.P.; Rahgozar, M.; Bakhtiarian, A.; Djahanguiri, B.H.; Pazoki Toroudi, M.; Rahgozar, A. Potassium channel modulators and indomethacin-induced gastric ulceration in rats. Scand. J. Gastroenterol., 1999, 34(10), 962-966.
[http://dx.doi.org/10.1080/003655299750025048] [PMID: 10563664]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy