Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

AI in Health Science: A Perspective

Author(s): Raghav Mishra*, Kajal Chaudhary and Isha Mishra

Volume 24, Issue 9, 2023

Published on: 17 October, 2022

Page: [1149 - 1163] Pages: 15

DOI: 10.2174/1389201023666220929145220

Price: $65

Abstract

By helping practitioners understand complicated and varied types of data, Artificial Intelligence (AI) has influenced medical practice deeply. It is the use of a computer to mimic intelligent behaviour. Many medical professions, particularly those reliant on imaging or surgery, are progressively developing AI. While AI cognitive component outperforms human intellect, it lacks awareness, emotions, intuition, and adaptability. With minimum human participation, AI is quickly growing in healthcare, and numerous AI applications have been created to address current issues. This article explains AI, its various elements and how to utilize them in healthcare. It also offers practical suggestions for developing an AI strategy to assist the digital healthcare transition.

Keywords: Artificial Intelligence, Deep Learning, Machine Learning, Healthcare, Applications, Cancer, COVID-19

Graphical Abstract

[1]
Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med., 2022, 28(1), 31-38.
[http://dx.doi.org/10.1038/s41591-021-01614-0] [PMID: 35058619]
[2]
Lyman, G.H.; Moses, H.L. Biomarker tests for molecularly targeted therapies — the key to unlocking precision medicine. N. Engl. J. Med., 2016, 375(1), 4-6.
[http://dx.doi.org/10.1056/NEJMp1604033] [PMID: 27353537]
[3]
Collins, F.S.; Varmus, H. A new initiative on precision medicine. N. Engl. J. Med., 2015, 372(9), 793-795.
[http://dx.doi.org/10.1056/NEJMp1500523] [PMID: 25635347]
[4]
Xu, R.; Li, L.; Wang, Q. dRiskKB: a large-scale disease-disease risk relationship knowledge base constructed from biomedical text. BMC Bioinformatics, 2014, 15(1), 105.
[http://dx.doi.org/10.1186/1471-2105-15-105] [PMID: 24725842]
[5]
Chen, Y.; Li, L.; Zhang, G.Q.; Xu, R. Phenome-driven disease genetics prediction toward drug discovery. Bioinformatics, 2015, 31(12), i276-i283.
[http://dx.doi.org/10.1093/bioinformatics/btv245] [PMID: 26072493]
[6]
Wang, B.; Mezlini, A.M.; Demir, F.; Fiume, M.; Tu, Z.; Brudno, M.; Haibe-Kains, B.; Goldenberg, A. Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods, 2014, 11(3), 333-337.
[http://dx.doi.org/10.1038/nmeth.2810] [PMID: 24464287]
[7]
Tatonetti, N.P.; Ye, P.P.; Daneshjou, R.; Altman, R.B. Data-driven prediction of drug effects and interactions. Sci. Transl. Med., 2012, 4(125)125ra31
[http://dx.doi.org/10.1126/scitranslmed.3003377] [PMID: 22422992]
[8]
Miotto, R.; Weng, C. Case-based reasoning using electronic health records efficiently identifies eligible patients for clinical trials. J. Am. Med. Inform. Assoc., 2015, 22(e1), e141-e150.
[http://dx.doi.org/10.1093/jamia/ocu050] [PMID: 25769682]
[9]
Li, L.; Cheng, W.Y.; Glicksberg, B.S.; Gottesman, O.; Tamler, R.; Chen, R.; Bottinger, E.P.; Dudley, J.T. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci. Transl. Med., 2015, 7(311)311ra174
[http://dx.doi.org/10.1126/scitranslmed.aaa9364] [PMID: 26511511]
[10]
Libbrecht, M.W.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet., 2015, 16(6), 321-332.
[http://dx.doi.org/10.1038/nrg3920] [PMID: 25948244]
[11]
Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; Kim, R.; Raman, R.; Nelson, P.C.; Mega, J.L.; Webster, D.R. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 2016, 316(22), 2402-2410.
[http://dx.doi.org/10.1001/jama.2016.17216] [PMID: 27898976]
[12]
Bellazzi, R.; Zupan, B. Predictive data mining in clinical medicine: Current issues and guidelines. Int. J. Med. Inform., 2008, 77(2), 81-97.
[http://dx.doi.org/10.1016/j.ijmedinf.2006.11.006] [PMID: 17188928]
[13]
Hripcsak, G.; Albers, D.J. Next-generation phenotyping of electronic health records. J. Am. Med. Inform. Assoc., 2013, 20(1), 117-121.
[http://dx.doi.org/10.1136/amiajnl-2012-001145] [PMID: 22955496]
[14]
Jensen, P.B.; Jensen, L.J.; Brunak, S. Mining electronic health records: Towards better research applications and clinical care. Nat. Rev. Genet., 2012, 13(6), 395-405.
[http://dx.doi.org/10.1038/nrg3208] [PMID: 22549152]
[15]
Luo, J.; Wu, M.; Gopukumar, D.; Zhao, Y. Big data application in biomedical research and health care: a literature review. Biomed. Inform. Insights, 2016, 8S31559
[http://dx.doi.org/10.4137/BII.S31559] [PMID: 26843812]
[16]
Mohan, A.; Blough, D.M.; Kurc, T.; Post, A.; Saltz, J. Detection of conflicts and inconsistencies in taxonomy-based authorization policies. 2011 IEEE International Conference on Bioinformatics and Biomedicine, Nov 12-15, 2011Atlanta, GA, USA, pp. 590-594.
[http://dx.doi.org/10.1109/BIBM.2011.79] [PMID: 23242532]
[17]
Ouyang, D.; He, B.; Ghorbani, A.; Yuan, N.; Ebinger, J.; Langlotz, C.P.; Heidenreich, P.A.; Harrington, R.A.; Liang, D.H.; Ashley, E.A.; Zou, J.Y. Video-based AI for beat-to-beat assessment of cardiac function. Nature, 2020, 580(7802), 252-256.
[http://dx.doi.org/10.1038/s41586-020-2145-8] [PMID: 32269341]
[18]
Dilsizian, S.E.; Siegel, E.L. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr. Cardiol. Rep., 2014, 16(1), 441.
[http://dx.doi.org/10.1007/s11886-013-0441-8] [PMID: 24338557]
[19]
Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med., 2019, 25(1), 65-69.
[http://dx.doi.org/10.1038/s41591-018-0268-3] [PMID: 30617320]
[20]
Ghorbani, A.; Ouyang, D.; Abid, A.; He, B.; Chen, J.H.; Harrington, R.A.; Liang, D.H.; Ashley, E.A.; Zou, J.Y. Deep learning interpretation of echocardiograms. NPJ Digit. Med., 2020, 3(1), 10.
[http://dx.doi.org/10.1038/s41746-019-0216-8] [PMID: 31993508]
[21]
Combi, C. Editorial from the new Editor-in-Chief: Artificial Intelligence in Medicine and the forthcoming challenges Artif. Intell. Med., 2017, 76, 37.
[http://dx.doi.org/10.1016/j.artmed.2017.01.003]
[22]
Matheny, M.E.; Thadaney, I.S.; Ahmed, M.; Whicher, D. Artificial intelligence in health care: A report from the national academy of medicine. JAMA, 2020, 323(6), 509-510.
[23]
James, C.A.; Wachter, R.M.; Woolliscroft, J.O. Preparing clinicians for a clinical world influenced by artificial intelligence. JAMA, 2022, 327(14), 1333-1334.
[http://dx.doi.org/10.1001/jama.2022.3580] [PMID: 35311917]
[24]
Ribeiro, M.T.; Singh, S.; Guestrin, C. Why Should i Trust You?” Explaining the Predictions of Any Classifier. KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug 13, 2016New York, NY, United States , pp. 1135-1144.2016
[http://dx.doi.org/10.1145/2939672.2939778]
[25]
Cabitza, F.; Rasoini, R.; Gensini, G.F. Unintended consequences of machine learning in medicine. JAMA, 2017, 318(6), 517-518.
[http://dx.doi.org/10.1001/jama.2017.7797] [PMID: 28727867]
[26]
Jüni, P.; Altman, D.G.; Egger, M. Systematic reviews in health care: Assessing the quality of controlled clinical trials. BMJ, 2001, 323(7303), 42-46.
[http://dx.doi.org/10.1136/bmj.323.7303.42] [PMID: 11440947]
[27]
Artificial Intelligence: Technologies, applications, and challenges; Sharma, L.; Garg, P.K., Eds.; CRC Press: London, England, 2021.
[http://dx.doi.org/10.1201/9781003140351]
[28]
Robert, C. Machine Learning, a probabilistic perspective. Chance, 2014, 27(2), 62-63.
[http://dx.doi.org/10.1080/09332480.2014.914768]
[29]
Sendak, M.P.; Gao, M.; Brajer, N.; Balu, S. Presenting machine learning model information to clinical end users with model facts labels. NPJ Digit. Med., 2020, 3(1), 41.
[http://dx.doi.org/10.1038/s41746-020-0253-3] [PMID: 32219182]
[30]
Serag, A.; Ion-Margineanu, A.; Qureshi, H.; McMillan, R.; Saint Martin, M.J.; Diamond, J.; O’Reilly, P.; Hamilton, P. Translational AI and deep learning in diagnostic pathology. Front. Med., 2019, 6, 185.
[http://dx.doi.org/10.3389/fmed.2019.00185] [PMID: 31632973]
[31]
Yang, H.C.; Poly, T.N.; Jack Li, Y-C. Deep into Patient care: An automated deep learning approach for reshaping patient care in clinical setting. Comput. Methods Programs Biomed., 2019, 168, A1-A2.
[http://dx.doi.org/10.1016/j.cmpb.2018.11.007] [PMID: 30527131]
[32]
Wainberg, M.; Merico, D.; Delong, A.; Frey, B.J. Deep learning in biomedicine. Nat. Biotechnol., 2018, 36(9), 829-838.
[http://dx.doi.org/10.1038/nbt.4233] [PMID: 30188539]
[33]
Moja, L.; Kwag, K.H.; Lytras, T.; Bertizzolo, L.; Brandt, L.; Pecoraro, V.; Rigon, G.; Vaona, A.; Ruggiero, F.; Mangia, M.; Iorio, A.; Kunnamo, I.; Bonovas, S. Effectiveness of computerized decision support systems linked to electronic health records: a systematic review and meta-analysis. Am. J. Public Health, 2014, 104(12), e12-e22.
[http://dx.doi.org/10.2105/AJPH.2014.302164] [PMID: 25322302]
[34]
Beam, A.L.; Manrai, A.K.; Ghassemi, M. Challenges to the reproducibility of machine learning models in health care. JAMA, 2020, 323(4), 305-306.
[http://dx.doi.org/10.1001/jama.2019.20866] [PMID: 31904799]
[35]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[36]
Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: London, England, 2016.
[37]
Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542(7639), 115-118.
[http://dx.doi.org/10.1038/nature21056] [PMID: 28117445]
[38]
Jain, A.; Way, D.; Gupta, V.; Gao, Y.; de Oliveira Marinho, G.; Hartford, J.; Sayres, R.; Kanada, K.; Eng, C.; Nagpal, K.; DeSalvo, K.B.; Corrado, G.S.; Peng, L.; Webster, D.R.; Dunn, R.C.; Coz, D.; Huang, S.J.; Liu, Y.; Bui, P.; Liu, Y. Development and assessment of an artificial intelligence–based tool for skin condition diagnosis by primary care physicians and nurse practitioners in teledermatology practices. JAMA Netw. Open, 2021, 4(4)e217249
[http://dx.doi.org/10.1001/jamanetworkopen.2021.7249] [PMID: 33909055]
[39]
Baldi, P.; Sadowski, P.; Whiteson, D. Searching for exotic particles in high-energy physics with deep learning. Nat. Commun., 2014, 5(1), 4308.
[http://dx.doi.org/10.1038/ncomms5308] [PMID: 24986233]
[40]
Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; Klingner, J.; Shah, A.; Johnson, M.; Liu, X; Kaiser, Ł.; Gouws, S.; Kato, Y.; Kudo, T.; Kazawa, H.; Stevens, K.; Kurian, G.; Patil, N.; Wang, W.; Young, C.; Smith, J.; Riesa, J.; Rudnick, A.; Vinyals, O.; Corrado, G.; Hughes, M.; Dean, J. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv:1609.08144, 2016.
[41]
Goh, G.B.; Hodas, N.O.; Vishnu, A. Deep learning for computational chemistry. J. Comput. Chem., 2017, 38(16), 1291-1307.
[http://dx.doi.org/10.1002/jcc.24764] [PMID: 28272810]
[42]
McCulloch, W.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol., 1990, 52(1-2), 99-115.
[http://dx.doi.org/10.1016/S0092-8240(05)80006-0] [PMID: 2185863]
[43]
van der Laak, J.; Litjens, G.; Ciompi, F. Deep learning in histopathology: The path to the clinic. Nat. Med., 2021, 27(5), 775-784.
[http://dx.doi.org/10.1038/s41591-021-01343-4] [PMID: 33990804]
[44]
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A.C.; Fei-Fei, L. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis., 2015, 115(3), 211-252.
[http://dx.doi.org/10.1007/s11263-015-0816-y]
[45]
Hirschberg, J.; Manning, C.D. Advances in natural language processing. Science, 2015, 349(6245), 261-266.
[http://dx.doi.org/10.1126/science.aaa8685] [PMID: 26185244]
[46]
Hinton, G.; Deng, L.; Yu, D.; Dahl, G.; Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.; Kingsbury, B. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag., 2012, 29(6), 82-97.
[http://dx.doi.org/10.1109/MSP.2012.2205597]
[47]
Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal., 2017, 42, 60-88.
[http://dx.doi.org/10.1016/j.media.2017.07.005] [PMID: 28778026]
[48]
Shen, D.; Wu, G.; Suk, H.I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng., 2017, 19(1), 221-248.
[http://dx.doi.org/10.1146/annurev-bioeng-071516-044442] [PMID: 28301734]
[49]
Campanella, G.; Hanna, M.G.; Geneslaw, L.; Miraflor, A.; Werneck Krauss Silva, V.; Busam, K.J.; Brogi, E.; Reuter, V.E.; Klimstra, D.S.; Fuchs, T.J. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med., 2019, 25(8), 1301-1309.
[http://dx.doi.org/10.1038/s41591-019-0508-1] [PMID: 31308507]
[50]
Senders, J.T.; Staples, P.C.; Karhade, A.V.; Zaki, M.M.; Gormley, W.B.; Broekman, M.L.D.; Smith, T.R.; Arnaout, O. Machine learning and neurosurgical outcome prediction: a systematic review. World Neurosurg., 2018, 109, 476-486.e1.
[http://dx.doi.org/10.1016/j.wneu.2017.09.149] [PMID: 28986230]
[51]
Beam, A.L.; Kohane, I.S. Big data and machine learning in health care. JAMA, 2018, 319(13), 1317-1318.
[http://dx.doi.org/10.1001/jama.2017.18391] [PMID: 29532063]
[52]
Alanazi, H.O.; Abdullah, A.H.; Qureshi, K.N. A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care. J. Med. Syst., 2017, 41(4), 69.
[http://dx.doi.org/10.1007/s10916-017-0715-6] [PMID: 28285459]
[53]
Char, D.S.; Abràmoff, M.D.; Feudtner, C. Identifying ethical considerations for machine learning healthcare applications. Am. J. Bioeth., 2020, 20(11), 7-17.
[http://dx.doi.org/10.1080/15265161.2020.1819469] [PMID: 33103967]
[54]
Grischke, J.; Johannsmeier, L.; Eich, L.; Griga, L.; Haddadin, S. Dentronics: Towards robotics and artificial intelligence in dentistry. Dent. Mater., 2020, 36(6), 765-778.
[http://dx.doi.org/10.1016/j.dental.2020.03.021] [PMID: 32349877]
[55]
Darcy, A.M.; Louie, A.K.; Roberts, L.W. Machine learning and the profession of medicine. JAMA, 2016, 315(6), 551-552.
[http://dx.doi.org/10.1001/jama.2015.18421] [PMID: 26864406]
[56]
Huang, Y.; Zhang, L.; Lian, G.; Zhan, R.; Xu, R.; Huang, Y.; Mitra, B.; Wu, J.; Luo, G. A novel mathematical model to predict prognosis of burnt patients based on logistic regression and support vector machine. Burns, 2016, 42(2), 291-299.
[http://dx.doi.org/10.1016/j.burns.2015.08.009] [PMID: 26774603]
[57]
Da Silva, I.N.; Spatti, H.; Flauzino, A.; Liboni, R.; Dos Reis Alves, L.; Da Silva, S.F. Artificial Neural Network Architectures and Training Processes. Artif. Neural Networks; Springer International Publishing: NY City, 2017.
[58]
Dhungel, N.; Carneiro, G.; Bradley, A.P. A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med. Image Anal., 2017, 37, 114-128.
[http://dx.doi.org/10.1016/j.media.2017.01.009] [PMID: 28171807]
[59]
eGTEx Project. Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease. Nat. Genet., 2017, 49(12), 1664-1670.
[http://dx.doi.org/10.1038/ng.3969] [PMID: 29019975]
[60]
Park, Y.; Kellis, M. Deep learning for regulatory genomics. Nat. Biotechnol., 2015, 33(8), 825-826.
[http://dx.doi.org/10.1038/nbt.3313] [PMID: 26252139]
[61]
Kelley, D.R.; Snoek, J.; Rinn, J.L. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res., 2016, 26(7), 990-999.
[http://dx.doi.org/10.1101/gr.200535.115] [PMID: 27197224]
[62]
Quang, D.; Xie, X.; Dan, Q.; Dan, Q. A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res., 2016, 44(11), e107-e107.
[http://dx.doi.org/10.1093/nar/gkw226] [PMID: 27084946]
[63]
Alipanahi, B.; Delong, A.; Weirauch, M.T.; Frey, B.J. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol., 2015, 33(8), 831-838.
[http://dx.doi.org/10.1038/nbt.3300] [PMID: 26213851]
[64]
Lanchantin, J.; Singh, R.; Wang, B.; Qi, Y. Deep motif dashboard: visualizing and understanding genomic sequences using deep neural networks. Pac. Symp. Biocomput., 2017, 22, 254-265.
[http://dx.doi.org/10.1142/9789813207813_0025] [PMID: 27896980]
[65]
Zeng, H.; Edwards, M.D.; Liu, G.; Gifford, D.K. Convolutional neural network architectures for predicting DNA–protein binding. Bioinformatics, 2016, 32(12), i121-i127.
[http://dx.doi.org/10.1093/bioinformatics/btw255] [PMID: 27307608]
[66]
Bohr, A.; Memarzadeh, K. The rise of artificial intelligence in healthcare applications. In: Artificial Intelligence in Healthcare; Elsevier: Amsterdam, 2020; pp. 25-60.
[http://dx.doi.org/10.1016/B978-0-12-818438-7.00002-2]
[67]
Liu, F.; Li, H.; Ren, C.; Bo, X.; Shu, W. PEDLA: predicting enhancers with a deep learning-based algorithmic framework. Sci. Rep., 2016, 6(1), 28517.
[http://dx.doi.org/10.1038/srep28517] [PMID: 27329130]
[68]
Kleftogiannis, D.; Kalnis, P.; Bajic, V.B. DEEP: a general computational framework for predicting enhancers. Nucleic Acids Res., 2015, 43(1), e6.
[http://dx.doi.org/10.1093/nar/gku1058] [PMID: 25378307]
[69]
Min, X.; Zeng, W.; Chen, S.; Chen, N.; Chen, T.; Jiang, R. Predicting enhancers with deep convolutional neural networks. BMC Bioinformatics, 2017, 18(S13), 478.
[http://dx.doi.org/10.1186/s12859-017-1878-3] [PMID: 29219068]
[70]
Chabon, J.J.; Hamilton, E.G.; Kurtz, D.M.; Esfahani, M.S.; Moding, E.J.; Stehr, H.; Schroers-Martin, J.; Nabet, B.Y.; Chen, B.; Chaudhuri, A.A.; Liu, C.L.; Hui, A.B.; Jin, M.C.; Azad, T.D.; Almanza, D.; Jeon, Y.J.; Nesselbush, M.C. Co Ting Keh, L.; Bonilla, R.F.; Yoo, C.H.; Ko, R.B.; Chen, E.L.; Merriott, D.J.; Massion, P.P.; Mansfield, A.S.; Jen, J.; Ren, H.Z.; Lin, S.H.; Costantino, C.L.; Burr, R.; Tibshirani, R.; Gambhir, S.S.; Berry, G.J.; Jensen, K.C.; West, R.B.; Neal, J.W.; Wakelee, H.A.; Loo, B.W., Jr; Kunder, C.A.; Leung, A.N.; Lui, N.S.; Berry, M.F.; Shrager, J.B.; Nair, V.S.; Haber, D.A.; Sequist, L.V.; Alizadeh, A.A.; Diehn, M. Integrating genomic features for non-invasive early lung cancer detection. Nature, 2020, 580(7802), 245-251.
[http://dx.doi.org/10.1038/s41586-020-2140-0] [PMID: 32269342]
[71]
Li, Y.; Shi, W.; Wasserman, W.W. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods. BMC Bioinformatics, 2018, 19(1), 202.
[http://dx.doi.org/10.1186/s12859-018-2187-1] [PMID: 29855387]
[72]
Wang, Y.; Liu, T.; Xu, D.; Shi, H.; Zhang, C.; Mo, Y.Y.; Wang, Z. Predicting DNA methylation state of CpG dinucleotide using genome topological features and deep networks. Sci. Rep., 2016, 6(1), 19598.
[http://dx.doi.org/10.1038/srep19598] [PMID: 26797014]
[73]
Schreiber, J.; Libbrecht, M.; Bilmes, J.; Noble, W.S. Nucleotide sequence and dnasei sensitivity are predictive of 3D chromatin architecture. bioRxiv, 1036142017.
[http://dx.doi.org/10.1101/103614]
[74]
Zeng, W.; Wu, M.; Jiang, R. Prediction of enhancer-promoter interactions via natural language processing. BMC Genomics, 2018, 19(Suppl. 2), 84.
[http://dx.doi.org/10.1186/s12864-018-4459-6] [PMID: 29764360]
[75]
Shrikumar, A.; Greenside, P.; Kundaje, A. Reverse-complement parameter sharing improves deep learning models for genomics. bioRxiv, 1036632017.
[http://dx.doi.org/10.1101/103663]
[76]
Tan, J.; Hammond, J.H.; Hogan, D.A.; Greene, C.S. ADAGE-based integration of publicly available Pseudomonas aeruginosa gene expression data with denoising autoencoders illuminates microbe-host interactions. mSystems, 2016, 1(1), e00025-e15.
[http://dx.doi.org/10.1128/mSystems.00025-15] [PMID: 27822512]
[77]
Chen, Y.; Li, Y.; Narayan, R.; Subramanian, A.; Xie, X. Gene expression inference with deep learning. Bioinformatics, 2016, 32(12), 1832-1839.
[http://dx.doi.org/10.1093/bioinformatics/btw074] [PMID: 26873929]
[78]
Chen, L.; Cai, C.; Chen, V.; Lu, X. Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model. BMC Bioinformatics, 2016, 17(S1), 9.
[http://dx.doi.org/10.1186/s12859-015-0852-1]
[79]
Xie, R.; Wen, J.; Quitadamo, A.; Cheng, J.; Shi, X. A deep auto-encoder model for gene expression prediction. BMC Genomics, 2017, 18(S9), 845.
[http://dx.doi.org/10.1186/s12864-017-4226-0] [PMID: 29219072]
[80]
Jha, A.; Gazzara, M.R.; Barash, Y. Integrative deep models for alternative splicing. Bioinformatics, 2017, 33(14), i274-i282.
[http://dx.doi.org/10.1093/bioinformatics/btx268] [PMID: 28882000]
[81]
Hill, S.T.; Kuintzle, R.; Teegarden, A.; Merrill, E., III; Danaee, P.; Hendrix, D.A. A deep recurrent neural network discovers complex biological rules to decipher RNA protein-coding potential. Nucleic Acids Res., 2018, 46(16), 8105-8113.
[http://dx.doi.org/10.1093/nar/gky567] [PMID: 29986088]
[82]
Shaham, U.; Stanton, K.P.; Zhao, J.; Li, H.; Raddassi, K.; Montgomery, R.; Kluger, Y. Removal of batch effects using distribution-matching residual networks. Bioinformatics, 2017, 33(16), 2539-2546.
[http://dx.doi.org/10.1093/bioinformatics/btx196] [PMID: 28419223]
[83]
Lin, C.; Jain, S.; Kim, H.; Bar-Joseph, Z. Using neural networks for reducing the dimensions of single-cell RNA-Seq data. Nucleic Acids Res., 2017, 45(17), e156-e156.
[http://dx.doi.org/10.1093/nar/gkx681] [PMID: 28973464]
[84]
Smit, A.; Jain, S.; Rajpurkar, P.; Pareek, A.; Ng, A.; Lungren, M. Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Nov, 2020, pp. 1500-1519. 2020
[http://dx.doi.org/10.18653/v1/2020.emnlp-main.117]
[85]
Reyes, M.; Meier, R.; Pereira, S.; Silva, C.A.; Dahlweid, F.M.; Tengg-Kobligk, H.; Summers, R.M.; Wiest, R. On the interpretability of artificial intelligence in radiology: Challenges and opportunities. Radiol. Artif. Intell., 2020, 2(3)e190043
[http://dx.doi.org/10.1148/ryai.2020190043] [PMID: 32510054]
[86]
Hollon, T.C.; Pandian, B.; Adapa, A.R.; Urias, E.; Save, A.V.; Khalsa, S.S.S.; Eichberg, D.G.; D’Amico, R.S.; Farooq, Z.U.; Lewis, S.; Petridis, P.D.; Marie, T.; Shah, A.H.; Garton, H.J.L.; Maher, C.O.; Heth, J.A.; McKean, E.L.; Sullivan, S.E.; Hervey-Jumper, S.L.; Patil, P.G.; Thompson, B.G.; Sagher, O.; McKhann, G.M., II; Komotar, R.J.; Ivan, M.E.; Snuderl, M.; Otten, M.L.; Johnson, T.D.; Sisti, M.B.; Bruce, J.N.; Muraszko, K.M.; Trautman, J.; Freudiger, C.W.; Canoll, P.; Lee, H.; Camelo-Piragua, S.; Orringer, D.A. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat. Med., 2020, 26(1), 52-58.
[http://dx.doi.org/10.1038/s41591-019-0715-9] [PMID: 31907460]
[87]
Schlemper, J.; Caballero, J.; Hajnal, J.V.; Price, A.N.; Rueckert, D. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging, 2018, 37(2), 491-503.
[http://dx.doi.org/10.1109/TMI.2017.2760978] [PMID: 29035212]
[88]
Yang, Y.; Sun, J.; Li, H.; Xu, Z ADMM-Net: A deep learning approach for compressive sensing MRI arXiv:1705.06869, 2017.
[89]
Zhu, B.; Liu, J.Z.; Cauley, S.F.; Rosen, B.R.; Rosen, M.S. Image reconstruction by domain-transform manifold learning. Nature, 2018, 555(7697), 487-492.
[http://dx.doi.org/10.1038/nature25988] [PMID: 29565357]
[90]
Wang, S.; Su, Z.; Ying, L.; Peng, X.; Zhu, S.; Liang, F.; Feng, D.; Liang, D. Accelerating magnetic resonance imaging via deep learning. Proc. IEEE Int. Symp. Biomed. Imaging, 2016, 2016, 514-517.
[http://dx.doi.org/10.1109/ISBI.2016.7493320] [PMID: 31709031]
[91]
Zaharchuk, G.; Gong, E.; Wintermark, M.; Rubin, D.; Langlotz, C.P. Deep learning in neuroradiology. AJNR Am. J. Neuroradiol., 2018, 39(10), 1776-1784.
[http://dx.doi.org/10.3174/ajnr.A5543] [PMID: 29419402]
[92]
Rana, A.; Lowe, A.; Lithgow, M.; Horback, K.; Janovitz, T.; Da Silva, A.; Tsai, H.; Shanmugam, V.; Bayat, A.; Shah, P. Use of deep learning to develop and analyze computational hematoxylin and eosin staining of prostate core biopsy images for tumor diagnosis. JAMA Netw. Open, 2020, 3(5)e205111
[http://dx.doi.org/10.1001/jamanetworkopen.2020.5111] [PMID: 32432709]
[93]
Le Cun, Y.; Jackel, L.D.; Boser, B.; Denker, J.S.; Graf, H.P.; Guyon, I.; Henderson, D.; Howard, R.E.; Hubbard, W. Handwritten digit recognition: applications of neural network chips and automatic learning. IEEE Commun. Mag., 1990, 27(11), 41-46.
[94]
Lo, S.C.B.; Lin, J.S.; Freedman, M.T.; Mun, S.K. Computer-assisted diagnosis of lung nodule detection using artificial convoultion neural network; SPIE. Digital Library , pp. 859-869.1993
[http://dx.doi.org/10.1117/12.154572]
[95]
Lo, S.C.B.; Chan, H.P.; Lin, J.S.; Li, H.; Freedman, M.T.; Mun, S.K. Artificial convolution neural network for medical image pattern recognition. Neural Netw., 1995, 8(7-8), 1201-1214.
[http://dx.doi.org/10.1016/0893-6080(95)00061-5]
[96]
Sahiner, B.; Chan, H.P.; Petrick, N.; Wei, D.; Helvie, M.A.; Adler, D.D.; Goodsitt, M.M. Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification. Med. Phys., 1996, 23(10), 1685-1696.
[http://dx.doi.org/10.1117/12.208758]
[97]
Chan, H.P.; Lo, S.C.B.; Sahiner, B.; Lam, K.L.; Helvie, M.A. Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network. Med. Phys., 1995, 22(10), 1555-1567.
[http://dx.doi.org/10.1118/1.597428] [PMID: 8551980]
[98]
Sahiner, B. Heang-Ping Chan; Petrick, N.; Datong Wei; Helvie, M.A.; Adler, D.D.; Goodsitt, M.M. Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images. IEEE Trans. Med. Imaging, 1996, 15(5), 598-610.
[http://dx.doi.org/10.1109/42.538937] [PMID: 18215941]
[99]
Zhang, W.; Doi, K.; Giger, M.L.; Wu, Y.; Nishikawa, R.M.; Schmidt, R.A. Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network. Med. Phys., 1994, 21(4), 517-524.
[http://dx.doi.org/10.1118/1.597177] [PMID: 8058017]
[100]
Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput., 2006, 18(7), 1527-1554.
[http://dx.doi.org/10.1162/neco.2006.18.7.1527] [PMID: 16764513]
[101]
Y., Bengio; P., Lamblin; D., Popovici; H., Larochelle; U., Montreal Greedy Layer-Wise Training of Deep Networks In: Advances in Neural Information Processing Systems; The MIT Press: Massachusetts, 2007.
[102]
Erhan, D.; Courville, A.; Bengio, Y.; Vincent, P. Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res., 2010, 11, 201-208.
[103]
Ranzato, M.; Huang, F.J.; Boureau, Y-L.; LeCun, Y. Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition. 2007 IEEE Conference on Computer Vision and Pattern Recognition, Jun 17-22, 2007 Minneapolis, MN, USA , pp. 1-8.2007
[http://dx.doi.org/10.1109/CVPR.2007.383157]
[104]
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 2014, 15, 1929-1958.
[105]
Ioffe, S.; Szegedy, C Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167, 2015.
[106]
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM, 2017, 60(6), 84-90.
[http://dx.doi.org/10.1145/3065386]
[107]
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 27-30, 2016Las Vegas, NV, USA, pp. 770-778. 2016
[http://dx.doi.org/10.1109/CVPR.2016.90]
[108]
Sun, C.; Shrivastava, A.; Singh, S.; Gupta, A. Revisiting unreasonable effectiveness of data in deep learning era. 2017 IEEE International Conference on Computer Vision (ICCV), Oct 22-29, 2017Venice, Italy, pp. 843-852. 2017
[http://dx.doi.org/10.1109/ICCV.2017.97]
[109]
Chan, H.P.; Samala, R.K.; Hadjiiski, L.M.; Zhou, C. Deep learning in medical image analysis. Adv. Exp. Med. Biol., 2020, 1213, 3-21.
[http://dx.doi.org/10.1007/978-3-030-33128-3_1] [PMID: 32030660]
[110]
Fleming, N. How artificial intelligence is changing drug discovery. Nature, 2018, 557(7707), S55-S57.
[http://dx.doi.org/10.1038/d41586-018-05267-x] [PMID: 29849160]
[111]
Smalley, E. AI-powered drug discovery captures pharma interest. Nat. Biotechnol., 2017, 35(7), 604-605.
[http://dx.doi.org/10.1038/nbt0717-604] [PMID: 28700560]
[112]
Meyer, J.G.; Liu, S.; Miller, I.J.; Coon, J.J.; Gitter, A. Learning drug functions from chemical structures with convolutional neural networks and random forests. J. Chem. Inf. Model., 2019, 59(10), 4438-4449.
[http://dx.doi.org/10.1021/acs.jcim.9b00236] [PMID: 31518132]
[113]
Wallach, I.; Dzamba, M.; Heifets, A AtomNet: A deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv:1510.02855, 2015.
[114]
Beck, B.R.; Shin, B.; Choi, Y.; Park, S.; Kang, K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput. Struct. Biotechnol. J., 2020, 18, 784-790.
[http://dx.doi.org/10.1016/j.csbj.2020.03.025] [PMID: 32280433]
[115]
DeGrave, A.J.; Janizek, J.D.; Lee, S.I. AI for radiographic COVID-19 detection selects shortcuts over signal. Nat. Mach. Intell., 2021, 3(7), 610-619.
[http://dx.doi.org/10.1038/s42256-021-00338-7]
[116]
Sosa, D.N.; Derry, A.; Guo, M.; Wei, E.; Brinton, C.; Altman, R.B. A literature-based knowledge graph embedding method for identifying drug repurposing opportunities in rare diseases. Pac. Symp. Biocomput., 2020, 25, 463-474.
[PMID: 31797619]
[117]
Morselli Gysi, D.; do Valle, Í.; Zitnik, M.; Ameli, A.; Gan, X.; Varol, O.; Ghiassian, S.D.; Patten, J.J.; Davey, R.A.; Loscalzo, J.; Barabási, A.L. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc. Natl. Acad. Sci., 2021, 118(19)e2025581118
[http://dx.doi.org/10.1073/pnas.2025581118] [PMID: 33906951]
[118]
Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Rawling, M.; Savory, E.; Stebbing, J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet, 2020, 395(10223), e30-e31.
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4] [PMID: 32032529]
[119]
Zhou, Y.; Wang, F.; Tang, J.; Nussinov, R.; Cheng, F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health, 2020, 2(12), e667-e676.
[http://dx.doi.org/10.1016/S2589-7500(20)30192-8] [PMID: 32984792]
[120]
Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackermann, Z.; Tran, V.M.; Chiappino-Pepe, A.; Badran, A.H.; Andrews, I.W.; Chory, E.J.; Church, G.M.; Brown, E.D.; Jaakkola, T.S.; Barzilay, R.; Collins, J.J. A deep learning approach to antibiotic discovery. Cell, 2020, 181(2), 475-483.
[http://dx.doi.org/10.1016/j.cell.2020.04.001] [PMID: 32302574]
[121]
Hertzberg, R.P.; Pope, A.J. High-throughput screening: New technology for the 21st century. Curr. Opin. Chem. Biol., 2000, 4(4), 445-451.
[http://dx.doi.org/10.1016/S1367-5931(00)00110-1] [PMID: 10959774]
[122]
Hopkins, A.L. Predicting promiscuity. Nature, 2009, 462(7270), 167-168.
[http://dx.doi.org/10.1038/462167a] [PMID: 19907483]
[123]
Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 2010, 9(3), 203-214.
[http://dx.doi.org/10.1038/nrd3078] [PMID: 20168317]
[124]
Schierz, A.C. Virtual screening of bioassay data. J. Cheminform., 2009, 1(1), 21.
[http://dx.doi.org/10.1186/1758-2946-1-21] [PMID: 20150999]
[125]
Liu, Z.; Guo, F.; Gu, J.; Wang, Y.; Li, Y.; Wang, D.; Lu, L.; Li, D.; He, F. Similarity-based prediction for Anatomical Therapeutic Chemical classification of drugs by integrating multiple data sources. Bioinformatics, 2015, 31(11), 1788-1795.
[http://dx.doi.org/10.1093/bioinformatics/btv055] [PMID: 25638810]
[126]
Chen, L.; Zeng, W.M.; Cai, Y.D.; Feng, K.Y.; Chou, K.C. Predicting Anatomical Therapeutic Chemical (ATC) classification of drugs by integrating chemical-chemical interactions and similarities. PLoS One, 2012, 7(4)e35254
[http://dx.doi.org/10.1371/journal.pone.0035254] [PMID: 22514724]
[127]
Chong, C.R.; Sullivan, D.J., Jr New uses for old drugs. Nature, 2007, 448(7154), 645-646.
[http://dx.doi.org/10.1038/448645a] [PMID: 17687303]
[128]
Mujwar, S.; Deshmukh, R.; Harwansh, R.K.; Gupta, J.K.; Gour, A. Drug repurposing approach for developing novel therapy against mupirocin-resistant Staphylococcus aureus. Assay Drug Dev. Technol., 2019, 17(7), 298-309.
[http://dx.doi.org/10.1089/adt.2019.944] [PMID: 31634019]
[129]
Agrawal, N.; Mujwar, S.; Goyal, A.; Gupta, J.K. Phytoestrogens as potential antiandrogenic agents against prostate cancer: an in silico analysis. Lett. Drug Des. Discov., 2022, 19(1), 69-78.
[http://dx.doi.org/10.2174/1570180818666210813121431]
[130]
Boguski, M.S.; Mandl, K.D.; Sukhatme, V.P. Repurposing with a difference. Science, 2009, 324(5933), 1394-1395.
[http://dx.doi.org/10.1126/science.1169920] [PMID: 19520944]
[131]
Shoichet, B.K. Virtual screening of chemical libraries. Nature, 2004, 432(7019), 862-865.
[http://dx.doi.org/10.1038/nature03197] [PMID: 15602552]
[132]
Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.; Tran, T.B.; Whaley, R.; Glennon, R.A.; Hert, J.; Thomas, K.L.H.; Edwards, D.D.; Shoichet, B.K.; Roth, B.L. Predicting new molecular targets for known drugs. Nature, 2009, 462(7270), 175-181.
[http://dx.doi.org/10.1038/nature08506] [PMID: 19881490]
[133]
Doman, T.N.; McGovern, S.L.; Witherbee, B.J.; Kasten, T.P.; Kurumbail, R.; Stallings, W.C.; Connolly, D.T.; Shoichet, B.K. Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J. Med. Chem., 2002, 45(11), 2213-2221.
[http://dx.doi.org/10.1021/jm010548w] [PMID: 12014959]
[134]
Powers, R.A.; Morandi, F.; Shoichet, B.K. Structure-based discovery of a novel, noncovalent inhibitor of AmpC β-lactamase. Structure, 2002, 10(7), 1013-1023.
[http://dx.doi.org/10.1016/S0969-2126(02)00799-2] [PMID: 12121656]
[135]
Ripphausen, P.; Nisius, B.; Bajorath, J. State-of-the-art in ligand-based virtual screening. Drug Discov. Today, 2011, 16(9-10), 372-376.
[http://dx.doi.org/10.1016/j.drudis.2011.02.011] [PMID: 21349346]
[136]
Rifaioglu, A.S.; Atas, H.; Martin, M.J.; Cetin-Atalay, R.; Atalay, V.; Doğan, T. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief. Bioinform., 2019, 20(5), 1878-1912.
[http://dx.doi.org/10.1093/bib/bby061] [PMID: 30084866]
[137]
Mishra, R.; Kumar, N.; Mishra, I.; Sachan, N. A review on anticancer activities of thiophene and its analogs. Mini Rev. Med. Chem., 2020, 20(19), 1944-1965.
[http://dx.doi.org/10.2174/1389557520666200715104555] [PMID: 32669077]
[138]
Agrawal, K.K.; Murti, Y. Jyoti; Agrawal, N.; Gupta, T. In silico studies of bioactive compounds from hibiscus rosa-sinensis against her2 and esr1 for breast cancer treatment. Int. J. Pharm. Sci. Nanotechnol., 2021, 14(6), 5665-5671.
[http://dx.doi.org/10.37285/ijpsn.2021.14.6.3]
[139]
Murti, Y.; Mishra, P. Synthesis, characterization, and biological evaluation of novel naringenin derivatives as anticancer agents. Curr. Bioact. Compd., 2020, 16(4), 442-448.
[http://dx.doi.org/10.2174/1573407215666181214114927]
[140]
Kiani, A.; Uyumazturk, B.; Rajpurkar, P.; Wang, A.; Gao, R.; Jones, E.; Yu, Y.; Langlotz, C.P.; Ball, R.L.; Montine, T.J.; Martin, B.A.; Berry, G.J.; Ozawa, M.G.; Hazard, F.K.; Brown, R.A.; Chen, S.B.; Wood, M.; Allard, L.S.; Ylagan, L.; Ng, A.Y.; Shen, J. Impact of a deep learning assistant on the histopathologic classification of liver cancer. NPJ Digit. Med., 2020, 3(1), 23.
[http://dx.doi.org/10.1038/s41746-020-0232-8] [PMID: 32140566]
[141]
Araújo, T.; Aresta, G.; Castro, E.; Rouco, J.; Aguiar, P.; Eloy, C.; Polónia, A.; Campilho, A. Classification of breast cancer histology images using convolutional neural networks. PLoS One, 2017, 12(6)e0177544
[http://dx.doi.org/10.1371/journal.pone.0177544] [PMID: 28570557]
[142]
McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.; Etemadi, M.; Garcia-Vicente, F.; Gilbert, F.J.; Halling-Brown, M.; Hassabis, D.; Jansen, S.; Karthikesalingam, A.; Kelly, C.J.; King, D.; Ledsam, J.R.; Melnick, D.; Mostofi, H.; Peng, L.; Reicher, J.J.; Romera-Paredes, B.; Sidebottom, R.; Suleyman, M.; Tse, D.; Young, K.C.; De Fauw, J.; Shetty, S. International evaluation of an AI system for breast cancer screening. Nature, 2020, 577(7788), 89-94.
[http://dx.doi.org/10.1038/s41586-019-1799-6] [PMID: 31894144]
[143]
Bejnordi, B.E.; Zuidhof, G.; Balkenhol, M.; Hermsen, M.; Bult, P.; van Ginneken, B.; Karssemeijer, N.; Litjens, G.; van der Laak, J. Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images. J. Med. Imaging, 2017, 4(4), 1.
[http://dx.doi.org/10.1117/1.JMI.4.4.044504] [PMID: 29285517]
[144]
Ehteshami Bejnordi, B.; Mullooly, M.; Pfeiffer, R.M.; Fan, S.; Vacek, P.M.; Weaver, D.L.; Herschorn, S.; Brinton, L.A.; van Ginneken, B.; Karssemeijer, N.; Beck, A.H.; Gierach, G.L.; van der Laak, J.A.W.M.; Sherman, M.E. Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies. Mod. Pathol., 2018, 31(10), 1502-1512.
[http://dx.doi.org/10.1038/s41379-018-0073-z] [PMID: 29899550]
[145]
Kainz, P.; Pfeiffer, M.; Urschler, M. Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization. PeerJ, 2017, 5e3874
[http://dx.doi.org/10.7717/peerj.3874] [PMID: 29018612]
[146]
Awan, R.; Sirinukunwattana, K.; Epstein, D.; Jefferyes, S.; Qidwai, U.; Aftab, Z.; Mujeeb, I.; Snead, D.; Rajpoot, N. Glandular morphometrics for objective grading of colorectal adenocarcinoma histology images. Sci. Rep., 2017, 7(1), 16852.
[http://dx.doi.org/10.1038/s41598-017-16516-w] [PMID: 29203775]
[147]
Wang, L.; Ding, L.; Liu, Z.; Sun, L.; Chen, L.; Jia, R.; Dai, X.; Cao, J.; Ye, J. Automated identification of malignancy in whole-slide pathological images: identification of eyelid malignant melanoma in gigapixel pathological slides using deep learning. Br. J. Ophthalmol., 2020, 104(3), 318-323.
[http://dx.doi.org/10.1136/bjophthalmol-2018-313706] [PMID: 31302629]
[148]
Mercan, C.; Aksoy, S.; Mercan, E.; Shapiro, L.G.; Weaver, D.L.; Elmore, J.G. Multi-instance multi-label learning for multi-class classification of whole slide breast histopathology images. IEEE Trans. Med. Imaging, 2018, 37(1), 316-325.
[http://dx.doi.org/10.1109/TMI.2017.2758580] [PMID: 28981408]
[149]
Wang, S.; Zhu, Y.; Yu, L.; Chen, H.; Lin, H.; Wan, X.; Fan, X.; Heng, P.A. RMDL: Recalibrated multi-instance deep learning for whole slide gastric image classification. Med. Image Anal., 2019, 58(101549)101549
[http://dx.doi.org/10.1016/j.media.2019.101549] [PMID: 31499320]
[150]
Tomita, N.; Abdollahi, B.; Wei, J.; Ren, B.; Suriawinata, A.; Hassanpour, S. Attention-based deep neural networks for detection of cancerous and precancerous esophagus tissue on histopathological slides. JAMA Netw. Open, 2019, 2(11)e1914645
[http://dx.doi.org/10.1001/jamanetworkopen.2019.14645] [PMID: 31693124]
[151]
Zhang, L. Le Lu; Nogues, I.; Summers, R.M.; Liu, S.; Yao, J. DeepPap: Deep convolutional networks for cervical cell classification. IEEE J. Biomed. Health Inform., 2017, 21(6), 1633-1643.
[http://dx.doi.org/10.1109/JBHI.2017.2705583] [PMID: 28541229]
[152]
Vaickus, L.J.; Suriawinata, A.A.; Wei, J.W.; Liu, X. Automating the Paris System for urine cytopathology—A hybrid deep-learning and morphometric approach. Cancer Cytopathol., 2019, 127(2), 98-115.
[http://dx.doi.org/10.1002/cncy.22099] [PMID: 30702803]
[153]
Sanghvi, A.B.; Allen, E.Z.; Callenberg, K.M.; Pantanowitz, L. Performance of an artificial intelligence algorithm for reporting urine cytopathology. Cancer Cytopathol., 2019, 127(10), 658-666.
[http://dx.doi.org/10.1002/cncy.22176] [PMID: 31412169]
[154]
Saha, M.; Chakraborty, C.; Arun, I.; Ahmed, R.; Chatterjee, S. An advanced deep learning approach for Ki-67 stained hotspot detection and proliferation rate scoring for prognostic evaluation of breast cancer. Sci. Rep., 2017, 7(1), 3213.
[http://dx.doi.org/10.1038/s41598-017-03405-5] [PMID: 28607456]
[155]
Niazi, M.K.K.; Tavolara, T.E.; Arole, V.; Hartman, D.J.; Pantanowitz, L.; Gurcan, M.N. Identifying tumor in pancreatic neuroendocrine neoplasms from Ki67 images using transfer learning. PLoS One, 2018, 13(4)e0195621
[http://dx.doi.org/10.1371/journal.pone.0195621] [PMID: 29649302]
[156]
Jiang, Y.; Yang, M.; Wang, S.; Li, X.; Sun, Y. Emerging role of deep learning-based artificial intelligence in tumor pathology. Cancer Commun., 2020, 40(4), 154-166.
[http://dx.doi.org/10.1002/cac2.12012] [PMID: 32277744]
[157]
Zou, J.; Huss, M.; Abid, A.; Mohammadi, P.; Torkamani, A.; Telenti, A. A primer on deep learning in genomics. Nat. Genet., 2019, 51(1), 12-18.
[http://dx.doi.org/10.1038/s41588-018-0295-5] [PMID: 30478442]
[158]
Patel, U. Artificial Intelligence in healthcare: Advantages & challenges. Available from: https://www.tristatetechnology.com/blog/artificial-intelligence-in-healthcare-top-benefits-risks-and-challenges/ [Accessed September 06, 2022
[159]
College of Computing & Informatics. Pros & cons of artificial intelligence in medicine. Available from: https://drexel.edu/cci/stories/artificial-intelligence-in-medicine-pros-and-cons/ [Accessed September 06, 2022
[160]
Altman, R. Artificial Intelligence in Healthcare: Benefits, Myths, and Limitations. Available from: https://www.g2.com/articles/artificial-intelligence-in-healthcare-benefits-myths-and-limitations [Accessed September 06, 2022].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy