Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

In Vitro Antioxidant, Anti-inflammatory, Antimicrobial, and Antidiabetic Activities of Synthesized Chitosan-loaded p-Coumaric Acid Nanoparticles

Author(s): Amalan Venkatesan, Jose Vinoth Raja Antony Samy, Karthikeyan Balakrishnan, Vijayakumar Natesan* and Sung-Jin Kim*

Volume 24, Issue 9, 2023

Published on: 10 October, 2022

Page: [1178 - 1194] Pages: 17

DOI: 10.2174/1389201023666220822112923

Price: $65

conference banner
Abstract

Background: p-Coumaric acid is a phenolic compound widely distributed in fruits and vegetables that displays an array of therapeutic properties, including antidiabetic effects. Prominent application in diabetes is limited due to its suboptimal pharmacokinetics, poor aqueous solubility, and poor bioavailability. Nanotechnology-based delivery methods have been developed to address these limitations and improve the therapeutic uses of p-coumaric acid, and the nanoencapsulation method is emerging as a feasible alternative.

Objective: The objective of this study is to synthesize p-coumaric acid nanoparticles (PCNPs) and to evaluate their In Vitro activities.

Methods: The PCNPs were synthesized by the nanoprecipitation method and characterized by UV-visible spectroscopy, zeta potential, Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) with dispersive energy X-ray (EDX) analysis. In addition, the PCNPs were analyzed for In Vitro antioxidant activity using six different free radical scavenging assays and were also analyzed for antimicrobial, anti-inflammatory, antithrombotic, and antidiabetic effects.

Results: The formation of PCNPs was confirmed by UV-visible spectra at 283 nm, and FTIR analysis revealed the reduction and capping of the chitosan nanoparticles. SEM was used to assess the size and shape of the PCNPs, and the high absorption property of the PCNPs was investigated using EDX analysis. The PCNPs had significant antioxidant, hydrogen peroxide (H2O2), lipid peroxidation (LPO), superoxide and nitric oxide (NO) radical scavenging power activities, and showed potent antimicrobial, anti-inflammatory, antithrombotic, and antidiabetic activities.

Conclusion: The present study suggests that PCNPs can be used as a potential medication delivery approach to provide a greater nephroprotective effect in the treatment of diabetic nephropathy. To the best of our knowledge, this is the first attempt at the synthesis of chitosan-loaded PCNPs.

Keywords: p-coumaric acid, antioxidant, nanoprecipitation, encapsulation, chitosan

Graphical Abstract

[1]
Xiong, Y.; Zhu, G.H.; Zhang, Y.N.; Hu, Q.; Wang, H.N.; Yu, H.N.; Qin, X.Y.; Guan, X.Q.; Xiang, Y.W.; Tang, H.; Ge, G.B. Flavonoids in Ampelopsis grossedentata as covalent inhibitors of SARS-CoV-2 3CLpro: Inhibition potentials, covalent binding sites and inhibitory mechanisms. Int. J. Biol. Macromol., 2021, 187, 976-987.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.07.167] [PMID: 34333006]
[2]
Taofiq, O.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C. Hydroxycinnamic acids and their derivatives: cosmeceutical significance, challenges and future perspectives - A review. Molecules, 2017, 22(2), 281.
[http://dx.doi.org/10.3390/molecules22020281] [PMID: 28208818]
[3]
Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Silva Rosario, A.C.R.; Da Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol., 2019, 9, 541.
[http://dx.doi.org/10.3389/fonc.2019.00541] [PMID: 31293975]
[4]
Godlewska-Żyłkiewicz, B.; Świsłocka, R.; Kalinowska, M.; Golonko, A.; Świderski, G.; Arciszewska, Ż.; Nalewajko-Sieliwoniuk, E.; Naumowicz, M.; Lewandowski, W. Biologically active compounds of plants: Structure-related antioxidant, microbiological and cytotoxic activity of selected carboxylic acids. Materials (Basel), 2020, 13(19), 4454.
[http://dx.doi.org/10.3390/ma13194454] [PMID: 33049979]
[5]
Amalan, V.; Vijayakumar, N.; Indumathi, D.; Ramakrishnan, A. Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: In vivo approach. Biomed. Pharmacother., 2016, 84, 230-236.
[http://dx.doi.org/10.1016/j.biopha.2016.09.039] [PMID: 27662473]
[6]
Amalan, V.; Vijayakumar, N.; Ramakrishnan, A. p-Coumaric acid regulates blood glucose and antioxidant levels in streptozotocin-induced diabetic rats. J. Chem. Pharm. Res., 2015, 7(7), 831-839.
[7]
Chacko, S.M.; Nevin, K.G.; Dhanyakrishnan, R.; Kumar, B.P. Protective effect of p-coumaric acid against doxorubicin-induced toxicity in H9c2 cardiomyoblast cell lines. Toxicol. Rep., 2015, 10(2), 1213-1221.
[http://dx.doi.org/10.1016/j.toxrep.2015.08.002]
[8]
Derman, S. Caffeic acid phenethyl ester loaded plga nanoparticles: Effect of various process parameters on reaction yield, encapsulation efficiency, and particle size. J. Nanomater., 2015, 2015, 1-12.
[http://dx.doi.org/10.1155/2015/341848]
[9]
Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Compr. Rev. Food Sci. Food Saf., 2020, 19(3), 954-994.
[http://dx.doi.org/10.1111/1541-4337.12547] [PMID: 33331687]
[10]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[11]
Taranto, F.; Pasqualone, A.; Mangini, G.; Tripodi, P.; Miazzi, M.M.; Pavan, S.; Montemurro, C. Polyphenol oxidases in crops: Biochemical, physiological and genetic aspects. Int. J. Mol. Sci., 2017, 18(2), 377.
[http://dx.doi.org/10.3390/ijms18020377] [PMID: 28208645]
[12]
Michalak, J.; Czarnowska-Kujawska, M.; Gujska, E. Acrylamide and thermal-processing indexes in market-purchased food. Int. J. Environ. Res. Public Health, 2019, 16(23), 4724.
[http://dx.doi.org/10.3390/ijerph16234724] [PMID: 31783483]
[13]
Din, F.U.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[14]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm., 2012, 2012195727
[http://dx.doi.org/10.5402/2012/195727] [PMID: 22830056]
[15]
Nallamuthu, I.; Devi, A.; Khanum, F. Chlorogenic acid-loaded chitosan nanoparticles with sustained-release property, retained antioxidant activity, and enhanced bioavailability. Asian J. Pharm. Sci., 2015, 10(3), 203-211.
[http://dx.doi.org/10.1016/j.ajps.2014.09.005]
[16]
Martău, G.A.; Mihai, M.; Vodnar, D.C. The use of chitosan, alginate, and pectin in the biomedical and food sector-biocompatibility, bioadhesives, and biodegradability. Polymers (Basel), 2019, 11(11), 1837.
[http://dx.doi.org/10.3390/polym11111837] [PMID: 31717269]
[17]
Cheung, R.C.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs, 2015, 13(8), 5156-5186.
[http://dx.doi.org/10.3390/md13085156] [PMID: 26287217]
[18]
Sood, A.; Gupta, A.; Agrawal, G. Recent advances in polysaccharides-based biomaterials for drug delivery and tissue engineering applications. Carbohydr. Polym., 2021, 2100067
[http://dx.doi.org/10.1016/j.carpta.2021.100067]
[19]
Sulfikkarali, N.K.; Krishnakumar, N. Evaluation of the chemopreventive response of naringenin-loaded nanoparticles in experimental oral carcinogenesis using laser-induced autofluorescence spectroscopy. Laser Phys., 2013, 23(4)045601
[http://dx.doi.org/10.1088/1054-660X/23/4/045601]
[20]
Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci., 2014, 9(6), 385-406.
[PMID: 26339255]
[21]
Rehana, D.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess Biosyst. Eng., 2017, 40(6), 943-957.
[http://dx.doi.org/10.1007/s00449-017-1758-2] [PMID: 28361361]
[22]
Patra, J.K.; Das, G.; Kumar, A.; Ansari, A.; Kim, H.; Shin, H.S. Photo-mediated biosynthesis of silver nanoparticles using the non-edible accrescent fruiting calyx of Physalis peruviana L. Fruits and investigation of its radical scavenging potential and cytotoxicity activities. J. Photochem. Photobiol. B, 2018, 188, 116-125.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.08.004] [PMID: 30266015]
[23]
Das, G.; Patra, J.K.; Debnath, T.; Ansari, A.; Shin, H.S. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PLoS One, 2019, 14(8)e0220950
[24]
Otunola, G.A.; Afolayan, A.J. In vitro antibacterial, antioxidant and toxicity profile of silver nanoparticles green-synthesized and characterized from aqueous extract of a spice blend formulation. Biotechnol.Equip., 2018, 32(3), 724-733.
[25]
Nenadis, N.; Wang, L.F.; Tsimidou, M.; Zhang, H.Y. Estimation of scavenging activity of phenolic compounds using the ABTS(*+) assay. J. Agric. Food Chem., 2004, 52(15), 4669-4674.
[http://dx.doi.org/10.1021/jf0400056] [PMID: 15264898]
[26]
Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem., 2005, 53(10), 4290-4302.
[http://dx.doi.org/10.1021/jf0502698] [PMID: 15884874]
[27]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[28]
Elmastas, M.; Gulcin, I.; Isildak, O.; Kufrevioglu, O.I.; Ibaoglu, K.; Aboul-Enein, H.Y. Radicals scavenging activity and antioxidant capacity of bay leaf extracts. J. Iranian Chem. Soc., 2006, 3(3), 258-266.
[http://dx.doi.org/10.1007/BF03247217]
[29]
Govindarajan, R.; Rastogi, S.; Vijayakumar, M.; Shirwaikar, A.; Rawat, A.K.; Mehrotra, S.; Pushpangadan, P. Studies on the antioxidant activities of Desmodium gangeticum. Biol. Pharm. Bull., 2003, 26(10), 1424-1427.
[http://dx.doi.org/10.1248/bpb.26.1424] [PMID: 14519948]
[30]
NCCLS (National committee for clinical laboratory standards). 1993.
[31]
Mizushima, Y.; Kobayashi, M. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. J. Pharm. Pharmacol., 1968, 20(3), 169-173.
[http://dx.doi.org/10.1111/j.2042-7158.1968.tb09718.x] [PMID: 4385045]
[32]
Sakat, S.; Juvekar, A.R.; Gambhire, M.N. In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata L. Int. J. Pharm. Pharm. Sci., 2010, 2(1), 146-155.
[33]
Oguiura, N.; Boni-Mitake, M.; Affonso, R.; Zhang, G. In vitro antibacterial and hemolytic activities of crotamine, a small basic myotoxin from rattlesnake Crotalus durissus. J. Antibiot. (Tokyo), 2011, 64(4), 327-331.
[http://dx.doi.org/10.1038/ja.2011.10] [PMID: 21386851]
[34]
Bernfeld, P. Amylase α and β. In: Methods in enzymology; Academic Press: Massachusetts, US, 1955; 1, pp. 149-158.
[http://dx.doi.org/10.1016/0076-6879(55)01021-5]
[35]
a) Kaskoos, R.A. In vitro a-glucosidase inhibition and antioxidant activity of metanolic extract of Centaurea calcitrapa from Iraq. Am. J. Essent. Oil., 2013, 1(1), 122-125.;
b) Ghodsi, F.; Habibi-Khorassani, S.M.; Shahraki, M. Kinetic spectrophotometric method for the 1,4-diionic organophosphorus formation in the presence of meldrum’s acid: Stopped-flow approach. Molecules, 2016, 21(11), 1514.
[http://dx.doi.org/10.3390/molecules21111514] [PMID: 27845723]
[36]
Kaparekar, P.S.; Pathmanapan, S.; Anandasadagopan, S.K. Polymeric scaffold of gallic acid loaded chitosan nanoparticles infused with collagen-fibrin for wound dressing application. Int. J. Biol. Macromol., 2020, 165(Pt A), 930-947.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.212] [PMID: 33011266]
[37]
Kumar, B.; Smita, K.; Cumbal, L.; Debut, A. Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J. Biol. Sci., 2017, 24(1), 45-50.
[http://dx.doi.org/10.1016/j.sjbs.2015.09.006] [PMID: 28053570]
[38]
Bhattacharya, S. Fabrication and characterization of chitosan-based polymeric nanoparticles of imatinib for colorectal cancer targeting application. Int. J. Biol. Macromol., 2020, 151, 104-115.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.151] [PMID: 32070732]
[39]
Goutam, S.P.; Saxena, G.; Singh, V.; Yadav, A.; Bharagava, R.N.; Thapa, K.B. Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem. Eng. Sci., 2018, 336, 386-396.
[http://dx.doi.org/10.1016/j.cej.2017.12.029]
[40]
Veisi, H.; Ebrahimi, Z.; Karmakar, B.; Joshani, Z.; Ozturk, T. Chitosan-starch biopolymer modified kaolin supported Pd nanoparticles for the oxidative esterification of aryl aldehydes. Int. J. Biol. Macromol., 2021, 191, 465-473.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.106] [PMID: 34563573]
[41]
Panda, P.K.; Yang, J.M.; Chang, Y.H.; Su, W.W. Modification of different molecular weights of chitosan by p-coumaric acid: Preparation, characterization and effect of molecular weight on its water solubility and antioxidant property. Int. J. Biol. Macromol., 2019, 136, 661-667.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.082] [PMID: 31201915]
[42]
Javed, R.; Rais, F.; Kaleem, M.; Jamil, B.; Ahmad, M.A.; Yu, T.; Qureshi, S.W.; Ao, Q. Chitosan capping of CuO nanoparticles: Facile chemical preparation, biological analysis, and applications in dentistry. Int. J. Biol. Macromol., 2021, 167, 1452-1467.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.099] [PMID: 33212106]
[43]
Mallikarjuna, K.; John Sushma, N.; Narasimha, G.; Manoj, L.; Prasad Raju, B.D. Phytochemical fabrication and characterization of silver nanoparticles by using pepper leaf broth. Arab. J. Chem., 2014, 7(6), 1099-1103.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.001]
[44]
Andleeb, S.; Tariq, F.; Muneer, A.; Nazir, T.; Shahid, B.; Latif, Z.; Abbasi, S.A. In vitro bactericidal, antidiabetic, cytotoxic, anticoagulant, and hemolytic effect of green-synthesized silver nanoparticles using allium sativum clove extract incubated at various temperatures. Green Process. Synth., 2020, 9, 538-553.
[http://dx.doi.org/10.1515/gps-2020-0051]
[45]
Sharma, P.; Singh, R.P. Evaluation of antioxidant activity in foods with special reference to TEAC method. Am. J. Food Technol., 2013, 8(2), 83-101.
[http://dx.doi.org/10.3923/ajft.2013.83.101]
[46]
Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. ABTS/PP Decolorization assay of antioxidant capacity reaction pathways. Int. J. Mol. Sci., 2020, 21(3), 1131.
[http://dx.doi.org/10.3390/ijms21031131] [PMID: 32046308]
[47]
Wang, M.; Li, J.; Rangarajan, M.; Shao, T.; LaVoie, E.J.; Huang, T.C.; Ho, C.T. Antioxidative phenolic compounds from sage (Salvia officinalis). J. Agric. Food Chem., 1998, 46(12), 4869-4873.
[http://dx.doi.org/10.1021/jf980614b]
[48]
Gangwar, M.; Gautam, M.K.; Sharma, A.K.; Tripathi, Y.B.; Goel, R.K.; Nath, G. Antioxidant capacity and radical scavenging effect of polyphenol rich Mallotus philippenensis fruit extract on human erythrocytes: An in vitro study. Sci. World J., 2014, 2014, 279451.
[http://dx.doi.org/10.1155/2014/279451] [PMID: 25525615]
[49]
Gasparovic, A.C.; Jaganjac, M.; Mihaljevic, B.; Sunjic, S.B.; Zarkovic, N. Assays for the measurement of lipid peroxidation. Methods Mol. Biol., 2013, 965, 283-296.
[http://dx.doi.org/10.1007/978-1-62703-239-1_19] [PMID: 23296666]
[50]
Pallavi, S.; Ambuj Bhushan, J.; Rama Shanker, D.; Mohammad, P. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot., 2012, 1-26.
[http://dx.doi.org/10.1155/2012/217037]
[51]
Balakrishnan, B.; Prasad, B.; Rai, A.K.; Velappan, S.P.; Subbanna, M.N.; Narayan, B. In vitro antioxidant and antibacterial properties of hydrolysed proteins of delimed tannery fleshings: Comparison of acid hydrolysis and fermentation methods. Biodegradation, 2011, 22(2), 287-295.
[http://dx.doi.org/10.1007/s10532-010-9398-0] [PMID: 20680665]
[52]
Santos, R.M.; Lourenço, C.F.; Ledo, A.; Barbosa, R.M.; Laranjinha, J. Nitric oxide inactivation mechanisms in the brain: Role in bioenergetics and neurodegeneration. Int. J. Cell Biol., 2012, 2012391914
[http://dx.doi.org/10.1155/2012/391914] [PMID: 22719764]
[53]
Hussain, H.; Al-Sadi, A.M.; Schulz, B.; Steinert, M.; Khan, A.; Green, I.R.; Ahmed, I.; Ahmed, I. A fruitful decade for fungal polyketides from 2007 to 2016: Antimicrobial activity, chemotaxonomy and chemodiversity. Future Med. Chem., 2017, 9(14), 1631-1648.
[http://dx.doi.org/10.4155/fmc-2017-0028] [PMID: 28884584]
[54]
Verma, R.S.; Chauhan, A.; Tiwari, R. Characterization of the essential oil composition of Isodon rugosus (wall. ex benth.) codd. from Garhwal region of Western Himalaya. J. Med. Aromat. Plants, 2015, 1-4.
[55]
Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines (Basel), 2017, 4(3), 58.
[http://dx.doi.org/10.3390/medicines4030058] [PMID: 28930272]
[56]
Peng, J.; Zheng, T.T.; Liang, Y.; Duan, L.F.; Zhang, Y.D.; Wang, L.J.; He, G.M.; Xiao, H.T. p-Coumaric acid protects human lens epithelial cells against oxidative stress-induced apoptosis by MAPK signaling. Oxid. Med. Cell. Longev., 2018, 20188549052
[http://dx.doi.org/10.1155/2018/8549052] [PMID: 29849919]
[57]
Premanathan, M.; Karthikeyan, K.; Jeyasubramanian, K.; Manivannan, G. Selective toxicity of ZnO nanoparticles toward gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine: Nanotechnol. Biol. Med., 2011, 7(2), 184-192.
[58]
Manogar, P.; Morvinyabesh, J.E.; Ramesh, R.; Jeyaleela, G.D.; Amalan, V.; Ajarem, J.S.; Allam, A.A.; Khim, J.S.; Vijayakumar, N. Biosynthesis and antimicrobial activity of aluminum oxide nanoparticles using Lyngbya majuscula extract. Mater. Lett., 2022, 311131569
[http://dx.doi.org/10.1016/j.matlet.2021.131569]
[59]
Stojković, D.; Petrović, J.; Soković, M.; Glamočlija, J.; Kukić-Marković, J.; Petrović, S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J. Sci. Food Agric., 2013, 93(13), 3205-3208.
[http://dx.doi.org/10.1002/jsfa.6156] [PMID: 23553578]
[60]
Kanwal, Q.; Hussain, I.; Latif Siddiqui, H.; Javaid, A. Antifungal activity of flavonoids isolated from mango (Mangifera indica L.) leaves. Nat. Prod. Res., 2010, 24(20), 1907-1914.
[http://dx.doi.org/10.1080/14786419.2010.488628] [PMID: 21108117]
[61]
Feriani, A.; Tir, M.; Hamed, M.; Sila, A.; Nahdi, S.; Alwasel, S.; Harrath, A.H.; Tlili, N. Multidirectional insights on polysaccharides from Schinus terebinthifolius and Schinus molle fruits: Physicochemical and functional profiles, in vitro antioxidant, antigenotoxicity, antidiabetic, and antihemolytic capacities, and in vivo anti-inflammatory and anti-nociceptive properties. Int. J. Biol. Macromol., 2020, 165(Pt B), 2576-2587.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.123] [PMID: 33096174]
[62]
Fu, L.; Lu, W.; Zhou, X. Phenolic compounds and in vitro antibacterial and antioxidant activities of three tropic fruits: Persimmon, guava, and sweetsop. BioMed Res. Int., 2016, 20164287461
[http://dx.doi.org/10.1155/2016/4287461] [PMID: 27648444]
[63]
Vijayakumar, N.; Bhuvaneshwari, V.K.; Jayaprakash, R.; Gopinath, K.; Nicoletti, M.; Alarifi, S.; Govindarajan, M. Green synthesis of zinc oxide nanoparticles using Anoectochilus elatus, and their biomedical applications. Saudi J. Biol. Sci., 2021, 1319-562X.
[http://dx.doi.org/10.1016/j.sjbs.2021.11.065] [PMID: 35531172]
[64]
Yesmin, S.; Paul, A.; Naz, T. Membrane stabilization as a mechanism of the anti-inflammatory activity of ethanolic root extract of Choi (Piper chaba). Clin. Phytosci., 2020, 6, 59.
[http://dx.doi.org/10.1186/s40816-020-00207-7]
[65]
Bouhlali, E.; Hmidani, A.; Bourkhis, B.; Khouya, T.; Ramchoun, M.; Filali-Zegzouti, Y.; Alem, C. Phenolic profile and anti-inflammatory activity of four Moroccan date (Phoenix dactylifera L.) seed varieties. Heliyon, 2020, 6(2)e03436
[66]
Adibhatla, R.M.; Hatcher, J.F. Tissue Plasminogen Activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke: therapeutic strategies. CNS Neurol. Disord. Drug Targets, 2008, 7(3), 243-253.
[http://dx.doi.org/10.2174/187152708784936608] [PMID: 18673209]
[67]
Periayah, M.H.; Halim, A.S.; Mat Saad, A.Z. Mechanism action of platelets and crucial blood coagulation pathways in hemostasis. Int. J. Hematol. Oncol. Stem Cell Res., 2017, 11(4), 319-327.
[PMID: 29340130]
[68]
Badimon, L.; Padró, T.; Vilahur, G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur. Heart J. Acute Cardiovasc. Care, 2012, 1(1), 60-74.
[http://dx.doi.org/10.1177/2048872612441582] [PMID: 24062891]
[69]
Previtali, E.; Bucciarelli, P.; Passamonti, S.M.; Martinelli, I. Risk factors for venous and arterial thrombosis. Blood Transfus., 2011, 9(2), 120-138.
[http://dx.doi.org/10.2450/2010.0066-10] [PMID: 21084000]
[70]
Klafke, J.Z.; Arnoldi da Silva, M.; Fortes Rossato, M. Antiplatelet, antithrombotic, and fibrinolytic activities of Campomanesia xanthocarpa. eCAM, 2012, 954748.
[http://dx.doi.org/10.1155/2012/954748]
[71]
Koupenova, M.; Kehrel, B.E.; Corkrey, H.A.; Freedman, J.E. Thrombosis and platelets: An update. Eur. Heart J., 2017, 38(11), 785-791.
[http://dx.doi.org/10.1093/eurheartj/ehw550] [PMID: 28039338]
[72]
Rajeshkumar, S.; Tharani, M.; Rajeswari, V.; Devi, A.N.; Kadaikunnan, S.; Khaled, J.M.; Gopinath, K.; Vijayakumar, N.; Govindarajan, M. Synthesis of greener silver nanoparticle-based chitosan nanocomposites and their potential antimicrobial activity against oral pathogens. Green Process. Synth., 2021, 10(1), 658-665.
[http://dx.doi.org/10.1515/gps-2021-0060]
[73]
Narasimman, M.; Natesan, V.; Mayakrishnan, V.; Rajendran, J.; Venkatesan, A.; Kim, S.J. Preparation and optimization of peppermint (Mentha pipertia) essential oil nanoemulsion with effective herbal larvicidal, pupicidal, and ovicidal activity against Anopheles stephensi. Curr. Pharm. Biotechnol., 2021.34911410
[http://dx.doi.org/10.2174/1389201023666211215125621] [PMID: 34911410]
[74]
Daryabor, G.; Atashzar, M.R.; Kabelitz, D.; Meri, S.; Kalantar, K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front. Immunol., 2020, 11, 1582.
[http://dx.doi.org/10.3389/fimmu.2020.01582] [PMID: 32793223]
[75]
Wang, Z.; Zhao, X.; Liu, X.; Lu, W.; Jia, S.; Hong, T.; Li, R.; Zhang, H.; Peng, L.; Zhan, X. Anti-diabetic activity evaluation of a polysaccharide extracted from Gynostemma pentaphyllum. Int. J. Biol. Macromol., 2019, 126, 209-214.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.231]
[76]
Sudhakar, C.; Poonkothai, M.; Selvankmuar, T.; Selvam, K.; Rajivgandhi, G.; Siddiqi, M.Z.; Alharbi, N.S.; Kadaikunnan, S.; Vijayakumar, N. Biomimetic synthesis of iron oxide nanoparticles using Canthium coromandelicum leaf extract and its antibacterial and catalytic degradation of Janus green. Inorg. Chem. Commun., 2021, 133108977
[http://dx.doi.org/10.1016/j.inoche.2021.108977]
[77]
Tamil, I.G.; Dineshkumar, B.; Nandhakumar, M.; Senthilkumar, M.; Mitra, A. In vitro study on α-amylase inhibitory activity of an Indian medicinal plant, Phyllanthus amarus. Int. J. Pharmacol., 2010, 42(5), 280-282.
[http://dx.doi.org/10.4103/0253-7613.70107] [PMID: 21206618]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy