Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Investigation of Bioactivity Degradation During Storage of Sour Cherry (Prunus cerasus L.) Peel Extract

Author(s): Ebru Kurtulbaş, Selcuk Sevgen, Ruya Samli and Selin Şahin*

Volume 26, Issue 9, 2023

Published on: 03 November, 2022

Page: [1793 - 1801] Pages: 9

DOI: 10.2174/1386207325666221010121122

Price: $65

Abstract

Introduction: Limited number of researches in the literature have been reported to examine degradation stability by regression methods. Monitoring storage stability of plant extracts containing phytochemicals has become a special field.

Objective: This study aims to develop model equations to examine the stability of total phenolic material (TPM) and total anthocyanin (TA) in the sour cherry peel extract under several conditions, such as keeping the samples in a freezer (-20°C), refrigerator (4°C) and room temperature (25°C) conditions. In addition, two types of ambient conditions (under dark and light, respectively) were applied to observe the effect of sunlight on oxidation.

Methods: The storage stability was monitored in terms of TPM and TA. 8 different polynomial regression equations were produced for the data obtained under each condition in order to define the deterioration of the TPM and TA during 60 days of the storage.

Results: Keeping the samples in the light at ambient conditions was the least efficient for stability (~10 days), while the shelf life of the product could have been quite long with the storage in the freezer after opening the package of the product.

Conclusions: The most suitable condition for both TPM and TA has been determined as -20°C with the calculation of degradation days as 157 and 115 (R^2 = 0.9874 / 0.9265, and average error rates = 0.207097% / 0.119541%).

Graphical Abstract

[1]
Grillo, G.; Gunjević, V.; Radošević, K.; Redovniković, I.R.; Cravotto, G. Deep eutectic solvents and nonconventional technologies for blueberry-peel extraction: Kinetics, anthocyanin stability, and antiproliferative activity. Antioxidants, 2020, 9(11), 1069-1096.
[http://dx.doi.org/10.3390/antiox9111069] [PMID: 33142668]
[2]
Le, X.T.; Huynh, M.T.; Pham, T.N.; Than, V.T.; Toan, T.Q.; Bach, L.G.; Trung, N.Q. Optimization of total anthocyanin content, stability and antioxidant evaluation of the anthocyanin extract from Vietnamese Carissa Carandas L. Fruits. Process., 2019, 7, 468-482.
[3]
Maciel, L.G.; do Carmo, M.A.V.; Azevedo, L.; Daguer, H.; Molognoni, L.; de Almeida, M.M.; Granato, D.; Rosso, N.D. Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities. Food Chem. Toxicol., 2018, 113, 187-197.
[http://dx.doi.org/10.1016/j.fct.2018.01.053] [PMID: 29407472]
[4]
González-Paramás, A.M.; Brighenti, V.; Bertoni, L.; Marcelloni, L.; Ayuda-Durán, B.; González-Manzano, S.; Pellati, F.; Santos-Buelga, C. Assessment of the in vivo antioxidant activity of an anthocyanin-rich bilberry extract using the Caenorhabditis elegans model. Antioxidants, 2020, 9(6), 509-524.
[http://dx.doi.org/10.3390/antiox9060509] [PMID: 32531930]
[5]
Pervin, M.; Hasnat, M.; Lee, Y.; Kim, D.; Jo, J.; Lim, B. Antioxidant activity and acetylcholinesterase inhibition of grape skin anthocyanin (GSA). Molecules, 2014, 19(7), 9403-9418.
[http://dx.doi.org/10.3390/molecules19079403] [PMID: 24995924]
[6]
Zhao, J.G.; Yan, Q.Q.; Lu, L.Z.; Zhang, Y.Q. In vivo antioxidant, hypoglycemic, and anti-tumor activities of anthocyanin extracts from purple sweet potato. Nutr. Res. Pract., 2013, 7(5), 359-365.
[http://dx.doi.org/10.4162/nrp.2013.7.5.359] [PMID: 24133614]
[7]
Bi, Y.; Chi, X.; Zhang, R.; Lu, Y.; Wang, Z.; Dong, Q.; Ding, C.; Yang, R.; Jiang, L. Highly efficient extraction of mulberry anthocyanins in deep eutectic solvents: Insights of degradation kinetics and stability evaluation. Innov. Food Sci. Emerg. Technol., 2020, 66, 102512.
[http://dx.doi.org/10.1016/j.ifset.2020.102512]
[8]
Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol., 2010, 21(1), 3-11.
[http://dx.doi.org/10.1016/j.tifs.2009.07.004]
[9]
Sipahli, S.; Mohanlall, V.; Mellem, J.J. Stability and degradation kinetics of crude anthocyanin extracts from Hibiscus sabdariffa. Food Sci. Technol. (Campinas), 2017, 37(2), 209-215.
[http://dx.doi.org/10.1590/1678-457x.14216]
[10]
Woodward, G.; Kroon, P.; Cassidy, A.; Kay, C. Anthocyanin stability and recovery: implications for the analysis of clinical and experimental samples. J. Agric. Food Chem., 2009, 57(12), 5271-5278.
[http://dx.doi.org/10.1021/jf900602b] [PMID: 19435353]
[11]
Amendola, D.; De Faveri, D.M.; Spigno, G. Grape marc phenolics: Extraction kinetics, quality and stability of extracts. J. Food Eng., 2010, 97(3), 384-392.
[http://dx.doi.org/10.1016/j.jfoodeng.2009.10.033]
[12]
Zozio, S.; Pallet, D.; Dornier, M. Evaluation of anthocyanin stability during storage of a coloured drink made from extracts of the Andean blackberry (Rubus glaucus Benth.), açai (Euterpe oleracea Mart.) and black carrot (Daucus carota L.). Fruits, 2011, 66(3), 203-215.
[http://dx.doi.org/10.1051/fruits/2011030]
[13]
Jiang, T.; Mao, Y.; Sui, L.; Yang, N.; Li, S.; Zhu, Z.; Wang, C.; Yin, S.; He, J.; He, Y. Degradation of anthocyanins and polymeric color formation during heat treatment of purple sweet potato extract at different pH. Food Chem., 2019, 274, 460-470.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.141] [PMID: 30372966]
[14]
Escobar-Ortiz, A.; Castaño-Tostado, E.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Reynoso-Camacho, R. Anthocyanins extraction from Hibiscus sabdariffa and identification of phenolic compounds associated with their stability. J. Sci. Food Agric., 2021, 101(1), 110-119.
[http://dx.doi.org/10.1002/jsfa.10620] [PMID: 32608089]
[15]
Ştefănuţ, M.N.; Căta, A.; Pop, R.; Tănasie, C.; Pintea, B.; David, I. Thermal stability of anthocyanins from Vaccinium myrtillus L.methanolic extract. J. Agroaliment. Proc. Technol, 2010, 16, 36-40.
[16]
Tao, M.; Zhu, M.; Wu, C.; He, Z. Degradation kinetic study of lysine in lysine hydrochloride solutions for injection by determining its main degradation product. Asian J. Pharm. Sci., 2015, 10(1), 57-63.
[http://dx.doi.org/10.1016/j.ajps.2014.08.012]
[17]
Loypimai, P.; Moongngarm, A.; Chottanom, P. Thermal and pH degradation kinetics of anthocyanins in natural food colorant prepared from black rice bran. J. Food Sci. Technol., 2016, 53(1), 461-470.
[http://dx.doi.org/10.1007/s13197-015-2002-1] [PMID: 26787965]
[18]
Petrova, I.; Gandova, V. Kinetic parameters investigation at reaction of pigment: Copigment complex between quercetin and strawberry anthocyanins. International Conference on Energy Efficiency and Agricultural Engineering, Ruse, Bulgaria,November 12-14, 2020, pp. 1-4.
[19]
Bezerra, D.G.; Andrade, I.R.; Santos, H.L.V.; Xavier, M.D.S.; Fernandes, P.Í.; Devilla, I.A.; Nascimento, T.L.; Borges, L.L.; Conceição, E.C.; Paula, J.A.M. Azadirachta indica A. Juss (Meliaceae) microencapsulated bioinsecticide: Spray drying technique optimization, characterization, in vitro release, and degradation kinetics. Powder Technol., 2021, 382, 144-161.
[http://dx.doi.org/10.1016/j.powtec.2020.11.079]
[20]
Valdivia-Rivera, S.; Herrera-Pool, I.E.; Ayora-Talavera, T.; Lizardi-Jiménez, M.A.; García-Cruz, U.; Cuevas-Bernardino, J.C.; Cervantes-Uc, J.M.; Pacheco, N. Kinetic, thermodynamic, physicochemical, and economical characterization of pectin from Mangifera indica L. cv. haden residues. Foods, 2021, 10(9), 2093.
[http://dx.doi.org/10.3390/foods10092093] [PMID: 34574203]
[21]
Hernández-Aguirre, O.A.; Muro, C.; Hernández-Acosta, E.; Alvarado, Y.; Díaz-Nava, M.C. Extraction and stabilization of betalains from beetroot (Beta vulgaris) wastes using deep eutectic solvents. Molecules, 2021, 26(21), 6342.
[http://dx.doi.org/10.3390/molecules26216342] [PMID: 34770751]
[22]
Cisse, M.; Vaillant, F.; Kane, A.; Ndiaye, O.; Dornier, M. Impact of the extraction procedure on the kinetics of anthocyanin and colour degradation of roselle extracts during storage. J. Sci. Food Agric., 2012, 92(6), 1214-1221.
[http://dx.doi.org/10.1002/jsfa.4685] [PMID: 22083828]
[23]
Ekici, L.; Simsek, Z.; Ozturk, I.; Sagdic, O.; Yetim, H. Effects of temperature, time, and pH on the stability of anthocyanin extracts: Prediction of total anthocyanin content using nonlinear models. Food Anal. Methods, 2014, 7(6), 1328-1336.
[http://dx.doi.org/10.1007/s12161-013-9753-y]
[24]
Quan, W.; He, W.; Lu, M.; Yuan, B.; Zeng, M.; Gao, D.; Qin, F.; Chen, J.; He, Z. Anthocyanin composition and storage degradation kinetics of anthocyanins‐based natural food colourant from purple‐fleshed sweet potato. Int. J. Food Sci. Technol., 2019, 54(8), 2529-2539.
[http://dx.doi.org/10.1111/ijfs.14163]
[25]
Chen, J.; Du, J.; Li, M.; Li, C. Degradation kinetics and pathways of red raspberry anthocyanins in model and juice systems and their correlation with color and antioxidant changes during storage. Lebensm. Wiss. Technol., 2020, 128, 109448.
[http://dx.doi.org/10.1016/j.lwt.2020.109448]
[26]
Stübler, A.S.; Böhmker, L.; Juadjur, A.; Heinz, V.; Rauh, C.; Shpigelman, A.; Aganovic, K. Matrix and technology-dependent stability and bioaccessibility of strawberry anthocyanins during storage. Antioxidants, 2020, 10(1), 30.
[http://dx.doi.org/10.3390/antiox10010030] [PMID: 33396664]
[27]
Jagannath, A.; Tsuchido, T. Validation of a polynomial regression model: The thermal inactivation of Bacillus subtilis spores in milk. Lett. Appl. Microbiol., 2003, 37(5), 399-404.
[http://dx.doi.org/10.1046/j.1472-765X.2003.01416.x] [PMID: 14633111]
[28]
Chang, A.C.; Hsu, J.P. A polynomial regression model for the response of various accelerating techniques on maize wine maturation. Food Chem., 2006, 94(4), 603-607.
[http://dx.doi.org/10.1016/j.foodchem.2004.11.048]
[29]
Ojha, K.S.; Alvarez, C.; Kumar, P.; O’Donnell, C.P.; Tiwari, B.K. Effect of enzymatic hydrolysis on the production of free amino acids from boarfish (Capros aper) using second order polynomial regression models. Lebensm. Wiss. Technol., 2016, 68, 470-476.
[http://dx.doi.org/10.1016/j.lwt.2015.11.040]
[30]
Azeez, L.; Lateef, A.; Wahab, A.A.; Adejumo, A.L.; Raji, K. Comparative effects of silver nanoparticles, sucrose and sodium chloride as osmotic solutions for tomato slices: Antioxidant activity, microbial quality and modelling with polynomial regression model. S. Afr. J. Chem., 2019, 72, 21-31.
[http://dx.doi.org/10.17159/0379-4350/2019/v72a4]
[31]
Yanova, M.A.; Oleynikova, E.N.; Khizhnyak, S.V. Polynomial regression as a tool for prediction quality of bread baked of wheat flour mixed with flour of cereal extrudates. Earth Env. Sci. T. R. Soc., 2019, 315, 032026.
[http://dx.doi.org/10.1088/1755-1315/315/3/032026]
[32]
Wijaya, G.T.; Nugraha, I.G.D. Prediction system of chicken meat expiration time based on polynomial regression using NodeMCU ESP8266 and MQ137 sensor.AIP Conference Proceedings; , 2021, 2376, . (1)
[http://dx.doi.org/10.1063/5.0064986]
[33]
Ulya, M.; Chamidah, N. Multi-predictor local polynomial regression for predicting the acidity level of avomango (Gadung Klonal 21). International Conference on Mathematics, Computational Sciences and Statistics 2020 AIP Conference Proceedings 2021, 2329(1), p. 060024.
[http://dx.doi.org/10.1063/5.0042290]
[34]
Ulya, M.; Chamidah, N.; Saifudin, T. Predicting the sweetness level of avomango (Gadung Klonal 21) using multi-predictor local polynomial regression. International Conference on Green Agro-industry and Bioeconomy, 2021.
[http://dx.doi.org/10.1088/1755-1315/733/1/012009]
[35]
Kurtulbaş Şahin, E.; Bilgin, M.; Şahin, S. Recovery of anthocyanins from sour cherry (Prunus cerasus L.) peels via microwave assisted extraction: Monitoring the storage stability. Prep. Biochem. Biotechnol., 2021, 51(7), 686-696.
[http://dx.doi.org/10.1080/10826068.2020.1852418] [PMID: 33275494]
[36]
Şahin, S. A novel technology for extraction of phenolic antioxidants from mandarin (Citrus deliciosa Tenore) leaves: Solvent-free microwave extraction. Korean J. Chem. Eng., 2015, 32(5), 950-957.
[http://dx.doi.org/10.1007/s11814-014-0293-y]
[37]
Kurtulbaş Şahin, E.; Bilgin, M.; Şahin, S. Automatic solvent extraction of sour cherry peels and storage stability of the products. In: Biomass Conversion and Biorefinery; , 2020; pp. 1-11.
[38]
Fan, J.; Gijbels, I. Local Polynomial Modelling and Its Applications; Chapman and Hall/: London CRC 1996.
[39]
[40]
Gouveia, L.; Empis, J. Relative stabilities of microalgal carotenoids in microalgal extracts, biomass and fish feed: effect of storage conditions. Innov. Food Sci. Emerg. Technol., 2003, 4(2), 227-233.
[http://dx.doi.org/10.1016/S1466-8564(03)00002-X]
[41]
Akowuah, G.A.; Zhari, I. Effect of extraction temperature on stability of major polyphenols and antioxidant activity of Orthosiphon stamineus leaf. J. Herbs Spices Med. Plants, 2010, 16(3-4), 160-166.
[http://dx.doi.org/10.1080/10496475.2010.509652]
[42]
Şahin, S; Pekel, A.G.; Toprakçı, I. Sonication-assisted extraction of Hibiscus sabdariffa for the polyphenols recovery: application of a specially designed deep eutectic solvent. In: Biomass Conversion and Biorefinery; , 2020; pp. 1-11.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy