Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Design, Synthesis, and Anti-Cancer Activity Evaluation of a 3-methyleneisoindolin- 1-One Library

Author(s): Saurabh Mehta*, Mangeram Mangyan and Dhirendra Brahmchari

Volume 26, Issue 9, 2023

Published on: 03 November, 2022

Page: [1775 - 1792] Pages: 18

DOI: 10.2174/1386207325666221003093623

Price: $65

Abstract

Background: Isoindolin-1-ones are medicinally privileged heterocyclic compounds. Due to the interesting biological activities exhibited by these compounds, several synthetic and medicinal research groups have developed numerous synthetic approaches for these compounds. We have also previously reported two efficient approaches for the synthesis of the isoindolin-1-ones through iodoaminocyclization of alkynyl amides using n-BuLi and phosphazene superbases.

Objective: This study aimed to construct a medium-size library of multi-substituted 3- methyleneisoindolin-1-ones and study its biological profile, specifically anti-cancer activity.

Methods: Solution phase parallel synthesis was performed for the synthesis of the 3- methyleneisoindolin-1-ones library through n-BuLi-mediated iodoaminocyclization of 2-(1- Alkynyl)benzamides. The iodocyclized products were further derivatized through palladiumcatalyzed Sonogashira and Suzuki Miyaura couplings and N-alkylation reactions. In silico evaluation of the physicochemical and ADMET properties was performed to examine the drug-likeness of the library compounds. Selected isoindolin-1-one analogues were evaluated for in vitro antiproliferative activity in various human cancer cell lines (MCF-7, A-549, and U-373 MG).

Results: A library of 46 multisubstituted 3-methyleneisoindolin-1-ones has been synthesized. The iodo-isoindolin-1-ones were synthesized in 66-76% yields through n-BuLi-mediated iodoaminocyclization of 2-(1-Alkynyl)benzamides. Further diversification afforded the diverse library members in yields of 40–96%. Two of the library compounds exhibited GI50 values of < 10 μM in the human breast cancer cell line (MCF-7).

Conclusion: Isoindolin-1-one library was constructed through electrophilic cyclization. The diversification was successfully performed through various C-C and C-N bond formation reactions. The anti-proliferative activity of the library members appears to be arising from the interaction of the compounds with the protein kinase drug targets.

Keywords: anticancer, coupling, heterocycle, isoindolinone, lactam, molecular docking

Graphical Abstract

[1]
Kumar, V. Poonam; Prasad, A.K.; Parmar, V.S. Naturally occurring aristolactams, aristolochic acids and dioxoaporphines and their biological activities. Nat. Prod. Rep., 2003, 20(6), 565-583.
[http://dx.doi.org/10.1039/b303648k] [PMID: 14700200]
[2]
Reddy, M.C.; Jeganmohan, M. Total synthesis of aristolactam alkaloids via synergistic C–H bond activation and dehydro-Diels–Alder reactions. Chem. Sci. (Camb.), 2017, 8(5), 4130-4135.
[http://dx.doi.org/10.1039/C7SC00161D] [PMID: 30155216]
[3]
The ALLHAT officers and coordinators for the ALLHAT collaborative research group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The antihypertensive and lipid-lowering treatment to prevent heart attack trial. JAMA ALLHAT, 2002, 288(23), 2981-2997.
[http://dx.doi.org/10.1001/jama.288.23.2981] [PMID: 12479763]
[4]
Fink, E.C.; Ebert, B.L. The novel mechanism of lenalidomide activity. Blood, 2015, 126(21), 2366-2369.
[http://dx.doi.org/10.1182/blood-2015-07-567958] [PMID: 26438514]
[5]
Sandford, J.J.; Forshall, S.; Bell, C.; Argyropoulos, S.; Rich, A.; D’Orlando, K.J.; Gammans, R.E.; Nutt, D.J. Crossover trial of pagoclone and placebo in patients with DSM-IV panic disorder. J. Psychopharmacol., 2001, 15(3), 205-208.
[http://dx.doi.org/10.1177/026988110101500312] [PMID: 11565630]
[6]
Harvey, P.D.; Saoud, J.B.; Luthringer, R.; Moroz, S.; Blazhevych, Y.; Stefanescu, C.; Davidson, M. Effects of Roluperidone (MIN-101) on two dimensions of the negative symptoms factor score: Reduced emotional experience and reduced emotional expression. Schizophr. Res., 2020, 215, 352-356.
[http://dx.doi.org/10.1016/j.schres.2019.08.029] [PMID: 31488314]
[7]
Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 2006, 34(90001), D668-D672.
[http://dx.doi.org/10.1093/nar/gkj067] [PMID: 16381955]
[8]
Cao, Z.; Zhu, H.; Meng, X.; Guan, J.; Zhang, Q.; Tian, L.; Sun, X.; Chen, G.; You, J. Metal-free reaction of ortho -carbonylated alkynyl-substituted arylaldehydes with common amines: Selective access to functionalized isoindolinone and indenamine derivatives. Chemistry, 2016, 22(47), 16979-16985.
[http://dx.doi.org/10.1002/chem.201603045] [PMID: 27734539]
[9]
Chen, X.; Ge, F.F.; Lu, T.; Zhou, Q.F. Stereoselective synthesis of 3-methyleneisoindolin-1-ones via base-catalyzed intermolecular reactions of electron-deficient alkynes with N-hydroxyphthalimides. J. Org. Chem., 2015, 80(6), 3295-3301.
[http://dx.doi.org/10.1021/acs.joc.5b00002] [PMID: 25710323]
[10]
Savela, R.; Méndez-Gálvez, C. Isoindolinone synthesis via one‐pot type transition metal catalyzed C−C bond forming reactions. Chemistry, 2021, 27(17), 5344-5378.
[http://dx.doi.org/10.1002/chem.202004375] [PMID: 33125790]
[11]
Yao, T.; Larock, R.C. Regio- and stereoselective synthesis of isoindolin-1-ones via electrophilic cyclization. J. Org. Chem., 2005, 70(4), 1432-1437.
[http://dx.doi.org/10.1021/jo048007c] [PMID: 15704980]
[12]
Aggarwal, T.; Kumar, S.; Verma, A.K. Iodine-mediated synthesis of heterocycles via electrophilic cyclization of alkynes. Org. Biomol. Chem., 2016, 14(32), 7639-7653.
[http://dx.doi.org/10.1039/C6OB01054G] [PMID: 27383580]
[13]
Godoi, B.; Schumacher, R.F.; Zeni, G. Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom. Chem. Rev., 2011, 111(4), 2937-2980.
[http://dx.doi.org/10.1021/cr100214d] [PMID: 21425870]
[14]
Dubrovskiy, A.V.; Markina, N.A.; Larock, R.C. Iodocyclization, followed by palladium-catalyzed coupling: A versatile strategy for heterocyclic library construction. Comb. Chem. High Throughput Screen., 2012, 15(6), 451-472.
[http://dx.doi.org/10.2174/138620712800563927] [PMID: 22272662]
[15]
Mehta, S.; Yao, T.; Larock, R.C. Regio- and stereoselective synthesis of cyclic imidates via electrophilic cyclization of 2-(1-alkynyl)benzamides. A correction. J. Org. Chem., 2012, 77(23), 10938-10944.
[http://dx.doi.org/10.1021/jo301958q] [PMID: 23110553]
[16]
Schlemmer, C.; Andernach, L.; Schollmeyer, D.; Straub, B.F.; Opatz, T. Iodocyclization of o-alkynylbenzamides revisited: Formation of isobenzofuran-1(3H)-imines and 1H-isochromen-1-imines instead of lactams. J. Org. Chem., 2012, 77(22), 10118-10124.
[http://dx.doi.org/10.1021/jo3017378] [PMID: 23088716]
[17]
Brahmchari, D.; Verma, A.K.; Mehta, S. Regio- and Stereoselective Synthesis of Isoindolin-1-ones through BuLi-Mediated Iodoaminocyclization of 2-(1-Alkynyl)benzamides. J. Org. Chem., 2018, 83(6), 3339-3347.
[http://dx.doi.org/10.1021/acs.joc.7b02903] [PMID: 29457724]
[18]
Mehta, S.; Brahmchari, D. Phosphazene superbase-mediated regio- and stereoselective iodoaminocyclization of 2-(1-alkynyl)benzamides for the synthesis of isoindolin-1-ones. J. Org. Chem., 2019, 84(9), 5492-5503.
[http://dx.doi.org/10.1021/acs.joc.9b00452] [PMID: 30986356]
[19]
Brahmchari, D.; Mehta, S. Phosphazene superbase mediated cyclization and annulation reactions of functionalized alkynes for the synthesis of heterocyclic compounds. Chem. Heterocycl. Compd., 2021, 57(3), 234-238.
[http://dx.doi.org/10.1007/s10593-021-02898-3]
[20]
Waldo, J.P.; Mehta, S.; Neuenswander, B.; Lushington, G.H.; Larock, R.C. Solution phase synthesis of a diverse library of highly substituted isoxazoles. J. Comb. Chem., 2008, 10(5), 658-663.
[http://dx.doi.org/10.1021/cc800055x] [PMID: 18671435]
[21]
Mehta, S.; Waldo, J.P.; Neuenswander, B.; Lushington, G.H.; Larock, R.C. Solution-phase parallel synthesis of a multisubstituted cyclic imidate library. ACS Comb. Sci., 2013, 15(5), 247-254.
[http://dx.doi.org/10.1021/co3001605] [PMID: 23514214]
[22]
Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16(50), 4467-4470.
[http://dx.doi.org/10.1016/S0040-4039(00)91094-3]
[23]
Wang, C.; Sun, C.; Weng, F.; Gao, M.; Liu, B.; Xu, B. Unexpected formation of (Z)-3-(halomethylene)isoindolinones from gem-dihalovinylbenzonitriles: Efficient synthesis of enyne-containing isoindolinones. Tetrahedron Lett., 2011, 52(23), 2984-2989.
[http://dx.doi.org/10.1016/j.tetlet.2011.03.143]
[24]
Miyaura, N.; Suzuki, A. Palladium catalyzed cross coupling reactions of organoboron compounds. Chem. Rev., 1995, 95(7), 2457-2483.
[http://dx.doi.org/10.1021/cr00039a007]
[25]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[26]
Daina, A.; Michielin, O.; Zoete, V. iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model., 2014, 54(12), 3284-3301.
[http://dx.doi.org/10.1021/ci500467k] [PMID: 25382374]
[27]
Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R.; Lai, L. Computation of octanol water partition coefficients by guiding an additive model with knowledge. J. Chem. Inf. Model., 2007, 47(6), 2140-2148.
[http://dx.doi.org/10.1021/ci700257y] [PMID: 17985865]
[28]
Wildman, S.A.; Crippen, G.M. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Comput. Sci., 1999, 39(5), 868-873.
[http://dx.doi.org/10.1021/ci990307l]
[29]
Moriguchi, I.; Hirono, S.; Nakagome, I.; Hirano, H. Comparison of reliability of log P values for drugs calculated by several methods. Chem. Pharm. Bull. (Tokyo), 1994, 42(4), 976-978.
[http://dx.doi.org/10.1248/cpb.42.976]
[30]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[31]
Delaney, J.S. ESOL: Estimating aqueous solubility directly from molecular structure. J. Chem. Inf. Comput. Sci., 2004, 44(3), 1000-1005.
[http://dx.doi.org/10.1021/ci034243x] [PMID: 15154768]
[32]
Daina, A.; Zoete, V. A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 11(11), 1117-1121.
[http://dx.doi.org/10.1002/cmdc.201600182] [PMID: 27218427]
[33]
Potts, R.O.; Guy, R.H. Predicting skin permeability. Pharm. Res., 1992, 9(5), 663-669.
[http://dx.doi.org/10.1023/A:1015810312465] [PMID: 1608900]
[34]
Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[35]
Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem., 2012, 4(2), 90-98.
[http://dx.doi.org/10.1038/nchem.1243] [PMID: 22270643]
[36]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014]
[37]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[38]
Egan, W.J.; Merz, K.M., Jr; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem., 2000, 43(21), 3867-3877.
[http://dx.doi.org/10.1021/jm000292e] [PMID: 11052792]
[39]
Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem., 2001, 44(12), 1841-1846.
[http://dx.doi.org/10.1021/jm015507e] [PMID: 11384230]
[40]
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[41]
Curtin, M.L.; Frey, R.R.; Heyman, H.R.; Sarris, K.A.; Steinman, D.H.; Holmes, J.H.; Bousquet, P.F.; Cunha, G.A.; Moskey, M.D.; Ahmed, A.A.; Pease, L.J.; Glaser, K.B.; Stewart, K.D.; Davidsen, S.K.; Michaelides, M.R. Isoindolinone ureas: A novel class of KDR kinase inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(17), 4505-4509.
[http://dx.doi.org/10.1016/j.bmcl.2004.06.041] [PMID: 15357981]
[42]
Collier, P.N.; Panchagnula, A.; O’Dowd, H.; Le Tiran, A.; Aronov, A.M. Synthesis of a 6-aza-isoindolinone-based inhibitor of phosphoinositide 3-kinase γ via ruthenium-catalyzed [2 + 2 + 2] cyclotrimerization. ACS Med. Chem. Lett., 2019, 10(1), 117-120.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00530] [PMID: 30655957]
[43]
Miles, D.H.; Yan, X.; Thomas-Tran, R.; Fournier, J.; Sharif, E.U.; Drew, S.L.; Mata, G.; Lawson, K.V.; Ginn, E.; Wong, K.; Soni, D.; Dhanota, P.; Shaqfeh, S.G.; Meleza, C.; Chen, A.; Pham, A.T.; Park, T.; Swinarski, D.; Banuelos, J.; Schindler, U.; Walters, M.J.; Walker, N.P.; Zhao, X.; Young, S.W.; Chen, J.; Jin, L.; Leleti, M.R.; Powers, J.P.; Jeffrey, J.L. Discovery of potent and selective 7-azaindole isoindolinone-based PI3Kγ inhibitors. ACS Med. Chem. Lett., 2020, 11(11), 2244-2252.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00387] [PMID: 33214836]
[44]
Batran, R.Z.; El-Daly, S.M.; El-Kashak, W.A.; Ahmed, E.Y. Design, synthesis, and molecular modeling of quinoline‐based derivatives as anti‐breast cancer agents targeting EGFR/AKT signaling pathway. Chem. Biol. Drug Des., 2022, 99(3), 470-482.
[http://dx.doi.org/10.1111/cbdd.14012] [PMID: 34939319]
[45]
Shetty, S.R.; Yeeravalli, R.; Bera, T.; Das, A. Recent advances on epidermal growth factor receptor as a molecular target for breast cancer therapeutics. Anticancer. Agents Med. Chem., 2021, 21(14), 1783-1792.
[http://dx.doi.org/10.2174/1871520621666201222143213] [PMID: 33355057]
[46]
Allen, B.K.; Mehta, S.; Ember, S.W.J.; Schonbrunn, E.; Ayad, N.; Schürer, S.C. Large-scale computational screening identifies first in class multitarget inhibitor of EGFR kinase and BRD4. Sci. Rep., 2015, 5(1), 16924.
[http://dx.doi.org/10.1038/srep16924] [PMID: 26596901]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy