Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identification and Verification of Key MiRNAs Associated with Intervertebral Disc Degeneration

Author(s): Jianwei Liu*, Rong Li* and Peizhen Lyv

Volume 26, Issue 9, 2023

Published on: 02 November, 2022

Page: [1766 - 1774] Pages: 9

DOI: 10.2174/1386207325666220915113438

Price: $65

Abstract

Background: Intervertebral Disc Degeneration (IDD) is a heterogeneous spinal disease whose underlying molecular mechanism is unclear.

Objectives: This study aimed to identify, profile, and analyze microRNAs (miRNAs) related to IDD.

Methods: Microarray Gene Expression IDD data (GSE63492) were downloaded from Gene Expression Omnibus datasets. We employed Weighted Gene Co-Expression Network Analysis (WGCNA) to construct a miRNA co-expression network, and the miRNAs related to the IDD stage were detected. The number of differentially expressed miRNAs between normal and degenerated nucleus pulposus tissues was calculated. Twenty-three clinical specimens were used to validate the expression of miRNAs using qRT-PCR.

Results: WGCNA identified 48 miRNAs significantly related to the IDD stage, and 94 miRNAs that were significantly different between normal and degenerated nucleus pulposus tissues. We selected 32 overlapping miRNAs and identified 347 corresponding target genes. The integrative analysis revealed the biological function and pathways of these targeted genes. Analysis of clinical specimens validated that hsa-miR-4534 was upregulated in IDD, whereas hsa-miR-1827 and hsa-miR- 185-5p were downregulated in IDD.

Conclusion: This study has identified a subset of miRNAs that are related to IDD pathogenesis and hub miRNAs that are keys to the IDD co-expression network, which may potentially be utilized as indicators for treatment.

Keywords: Degeneration, Intervertebral Disc, MicroRNAs, Gene Expression, Gene Regulatory Networks

Graphical Abstract

[1]
Desmoulin, G.T.; Pradhan, V.; Milner, T.E. Mechanical aspects of intervertebral disc injury and implications on biomechanics. Spine, 2020, 45(8), E457-E464.
[http://dx.doi.org/10.1097/BRS.0000000000003291] [PMID: 31651681]
[2]
Romaniyanto; Mahyudin, F.; Sigit Prakoeswa, C.R.; Notobroto, H.B.; Tinduh, D.; Ausrin, R.; Rantam, F.A.; Suroto, H.; Utomo, D.N.; Rhatomy, S. An update of current therapeutic approach for intervertebral disc degeneration: A review article. Ann. Med. Surg. (Lond.), 2022, 77, 103619.
[http://dx.doi.org/10.1016/j.amsu.2022.103619]
[3]
Roh, E.; Darai, A.; Kyung, J.; Choi, H.; Kwon, S.; Bhujel, B.; Kim, K.; Han, I. Genetic therapy for intervertebral disc degeneration. Int. J. Mol. Sci., 2021, 22(4), 1579.
[http://dx.doi.org/10.3390/ijms22041579] [PMID: 33557287]
[4]
Ran, R.; Liao, H.; Wang, Z.; Gong, C.; Zhou, K.; Zhang, H. Mechanisms and functions of long noncoding RNAs in intervertebral disc degeneration. Pathol. Res. Pract., 2022, 235, 153959.
[http://dx.doi.org/10.1016/j.prp.2022.153959] [PMID: 35653923]
[5]
Wang, C.; Cui, L.; Gu, Q.; Guo, S.; Zhu, B.; Liu, X.; Li, Y.; Liu, X.; Wang, D.; Li, S. The mechanism and function of MIRNA in intervertebral disc degeneration. Orthop. Surg., 2022, 14(3), 463-471.
[http://dx.doi.org/10.1111/os.13204] [PMID: 35142050]
[6]
Cai, P.; Yang, T.; Jiang, X.; Zheng, M.; Xu, G.; Xia, J. Role of miR-15a in intervertebral disc degeneration through targeting MAP3K9. Biomed. Pharmacother., 2017, 87, 568-574.
[http://dx.doi.org/10.1016/j.biopha.2016.12.128] [PMID: 28081468]
[7]
Hua, W.; Wu, X.; Zhang, Y.; Song, Y.; Tu, J.; Kang, L.; Zhao, K.; Li, S.; Wang, K.; Liu, W.; Shao, Z.; Yang, S.; Yang, C. Dysregulated miR-127-5p contributes to type II collagen degradation by targeting matrix metalloproteinase-13 in human intervertebral disc degeneration. Biochimie, 2017, 139, 74-80.
[http://dx.doi.org/10.1016/j.biochi.2017.05.018] [PMID: 28559201]
[8]
Liu, W.; Xia, P.; Feng, J.; Kang, L.; Huang, M.; Wang, K.; Song, Y.; Li, S.; Wu, X.; Yang, S.; Yang, C. MicroRNA-132 upregulation promotes matrix degradation in intervertebral disc degeneration. Exp. Cell Res., 2017, 359(1), 39-49.
[http://dx.doi.org/10.1016/j.yexcr.2017.08.011] [PMID: 28793234]
[9]
Fan, X.; Chen, G.; Ma, F.; Qi, B.; Liang, Y.; Gong, P.; Meng, C. An lncRNA-miRNA-mRNA-ceRNA network regulates intervertebral disc degeneration: A bioinformatics study based on the dataset analysis. Gen. Physiol. Biophys., 2021, 40(4), 317-327.
[http://dx.doi.org/10.4149/gpb_2021013] [PMID: 34350836]
[10]
Jiang, T.M. Unveiling the time course mechanism of bone fracture healing by transcriptional profiles. Comb. Chem. High Throughput Screen., 2022, 25.
[http://dx.doi.org/10.2174/1386207325666220412134311] [PMID: 35418283]
[11]
Li, X.; He, Z.; Zhang, J.; Han, Y. Identification of crucial noncoding RNAs and mRNAs in hypertrophic scars via RNA sequencing. FEBS Open Bio, 2021, 11(6), 1673-1684.
[http://dx.doi.org/10.1002/2211-5463.13167] [PMID: 33932142]
[12]
Jiang, T.M. Identification of the genetic central dogma in osteogenic differentiation of MSCs by osteoinductive medium from transcriptional data sets. Chronic Dis. Transl. Med., 2022, 8(3), 218-228.
[http://dx.doi.org/10.1002/cdt3.26] [PMID: 36161200]
[13]
Vadalà, G.; Ambrosio, L.; Russo, F.; Papalia, R.; Denaro, V. Interaction between mesenchymal stem cells and intervertebral disc microenvironment: From cell therapy to tissue engineering. Stem Cells Int., 2019, 2019, 1-15.
[http://dx.doi.org/10.1155/2019/2376172] [PMID: 32587618]
[14]
Jiang, T.; Yang, T.; Chen, Y.; Miao, Y.; Xu, Y.; Jiang, H.; Yang, M.; Mao, C. Emulating interactions between microorganisms and tumor microenvironment to develop cancer theranostics. Theranostics, 2022, 12(6), 2833-2859.
[http://dx.doi.org/10.7150/thno.70719] [PMID: 35401838]
[15]
Liu, X.; Che, L.; Xie, Y.K.; Hu, Q.J.; Ma, C.J.; Pei, Y.J.; Wu, Z.G.; Liu, Z.H.; Fan, L.Y.; Wang, H.Q. Noncoding RNAs in human intervertebral disc degeneration: An integrated microarray study. Genom. Data, 2015, 5, 80-81.
[http://dx.doi.org/10.1016/j.gdata.2015.05.027] [PMID: 26484230]
[16]
Pfirrmann, C.W.A.; Metzdorf, A.; Zanetti, M.; Hodler, J.; Boos, N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine, 2001, 26(17), 1873-1878.
[http://dx.doi.org/10.1097/00007632-200109010-00011] [PMID: 11568697]
[17]
Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9(1), 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[18]
Li, Z.; Chen, Z.; Wang, X.; Li, Z.; Sun, H.; Wei, J.; Zeng, X.; Cao, X.; Wan, C. Integrated analysis of miRNAs and gene expression profiles reveals potential biomarkers for osteoarthritis. Front. Genet., 2022, 13, 814645.
[http://dx.doi.org/10.3389/fgene.2022.814645] [PMID: 35783271]
[19]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7)e47
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[20]
Lewis, B.P.; Shih, I.; Jones-Rhoades, M.W.; Bartel, D.P.; Burge, C.B. Prediction of mammalian microRNA targets. Cell, 2003, 115(7), 787-798.
[http://dx.doi.org/10.1016/S0092-8674(03)01018-3] [PMID: 14697198]
[21]
Wong, N.; Wang, X. miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res., 2015, 43(D1), D146-D152.
[http://dx.doi.org/10.1093/nar/gku1104] [PMID: 25378301]
[22]
Chou, C.H.; Shrestha, S.; Yang, C.D.; Chang, N.W.; Lin, Y.L.; Liao, K.W.; Huang, W.C.; Sun, T.H.; Tu, S.J.; Lee, W.H.; Chiew, M.Y.; Tai, C.S.; Wei, T.Y.; Tsai, T.R.; Huang, H.T.; Wang, C.Y.; Wu, H.Y.; Ho, S.Y.; Chen, P.R.; Chuang, C.H.; Hsieh, P.J.; Wu, Y.S.; Chen, W.L.; Li, M.J.; Wu, Y.C.; Huang, X.Y.; Ng, F.L.; Buddhakosai, W.; Huang, P.C.; Lan, K.C.; Huang, C.Y.; Weng, S.L.; Cheng, Y.N.; Liang, C.; Hsu, W.L.; Huang, H.D. miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Res., 2018, 46(D1), D296-D302.
[http://dx.doi.org/10.1093/nar/gkx1067] [PMID: 29126174]
[23]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[24]
Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pagès, F.; Trajanoski, Z.; Galon, J.; Clue, G.O.; Clue, GO A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 2009, 25(8), 1091-1093.
[http://dx.doi.org/10.1093/bioinformatics/btp101] [PMID: 19237447]
[25]
World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA, 2013, 310(20), 2191-2194.
[http://dx.doi.org/10.1001/jama.2013.281053] [PMID: 24141714]
[26]
Yang, S.H.; Espinoza Orías, A.A.; Pan, C.C.; Senoo, I.; Andersson, G.B.J.; An, H.S.; Inoue, N. Spatial geometric and magnetic resonance signal intensity changes with advancing stages of nucleus pulposus degeneration. BMC Musculoskelet. Disord., 2017, 18(1), 473.
[http://dx.doi.org/10.1186/s12891-017-1838-0] [PMID: 29162082]
[27]
Peng, P.; Wang, D.; Xu, X.; Wang, D.; Gao, B.; Wang, H.; Jia, H.; Shang, Q.; Zheng, C.; Gao, C.; Mao, J.; Luo, Z.; Yang, L.; Hu, X. Targeting clock-controlled gene Nrf2 ameliorates inflammation-induced intervertebral disc degeneration. Arthritis Res. Ther., 2022, 24(1), 181.
[http://dx.doi.org/10.1186/s13075-022-02876-w] [PMID: 35922862]
[28]
Wang, X.Q.; Tu, W.Z.; Guo, J.B.; Song, G.; Zhang, J.; Chen, C.C.; Chen, P.J. A bioinformatic analysis of MicroRNAs’ role in human intervertebral disc degeneration. Pain Med., 2019, 20(12), 2459-2471.
[http://dx.doi.org/10.1093/pm/pnz015] [PMID: 30953590]
[29]
Hai, B.; Song, Q.; Du, C.; Mao, T.; Jia, F.; Liu, Y.; Pan, X.; Zhu, B.; Liu, X. Comprehensive bioinformatics analyses reveal immune genes responsible for altered immune microenvironment in intervertebral disc degeneration. Mol. Genet. Genomics, 2022.
[http://dx.doi.org/10.1007/s00438-022-01912-3] [PMID: 35767190]
[30]
Ma, X.; Su, J.; Wang, B.; Jin, X. Identification of characteristic genes in whole blood of intervertebral disc degeneration patients by Weighted Gene Coexpression Network Analysis (WGCNA). Comput. Math. Methods Med., 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/6609901] [PMID: 35069789]
[31]
Lario, S.; Ramírez-Lázaro, M.J.; Brunet-Vega, A.; Vila-Casadesús, M.; Aransay, A.M.; Lozano, J.J.; Calvet, X. Coding and non-coding co-expression network analysis identifies key modules and driver genes associated with precursor lesions of gastric cancer. Genomics, 2022, 114(3), 110370.
[http://dx.doi.org/10.1016/j.ygeno.2022.110370] [PMID: 35430283]
[32]
Giulietti, M.; Occhipinti, G.; Principato, G.; Piva, F. Identification of candidate miRNA biomarkers for pancreatic ductal adenocarcinoma by weighted gene co-expression network analysis. Cell Oncol. (Dordr.), 2017, 40(2), 181-192.
[http://dx.doi.org/10.1007/s13402-017-0315-y] [PMID: 28205147]
[33]
Li, W.; Wang, P.; Zhang, Z.; Wang, W.; Liu, Y.; Qi, Q. MiR-184 regulates proliferation in nucleus pulposus cells by targeting GAS1. World Neurosurg., 2017, 97, 710-715.e1.
[http://dx.doi.org/10.1016/j.wneu.2016.01.024] [PMID: 26805687]
[34]
Ho, C.S.; Noor, S.M.; Nagoor, N.H. MiR-378 and MiR-1827 regulate tumor invasion, migration and angiogenesis in human lung adenocarcinoma by targeting RBX1 and CRKL, respectively. J. Cancer, 2018, 9(2), 331-345.
[http://dx.doi.org/10.7150/jca.18188] [PMID: 29344280]
[35]
Fasihi, A.; M Soltani, B.; Atashi, A.; Nasiri, S. Introduction of hsa-miR-103a and hsa-miR-1827 and hsa-miR-137 as new regulators of Wnt signaling pathway and their relation to colorectal carcinoma. J. Cell. Biochem., 2018, 119(7), 5104-5117.
[http://dx.doi.org/10.1002/jcb.26357] [PMID: 28817181]
[36]
Ostadrahimi, S.; Fayaz, S.; Parvizhamidi, M.; Abedi-Valugerdi, M.; Hassan, M.; Kadivar, M.; Teimoori-Toolabi, L.; Asgari, M.; Shahrokh, H.; Abolhasani, M.; Mahdian, R.; Fard-Esfahani, P. Downregulation of miR 1266 5P, miR 185 5P and miR 30c 2 in prostatic cancer tissue and cell lines. Oncol. Lett., 2018, 15(5), 8157-8164.
[http://dx.doi.org/10.3892/ol.2018.8336] [PMID: 29849810]
[37]
Pei, K.; Zhu, J.J.; Wang, C.E.; Xie, Q.L.; Guo, J.Y. MicroRNA-185-5p modulates chemosensitivity of human non-small cell lung cancer to cisplatin via targeting ABCC1. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(22), 4697-4704.
[PMID: 27906433]
[38]
Amelot, A.; Mazel, C. The intervertebral disc: Physiology and pathology of a brittle joint. World Neurosurg., 2018, 120, 265-273.
[http://dx.doi.org/10.1016/j.wneu.2018.09.032] [PMID: 30218798]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy