Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

A Review on Aerosol Drug Delivery: Fundamentals, Classifications, Particle Size Analysis and the Engagement of Nanoparticulate Systems

Author(s): Hoda Ahmed El-Maradny and Amina Tarek Mneimneh*

Volume 12, Issue 4, 2022

Published on: 23 September, 2022

Page: [258 - 275] Pages: 18

DOI: 10.2174/2210303112666220831100748

Price: $65

Abstract

Background: The pulmonary route of administration has shown viability and effectiveness in local and systemic delivery, as a non-invasive method, not only for active pharmaceutical ingredients but also for genes, proteins, and enzymes for pulmonary and non-pulmonary diseases.

Objectives: Nanoparticulate systems such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, emulsions, nanosuspensions, polymeric nanoparticles, and metal-based have been investigated as delivery carriers for the lungs. Nanoparticulate drug delivery systems are known for their optimum small size and suitability for pulmonary absorption as it is well recognized that drug particles within the size range of 1-5 μm are the best for pulmonary deposition.

Results: The advantages of these colloidal systems are generated by their small size, large surface area, and rapid absorption. These systems are characterized by ease of preparation as inhalable formulation, the ability to increase drug concentration at the site of disease, preventing and minimizing drug loss and degradation, and the possibility of cell targeting.

Conclusion: This article provides a brief review of the features of different aerosol devices, their advantages, limitations, and methods utilized for particle size analysis with a focus on the emerging field of nanocarriers as vehicles for pulmonary delivery for various lung disorders.

Keywords: Aerosol, limitations, lung, nanoparticulate, particle size, pulmonary.

Graphical Abstract

[1]
Shuklaa, S.D.; Vankab, K.S.; Chavelierb, A.; Shastrid, M.D.; Tambuwalae, M.M.; Bakshie, H.A.; Pabrejaf, K.; Mahmoodg, M.Q. and R. F. Chronic Respiratory Diseases: An Introduction and Need for Novel Drug Delivery Approaches. In: Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems; Collection, E.P.H.E., Ed.; Elsevier Inc., 2020; Vol. 1, pp. 1-31.
[http://dx.doi.org/10.1016/B978-0-12-820658-4.00001-7]
[2]
Sung, J.C.; Pulliam, B.L.; Edwards, D.A. Nanoparticles for drug delivery to the lungs. Trends Biotechnol., 2007, 25(12), 563-570.
[http://dx.doi.org/10.1016/j.tibtech.2007.09.005] [PMID: 17997181]
[3]
Nahar, K.; Gupta, N.; Gauvin, R.; Absar, S.; Patel, B.; Gupta, V.; Khademhosseini, A.; Ahsan, F. In vitro, in vivo and ex vivo models for studying particle deposition and drug absorption of inhaled pharmaceuticals. Eur. J. Pharm. Sci., 2013, 49(5), 805-818.
[http://dx.doi.org/10.1016/j.ejps.2013.06.004] [PMID: 23797056]
[4]
Zhang, J.; Wu, L.; Chan, H.K.; Watanabe, W. Formation, characterization, and fate of inhaled drug nanoparticles. Adv. Drug Deliv. Rev., 2011, 63(6), 441-455.
[http://dx.doi.org/10.1016/j.addr.2010.11.002] [PMID: 21118707]
[5]
Hess, D.R. Aerosol delivery devices in the treatment of asthma. Respir. Care, 2008, 53(6), 699-723.
[PMID: 18501026]
[6]
Mehanna, M.M.; Mohyeldin, S.M.; Elgindy, N.A. Respirable nanocarriers as a promising strategy for antitubercular drug delivery. J. Control. Release, 2014, 187, 183-197.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.038] [PMID: 24878180]
[7]
Chow, A.H.L.; Tong, H.H.Y.; Chattopadhyay, P.; Shekunov, B.Y. Particle engineering for pulmonary drug delivery. Pharm. Res., 2007, 24(3), 411-437.
[http://dx.doi.org/10.1007/s11095-006-9174-3] [PMID: 17245651]
[8]
Ferron, G.A. Aerosol properties and lung deposition. Eur. Respir. J., 1994, 7(8), 1392-1394.
[http://dx.doi.org/10.1183/09031936.94.07081392] [PMID: 7957823]
[9]
Ibrahim, M.; Garcia-Contreras, L. Mechanisms of absorption and elimination of drugs administered by inhalation. Ther. Deliv., 2013, 4(8), 1027-1045.
[http://dx.doi.org/10.4155/tde.13.67] [PMID: 23919477]
[10]
DeCarlo, P.F.; Slowik, J.G.; Worsnop, D.R.; Davidovits, P.; Jimenez, J.L. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. part 1: Theory. Aerosol Sci. Technol., 2004, 38(12), 1185-1205.
[http://dx.doi.org/10.1080/027868290903907]
[11]
Verma, R.K.; Ibrahim, M.; Garcia-Contreras, L. Lung anatomy and physiology and their implications for pulmonary drug delivery. In: Pulmonary Drug Delivery: Advances and Challenges; Ali, N.; Gary, P.M., Eds.; John & Wiley Sons, 2015; pp. 1-18.
[http://dx.doi.org/10.1002/9781118799536.ch1]
[12]
Pavia, D.; Bateman, J.R.M.; Clarke, S.W. Deposition and clearance of inhaled particles. Bull. Eur. Physiopathol. Respir., 1980, 16(3), 335-366.
[http://dx.doi.org/10.2307/3429715] [PMID: 6104999]
[13]
Verbanck, S.; Kalsi, H.S.; Biddiscombe, M.F.; Agnihotri, V.; Belkassem, B.; Lacor, C.; Usmani, O.S. Inspiratory and expiratory aerosol deposition in the upper airway. Inhal. Toxicol., 2011, 23(2), 104-111.
[http://dx.doi.org/10.3109/08958378.2010.547535] [PMID: 21309663]
[14]
Anderson, S.; Atkins, P.; Bäckman, P.; Cipolla, D.; Clark, A.; Daviskas, E.; Disse, B.; Entcheva-Dimitrov, P.; Fuller, R.; Gonda, I.; Lundbäck, H.; Olsson, B.; Weers, J. Inhaled medicines: Past, present, and future. Pharmacol. Rev., 2022, 74(1), 48-118.
[http://dx.doi.org/10.1124/pharmrev.120.000108] [PMID: 34987088]
[15]
Kim, M.S.; Henderson, K.A. Using connected devices to monitor inhaler use in the real world. Respir. Drug Deliv., 2016, 1, 37-44.
[16]
Sala, V.; Murabito, A.; Ghigo, A. Inhaled biologicals for the treatment of cystic fibrosis. Recent Pat. Inflamm. Allergy Drug Discov., 2019, 13(1), 19-26.
[http://dx.doi.org/10.2174/1872213X12666181012101444] [PMID: 30318010]
[17]
Klonoff, D.C. Afrezza inhaled insulin: The fastest-acting FDA-approved insulin on the market has favorable properties. J. Diabetes Sci. Technol., 2014, 8(6), 1071-1073.
[http://dx.doi.org/10.1177/1932296814555820] [PMID: 25355710]
[18]
Hess, D.R. Nebulizers: Principles and performance. Respir. Care, 2000, 45(6), 609-622.
[PMID: 10894454]
[19]
Rubin, B.K.; Williams, R.W. Emerging aerosol drug delivery strategies: From bench to clinic. Adv. Drug Deliv. Rev., 2014, 75, 141-148.
[http://dx.doi.org/10.1016/j.addr.2014.06.008] [PMID: 24993613]
[20]
Dolovich, M.B.; Dhand, R. Aerosol drug delivery: Developments in device design and clinical use. Lancet, 2011, 377(9770), 1032-1045.
[http://dx.doi.org/10.1016/S0140-6736(10)60926-9] [PMID: 21036392]
[21]
Davies, L.A.; Nunez-Alonso, G.A.; McLachlan, G.; Hyde, S.C.; Gill, D.R. Aerosol delivery of DNA/liposomes to the lung for cystic fibrosis gene therapy. Hum. Gene Ther. Clin. Dev., 2014, 25(2), 97-107.
[http://dx.doi.org/10.1089/humc.2014.019] [PMID: 24865497]
[22]
Sabato, K.; Ward, P.; Hawk, W.; Gildengorin, V.; Asselin, J.M. Randomized controlled trial of a breath-actuated nebulizer in pediatric asthma patients in the emergency department. Respir. Care, 2011, 56(6), 761-770.
[http://dx.doi.org/10.4187/respcare.00142] [PMID: 21333060]
[23]
Denyer, J.; Dyche, T. The Adaptive Aerosol Delivery (AAD) technology: Past, present, and future. J. Aerosol Med. Pulm. Drug Deliv., 2010, 23(S1), S1-S10.
[http://dx.doi.org/10.1089/jamp.2009.0791] [PMID: 20373904]
[24]
Ari, A.; Fink, J.B. Recent advances in aerosol devices for the delivery of inhaled medications. Expert Opin. Drug Deliv., 2020, 17(2), 133-144.
[http://dx.doi.org/10.1080/17425247.2020.1712356] [PMID: 31959028]
[25]
Kesavan, J.; Schepers, D.R.; Bottiger, J.R.; King, M.D.; McFarland, A.R. Aerosolization of bacterial spores with pressurized metered dose inhalers. Aerosol Sci. Technol., 2013, 47(10), 1108-1117.
[http://dx.doi.org/10.1080/02786826.2013.824552]
[26]
Labiris, N.R.; Dolovich, M.B. Pulmonary drug delivery. Part II: The role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol., 2003, 56(6), 600-612.
[http://dx.doi.org/10.1046/j.1365-2125.2003.01893.x] [PMID: 14616419]
[27]
Chandel, A.; Goyal, A.K.; Ghosh, G.; Rath, G. Recent advances in aerosolised drug delivery. Biomed. Pharmacother., 2019, 112(112), 108601.
[http://dx.doi.org/10.1016/j.biopha.2019.108601] [PMID: 30780107]
[28]
Eicher, J.; Eicher, J.; Zierenberg, B.; Dalby, R. Development of respimat® soft mist™ inhaler and its clinical utility in respiratory disorders. Med. Devices, 2011, 4(1), 145-155.
[http://dx.doi.org/10.2147/MDER.S7409] [PMID: 22915941]
[29]
Dalby, R.; Spallek, M.; Voshaar, T. A review of the development of respimat® soft mist™ inhaler. Int. J. Pharm., 2004, 283(1-2), 1-9.
[http://dx.doi.org/10.1016/j.ijpharm.2004.06.018] [PMID: 15363496]
[30]
Garcia-Contreras, L.; Ibrahim, M.; Verma, R. Inhalation drug delivery devices: Technology update. Med. Devices, 2015, 8, 131-139.
[http://dx.doi.org/10.2147/MDER.S48888] [PMID: 25709510]
[31]
Lenney, J.; Innes, J.A.; Crompton, G.K. Inappropriate inhaler use: Assessment of use and patient preference of seven inhalation devices. Respir. Med., 2000, 94(5), 496-500.
[http://dx.doi.org/10.1053/rmed.1999.0767] [PMID: 10868714]
[32]
Cipolla, D.C.; Gonda, I. Formulation technology to repurpose drugs for inhalation delivery. Drug Discov. Today Ther. Strateg., 2011, 8(3-4), 123-130.
[http://dx.doi.org/10.1016/j.ddstr.2011.07.001]
[33]
ADASUVE® (loxapine) inhalation powder, for oral inhalation use. 2022. Available from: https://www.adasuve.com/efficacy.aspx
[34]
Chan, H.K. Inhalation drug delivery devices and emerging technologies. Expert Opin. Ther. Pat., 2003, 13(9), 1333-1343.
[http://dx.doi.org/10.1517/13543776.13.9.1333]
[35]
Giry, K.; Péan, J.M.; Giraud, L.; Marsas, S.; Rolland, H.; Wüthrich, P. Drug/lactose co-micronization by jet milling to improve aerosolization properties of a powder for inhalation. Int. J. Pharm., 2006, 321(1-2), 162-166.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.009] [PMID: 16797150]
[36]
Ling, J.; Mangal, S.; Park, H.; Wang, S.; Cavallaro, A.; Zhou, Q.T. Simultaneous particle size reduction and homogeneous mixing to produce combinational powder formulations for inhalation by the single-step co-jet milling. J. Pharm. Sci., 2019, 108(9), 3146-3151.
[http://dx.doi.org/10.1016/j.xphs.2019.05.011] [PMID: 31112716]
[37]
Kaur, R.; Garg, T.; Das Gupta, U.; Gupta, P.; Rath, G.; Goyal, A.K. Preparation and characterization of spray-dried inhalable powders containing nanoaggregates for pulmonary delivery of anti-tubercular drugs. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 182-187.
[http://dx.doi.org/10.3109/21691401.2014.930747] [PMID: 24992699]
[38]
Pouya, M.A.; Daneshmand, B.; Aghababaie, S.; Faghihi, H.; Vatanara, A. Spray-freeze drying: A suitable method for aerosol delivery of antibodies in the presence of trehalose and cyclodextrins. AAPS PharmSciTech, 2018, 19(5), 2247-2254.
[http://dx.doi.org/10.1208/s12249-018-1023-2] [PMID: 29740758]
[39]
Rai, P.Y.; Sansare, V.A.; Warrier, D.U.; Shinde, U.A. Formulation, characterization and evaluation of inhalable effervescent dry powder of Rifampicin nanoparticles. Indian J. Tuberc., 2022.
[http://dx.doi.org/10.1016/j.ijtb.2022.03.007]
[40]
Murphy, B.M.; Prescott, S.W.; Larson, I. Measurement of lactose crystallinity using raman spectroscopy. J. Pharm. Biomed. Anal., 2005, 38(1), 186-190.
[http://dx.doi.org/10.1016/j.jpba.2004.12.013] [PMID: 15907639]
[41]
Davidson, N.; Tong, H.J.; Kalberer, M.; Seville, P.C.; Ward, A.D.; Kuimova, M.K.; Pope, F.D. Measurement of the Raman spectra and hygroscopicity of four pharmaceutical aerosols as they travel from Pressurised Metered Dose Inhalers (PMDI) to a model lung. Int. J. Pharm., 2017, 520(1-2), 59-69.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.051] [PMID: 28159683]
[42]
Kaialy, W.; Hussain, T.; Alhalaweh, A.; Nokhodchi, A. Towards a more desirable dry powder inhaler formulation: Large spray-dried mannitol microspheres outperform small microspheres. Pharm. Res., 2014, 31(1), 60-76.
[http://dx.doi.org/10.1007/s11095-013-1132-2] [PMID: 23918220]
[43]
Moon, C.; Watts, A.B.; Lu, X.; Su, Y.; Williams, R.O. Enhanced aerosolization of high potency nanoaggregates of voriconazole by dry powder inhalation. Mol. Pharm., 2019, 16(5), 1799-1812.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00907] [PMID: 30925839]
[44]
Jaffari, S.; Forbes, B.; Collins, E.; Barlow, D.J.; Martin, G.P.; Murnane, D. Rapid characterisation of the inherent dispersibility of respirable powders using dry dispersion laser diffraction. Int. J. Pharm., 2013, 447(1-2), 124-131.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.034] [PMID: 23434542]
[45]
Xia, Y.; Su, Y.; Wang, Q.; Yang, C.; Tang, B.; Zhang, Y.; Tu, J.; Shen, Y. Preparation, characterization, and pharmacodynamics of insulin-loaded fumaryl diketopiperazine microparticle dry powder inhalation. Drug Deliv., 2019, 26(1), 650-660.
[http://dx.doi.org/10.1080/10717544.2019.1631408] [PMID: 31257946]
[46]
Chortarea, S.; Fytianos, K.; Rodriguez-Lorenzo, L.; Petri-Fink, A.; Rothen-Rutishauser, B. Distribution of polymer-coated gold nanoparticles in a 3D lung model and indication of apoptosis after repeated exposure. Nanomedicine, 2018, 13(10), 1169-1185.
[http://dx.doi.org/10.2217/nnm-2017-0358] [PMID: 29874145]
[47]
Arbain, N.H.; Salim, N.; Wui, W.T.; Basri, M.; Rahman, M.B.A. Optimization of quercetin loaded palm oil ester based nanoemulsion formulation for pulmonary delivery. J. Oleo Sci., 2018, 67(8), 933-940.
[http://dx.doi.org/10.5650/jos.ess17253] [PMID: 30012897]
[48]
Mitchell, J.P.; Nagel, M.W.; Archer, A.D. Size analysis of a pressurized metered dose inhaler-delivered suspension formulation by the API aerosizer time-of-flight aerodynamic particle size analyzer. J. Aerosol Med., 1999, 12(4), 255-264.
[http://dx.doi.org/10.1089/jam.1999.12.255] [PMID: 10724640]
[49]
Javadzadeh, Y.; Yaqoubi, S. Therapeutic Nanostructures for Pulmonary Drug Delivery. In: Nanostructures for Drug Delivery; Elsevier Inc., 2017; pp. 619-638.
[http://dx.doi.org/10.1016/B978-0-323-46143-6.00020-8]
[50]
Watts, A.B.; Iii, R.O.W. Controlled pulmonary drug delivery. In: Advances In Delivery Science And Technology; Hugh, D.C.S.; Anthony, J.H., Eds.; Springer, 2011.
[http://dx.doi.org/10.1007/978-1-4419-9745-6]
[51]
Rijt, S.H.; Bein, T.; Meiners, S. Medical nanoparticles for next generation drug delivery to the lungs. Eur. Respir. J., 2014, 44(3), 765-774.
[http://dx.doi.org/10.1183/09031936.00212813] [PMID: 24791828]
[52]
Yhee, J.; Im, J.; Nho, R. Advanced therapeutic strategies for chronic lung disease using nanoparticle-based drug delivery. J. Clin. Med., 2016, 5(9), 82.
[http://dx.doi.org/10.3390/jcm5090082] [PMID: 27657144]
[53]
Kumar, A.; Chen, F.; Mozhi, A.; Zhang, X.; Zhao, Y.; Xue, X.; Hao, Y.; Zhang, X.; Wang, P.C.; Liang, X.J. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale, 2013, 5(18), 8307-8325.
[http://dx.doi.org/10.1039/c3nr01525d] [PMID: 23860639]
[54]
Zaru, M.; Sinico, C.; De Logu, A.; Caddeo, C.; Lai, F.; Manca, M.L.; Fadda, A.M. Rifampicin-loaded liposomes for the passive targeting to alveolar macrophages: In vitro and in vivo evaluation. J. Liposome Res., 2009, 19(1), 68-76.
[http://dx.doi.org/10.1080/08982100802610835] [PMID: 19515009]
[55]
Clancy, J.P.; Dupont, L.; Konstan, M.W.; Billings, J.; Fustik, S.; Goss, C.H.; Lymp, J.; Minic, P.; Quittner, A.L.; Rubenstein, R.C.; Young, K.R.; Saiman, L.; Burns, J.L.; Govan, J.R.W.; Ramsey, B.; Gupta, R.; Phase, I.I. Phase II studies of nebulised arikace in CF patients with Pseudomonas aeruginosa infection. Thorax, 2013, 68(9), 818-825.
[http://dx.doi.org/10.1136/thoraxjnl-2012-202230] [PMID: 23749840]
[56]
Menon, M.D.; Parmar, J.J.; Singh, D.J.; Hegde, D.D.; Lohade, A.A.; Soni, P.S.; Samad, A. Development and evaluation of inhalational liposomal system of budesonide for better management of asthma. Indian J. Pharm. Sci., 2010, 72(4), 442-448.
[http://dx.doi.org/10.4103/0250-474X.73916] [PMID: 21218054]
[57]
Li, S.D.; Huang, L. Targeted delivery of antisense oligodeoxynucleotide and small interference RNA into lung cancer cells. Mol. Pharm., 2006, 3(5), 579-588.
[http://dx.doi.org/10.1021/mp060039w] [PMID: 17009857]
[58]
Kleemann, E.; Schmehl, T.; Gessler, T.; Bakowsky, U.; Kissel, T.; Seeger, W. Iloprost-containing liposomes for aerosol application in pulmonary arterial hypertension: Formulation aspects and stability. Pharm. Res., 2007, 24(2), 277-287.
[http://dx.doi.org/10.1007/PL00022055] [PMID: 17211729]
[59]
Wang, P.; Zhang, L.; Peng, H.; Li, Y.; Xiong, J.; Xu, Z. The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo. Mater. Sci. Eng., 2013, 33(8), 4802-4808.
[http://dx.doi.org/10.1016/j.msec.2013.07.047] [PMID: 24094190]
[60]
Rosière, R.; Woensel, M.; Gelbcke, M.; Mathieu, V.; Hecq, J.; Mathivet, T.; Vermeersch, M.; Van Antwerpen, P.; Amighi, K.; Wauthoz, N. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol. Pharm., 2018, 15(3), 899-910.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00846] [PMID: 29341619]
[61]
Bakhtiary, Z.; Barar, J.; Aghanejad, A.; Saei, A.A.; Nemati, E.; Ezzati, N.D.J.; Omidi, Y. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev. Ind. Pharm., 2017, 43(8), 1244-1253.
[http://dx.doi.org/10.1080/03639045.2017.1310223] [PMID: 28323493]
[62]
Makled, S.; Nafee, N.; Boraie, N. Nebulized solid lipid nanoparticles for the potential treatment of pulmonary hypertension via targeted delivery of phosphodiesterase-5-inhibitor. Int. J. Pharm., 2017, 517(1-2), 312-321.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.026] [PMID: 27979766]
[63]
Nafee, N.; Makled, S.; Boraie, N. Nanostructured lipid carriers versus solid lipid nanoparticles for the potential treatment of pulmonary hypertension via nebulization. Eur. J. Pharm. Sci., 2018, 125, 151-162.
[http://dx.doi.org/10.1016/j.ejps.2018.10.003] [PMID: 30292750]
[64]
Zhao, Y.; Chang, Y.X.; Hu, X.; Liu, C.Y.; Quan, L.H.; Liao, Y.H. Solid lipid nanoparticles for sustained pulmonary delivery of Yuxingcao essential oil: Preparation, characterization and in vivo evaluation. Int. J. Pharm., 2017, 516(1-2), 364-371.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.046] [PMID: 27884712]
[65]
Videira, M.A.; Botelho, M.F.; Santos, A.C.; Gouveia, L.F.; Pedroso, L.J.J.; Almeida, A.J. Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J. Drug Target., 2002, 10(8), 607-613.
[http://dx.doi.org/10.1080/1061186021000054933] [PMID: 12683665]
[66]
Islan, G.A.; Tornello, P.C.; Abraham, G.A.; Duran, N.; Castro, G.R. Smart lipid nanoparticles containing levofloxacin and DNase for lung delivery. Design and characterization. Colloids Surf. B Biointerfaces, 2016, 143, 168-176.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.040] [PMID: 27003467]
[67]
Nasr, M.; Nawaz, S.; Elhissi, A.; Amphotericin, B. Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization. Int. J. Pharm., 2012, 436(1-2), 611-616.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.028] [PMID: 22842623]
[68]
Nesamony, J.; Shah, I.S.; Kalra, A.; Jung, R. Nebulized oil-in-water nanoemulsion mists for pulmonary delivery: Development, physico-chemical characterization and in vitro evaluation. Drug Dev. Ind. Pharm., 2014, 40(9), 1253-1263.
[http://dx.doi.org/10.3109/03639045.2013.814065] [PMID: 23837519]
[69]
Li, M.; Zhu, L.; Liu, B.; Du, L.; Jia, X.; Han, L.; Jin, Y. Tea tree oil nanoemulsions for inhalation therapies of bacterial and fungal pneumonia. Colloids Surf. B Biointerfaces, 2016, 141, 408-416.
[http://dx.doi.org/10.1016/j.colsurfb.2016.02.017] [PMID: 26895502]
[70]
Shah, K.; Chan, L.W.; Wong, T.W. Critical physicochemical and biological attributes of nanoemulsions for pulmonary delivery of rifampicin by nebulization technique in tuberculosis treatment. Drug Deliv., 2017, 24(1), 1631-1647.
[http://dx.doi.org/10.1080/10717544.2017.1384298] [PMID: 29063794]
[71]
Arbain, N.H.; Salim, N.; Masoumi, H.R.F.; Wong, T.W.; Basri, M.; Abdul, R.M.B. in vitro evaluation of the inhalable quercetin loaded nanoemulsion for pulmonary delivery. Drug Deliv. Transl. Res., 2019, 9(2), 497-507.
[http://dx.doi.org/10.1007/s13346-018-0509-5] [PMID: 29541999]
[72]
Zhang, Y.; Zhang, J. Preparation of budesonide nanosuspensions for pulmonary delivery: Characterization, in vitro release and in vivo lung distribution studies. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 285-289.
[http://dx.doi.org/10.3109/21691401.2014.944645] [PMID: 25100657]
[73]
Rossi, I.; Sonvico, F.; McConville, J.T.; Rossi, F.; Fröhlich, E.; Zellnitz, S.; Rossi, A.; Del Favero, E.; Bettini, R.; Buttini, F. Nebulized coenzyme Q 10 nanosuspensions: A versatile approach for pulmonary antioxidant therapy. Eur. J. Pharm. Sci., 2018, 113, 159-170.
[http://dx.doi.org/10.1016/j.ejps.2017.10.024] [PMID: 29066385]
[74]
Fu, T.T.; Cong, Z.Q.; Zhao, Y.; Chen, W.Y.; Liu, C.Y.; Zheng, Y.; Yang, F.F.; Liao, Y.H. Fluticasone propionate nanosuspensions for sustained nebulization delivery: An in vitro and in vivo evaluation. Int. J. Pharm., 2019, 572, 118839.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118839] [PMID: 31715359]
[75]
Varshosaz, J.; Taymouri, S.; Hamishehkar, H. Fabrication of polymeric nanoparticles of poly(ethylene- co -vinyl acetate) coated with chitosan for pulmonary delivery of carvedilol. J. Appl. Polym. Sci., 2014, 131(1), 39694.
[http://dx.doi.org/10.1002/app.39694]
[76]
Buhecha, M.D.; Lansley, A.B.; Somavarapu, S.; Pannala, A.S. Development and characterization of PLA nanoparticles for pulmonary drug delivery: Co-encapsulation of theophylline and budesonide, a hydrophilic and lipophilic drug. J. Drug Deliv. Sci. Technol., 2019, 53(6), 101128.
[http://dx.doi.org/10.1016/j.jddst.2019.101128]
[77]
Ungaro, F.; d’Angelo, I.; Coletta, C.; d’Emmanuele di Villa Bianca, R.; Sorrentino, R.; Perfetto, B.; Tufano, M.A.; Miro, A.; La Rotonda, M.I.; Quaglia, F. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: Modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. J. Control. Release, 2012, 157(1), 149-159.
[http://dx.doi.org/10.1016/j.jconrel.2011.08.010] [PMID: 21864595]
[78]
Yang, Y.; Ding, Y.; Fan, B.; Wang, Y.; Mao, Z.; Wang, W.; Wu, J. Inflammation-targeting polymeric nanoparticles deliver sparfloxacin and tacrolimus for combating acute lung sepsis. J. Control. Release, 2020, 321, 463-474.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.030] [PMID: 32087302]
[79]
Menon, J.U.; Ravikumar, P.; Pise, A.; Gyawali, D.; Hsia, C.C.W.; Nguyen, K.T. Polymeric nanoparticles for pulmonary protein and DNA delivery. Acta Biomater., 2014, 10(6), 2643-2652.
[http://dx.doi.org/10.1016/j.actbio.2014.01.033] [PMID: 24512977]
[80]
d’Angelo, I.; Costabile, G.; Durantie, E.; Brocca, P.; Rondelli, V.; Russo, A.; Russo, G.; Miro, A.; Quaglia, F.; Petri-Fink, A.; Rothen-Rutishauser, B.; Ungaro, F. Hybrid lipid/polymer nanoparticles for pulmonary delivery of siRNA: Development and fate upon in vitro deposition on the human epithelial airway barrier. J. Aerosol Med. Pulm. Drug Deliv., 2018, 31(3), 170-181.
[http://dx.doi.org/10.1089/jamp.2017.1364] [PMID: 29035132]
[81]
Mohamed, A.; Kunda, N.K.; Ross, K.; Hutcheon, G.A.; Saleem, I.Y. Polymeric nanoparticles for the delivery of miRNA to treat Chronic Obstructive Pulmonary Disease (COPD). Eur. J. Pharm. Biopharm., 2019, 136(136), 1-8.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.002] [PMID: 30615927]
[82]
Hasenpusch, G.; Geiger, J.; Wagner, K.; Mykhaylyk, O.; Wiekhorst, F.; Trahms, L.; Heidsieck, A.; Gleich, B.; Bergemann, C.; Aneja, M.K.; Rudolph, C. Magnetized aerosols comprising superparamagnetic iron oxide nanoparticles improve targeted drug and gene delivery to the lung. Pharm. Res., 2012, 29(5), 1308-1318.
[http://dx.doi.org/10.1007/s11095-012-0682-z] [PMID: 22271050]
[83]
Poh, W.; Ab Rahman, N.; Ostrovski, Y.; Sznitman, J.; Pethe, K.; Loo, S.C.J. Active pulmonary targeting against tuberculosis (TB) via triple-encapsulation of Q203, bedaquiline and superparamagnetic iron oxides (SPIOs) in nanoparticle aggregates. Drug Deliv., 2019, 26(1), 1039-1048.
[http://dx.doi.org/10.1080/10717544.2019.1676841] [PMID: 31691600]
[84]
Seydoux, E.; Rodriguez-Lorenzo, L.; Blom, R.A.M.; Stumbles, P.A.; Petri-Fink, A.; Rothen-Rutishauser, B.M.; Blank, F.; von Garnier, C. Pulmonary delivery of cationic gold nanoparticles boost antigen-specific CD4 + T Cell Proliferation. Nanomedicine (Lond.), 2016, 12(7), 1815-1826.
[http://dx.doi.org/10.1016/j.nano.2016.02.020] [PMID: 27013126]
[85]
Lipka, J.; Semmler-Behnke, M.; Sperling, R.A.; Wenk, A.; Takenaka, S.; Schleh, C.; Kissel, T.; Parak, W.J.; Kreyling, W.G. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials, 2010, 31(25), 6574-6581.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.009] [PMID: 20542560]
[86]
Fytianos, K.; Chortarea, S.; Rodriguez-Lorenzo, L.; Blank, F.; von Garnier, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Aerosol delivery of functionalized gold nanoparticles target and activate dendritic cells in a 3D lung cellular model. ACS Nano, 2017, 11(1), 375-383.
[http://dx.doi.org/10.1021/acsnano.6b06061] [PMID: 27973764]
[87]
Hamzawy, M.A.; Abo-youssef, A.M.; Salem, H.F.; Mohammed, S.A. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice. Drug Deliv., 2017, 24(1), 599-607.
[http://dx.doi.org/10.1080/10717544.2016.1247924] [PMID: 28240047]
[88]
Dhand, R. New frontiers in aerosol delivery during mechanical ventilation. Respir. Care, 2004, 49(6), 666-677.
[PMID: 15165301]
[89]
Joshi, M.; Misra, A. Disposition kinetics of ketotifen from liposomal dry powder for inhalation in rat lung. Clin. Exp. Pharmacol. Physiol., 2003, 30(3), 153-156.
[http://dx.doi.org/10.1046/j.1440-1681.2003.03813.x] [PMID: 12603343]
[90]
CY 2018 CDER drug and biologic calendar year priority approvals., 2018, pp. 1-2. Available from: https://www.fda.gov/media/124808/download
[92]
Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release, 2017, 252, 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[93]
Shi, L.; Qu, Y.; Li, Z.; Fan, B.; Xu, H.; Tang, J. In vitro permeability and bioavailability enhancement of curcumin by nanoemulsion via pulmonary administration. Curr. Drug Deliv., 2019, 16(8), 751-758.
[http://dx.doi.org/10.2174/1567201816666190717125622] [PMID: 31722658]
[94]
Leyva-Gómez, G.; Piñón-Segundo, E.; Mendoza-Muñoz, N.; Zambrano-Zaragoza, M.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Approaches in polymeric nanoparticles for vaginal drug delivery: A review of the state of the art. Int. J. Mol. Sci., 2018, 19(6), 1549.
[http://dx.doi.org/10.3390/ijms19061549] [PMID: 29882846]
[95]
Stocke, N.A.; Meenach, S.A.; Arnold, S.M.; Mansour, H.M.; Hilt, J.Z. Formulation and characterization of inhalable Magnetic Nanocomposite Microparticles (MNMs) for targeted pulmonary delivery via spray drying. Int. J. Pharm., 2015, 479(2), 320-328.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.050] [PMID: 25542988]
[96]
Morimoto, Y.; Izumi, H.; Yoshiura, Y.; Tomonaga, T.; Oyabu, T.; Myojo, T.; Kawai, K.; Yatera, K.; Shimada, M.; Kubo, M.; Yamamoto, K.; Kitajima, S.; Kuroda, E.; Kawaguchi, K.; Sasaki, T. Evaluation of pulmonary toxicity of zinc oxide nanoparticles following inhalation and intratracheal instillation. Int. J. Mol. Sci., 2016, 17(8), 1241.
[http://dx.doi.org/10.3390/ijms17081241] [PMID: 27490535]
[97]
Adamcakova-Dodd, A.; Stebounova, L.V.; Kim, J.S.; Vorrink, S.U.; Ault, A.P.; O’Shaughnessy, P.T.; Grassian, V.H.; Thorne, P.S. Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Part. Fibre Toxicol., 2014, 11(1), 15.
[http://dx.doi.org/10.1186/1743-8977-11-15] [PMID: 24684892]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy