Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

Recent Reviews on Dendrimers as an Immunotherapy-based Nanosystem for the Effective Treatment of Cancer

Author(s): Mohit Kumar and Uttam Kumar Mandal*

Volume 12, Issue 4, 2022

Published on: 15 September, 2022

Page: [243 - 257] Pages: 15

DOI: 10.2174/2210303112666220422102459

Price: $65

Abstract

Background: Cancer is a leading cause of mortality. A vast number of conventional chemotherapeutic agents are being used to treat cancer; however, these conventional chemotherapeutic agents kill both tumor and healthy cells.

Introduction: Cancer immunotherapy has gained tremendous attention and is being researched today to treat cancer. In the case of immunotherapy, the therapeutic techniques target only cancer cells. This therapy has very less side effects compared to conventional chemotherapeutic agents. Nowadays, dendrimers as nanosystem carriers play a very crucial role in the field of immunotherapy.

Methods: Biomaterials such as poly(glycerol), PAMAM, carbohydrate-derived citric acid polyester (PGLSA-OH), polyethylene glycol (PEG), poly(propylene imine) (PPI), melamine, triagine, and phosphorhydrazone have been reported for the production of dendrimers. Dendritic-based nonocarriers are classified according to the size of the dendrimers moiety and their generation. They are also classified based on the presence of internal layers of dynamic dendritic scaffolds that interact with the drugs non-covalently.

Results: Dendrimers are being researched to deliver DNA drugs for antisense therapy. In certain circumstances, dendrimers like PPI or PAMAM have been employed to deliver non-viral genes. Dendrimers can interact with various forms of nucleic acids such as plasmid DNA, antisense oligonucleotides, and RNA to form complexes that protect the nucleic acid from degradation.

Conclusion: Dendrimers are promising candidates for improving the solubility and diminishing the toxic effect of anticancer drugs as well as for targeted delivery to cancer cells. Different types of dendrimers such as PAMAM-PEG dendrimers, triazine dendrimers, glycodendrimers, phosphorus dendrimers, and carbosilaneden dendrimers are being explored for commercial applications for cancer therapy, and so far, they have produced encouraging results.

Keywords: Cancer, immunotherapy, nanotechnology, dendrimers, antigen-presenting cells (APCs), lymphocytes.

[1]
Fitzmaurice, C.; Allen, C.; Barber, R.M.; Barregard, L.; Bhutta, Z.A.; Brenner, H. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol., 2017, 3(4), 524-548.
[http://dx.doi.org/10.1001/jamaoncol.2016.5688] [PMID: 27918777]
[2]
Caravita, T.; de Fabritiis, P.; Palumbo, A.; Amadori, S.; Boccadoro, M. Bortezomib: Efficacy comparisons in solid tumors and hematologic malignancies. Nat. Clin. Pract. Oncol., 2006, 3(7), 374-387.
[http://dx.doi.org/10.1038/ncponc0555] [PMID: 16826218]
[3]
Papaioannou, N.E.; Beniata, O.V.; Vitsos, P.; Tsitsilonis, O.; Samara, P. Harnessing the immune system to improve cancer therapy. Ann. Transl. Med., 2016, 4(14), 261.
[http://dx.doi.org/10.21037/atm.2016.04.01] [PMID: 27563648]
[4]
Nakayama, M. Antigen presentation by MHC-dressed cells. Front. Immunol., 2015, 5, 672.
[http://dx.doi.org/10.3389/fimmu.2014.00672] [PMID: 25601867]
[5]
Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity, 2013, 39(1), 1-10.
[http://dx.doi.org/10.1016/j.immuni.2013.07.012] [PMID: 23890059]
[6]
Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol., 2002, 3(11), 991-998.
[http://dx.doi.org/10.1038/ni1102-991] [PMID: 12407406]
[7]
Burnet, F.M. The concept of immunological surveillance. Prog. Exp. Tumor Res., 1970, 13, 1-27.
[8]
Clemente, C.G.; Mihm, M.C., Jr; Bufalino, R.; Zurrida, S.; Collini, P.; Cascinelli, N. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer, 1996, 77(7), 1303-1310.
[PMID: 8608507]
[9]
Rosenberg, S.A.; Yang, J.C.; Restifo, N.P. Cancer immunotherapy: Moving beyond current vaccines. Nat. Med., 2004, 10(9), 909-915.
[http://dx.doi.org/10.1038/nm1100] [PMID: 15340416]
[10]
Swann, J.B.; Smyth, M.J. Immune surveillance of tumors. J. Clin. Invest., 2007, 117(5), 1137-1146.
[http://dx.doi.org/10.1172/JCI31405] [PMID: 17476343]
[11]
Khong, H.T.; Restifo, N.P. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat. Immunol., 2002, 3(11), 999-1005.
[http://dx.doi.org/10.1038/ni1102-999] [PMID: 12407407]
[12]
Munn, D.H.; Mellor, A.L. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest., 2007, 117(5), 1147-1154.
[http://dx.doi.org/10.1172/JCI31178] [PMID: 17476344]
[13]
Zitvogel, L.; Tesniere, A.; Kroemer, G. Cancer despite immunosurveillance: Immunoselection and immunosubversion. Nat. Rev. Immunol., 2006, 6(10), 715-727.
[http://dx.doi.org/10.1038/nri1936] [PMID: 16977338]
[14]
Sica, A.; Bronte, V. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest., 2007, 117(5), 1155-1166.
[http://dx.doi.org/10.1172/JCI31422] [PMID: 17476345]
[15]
Bui, J.D.; Schreiber, R.D. Cancer immunosurveillance, immunoediting and inflammation: Independent or interdependent processes? Curr. Opin. Immunol., 2007, 19(2), 203-208.
[http://dx.doi.org/10.1016/j.coi.2007.02.001] [PMID: 17292599]
[16]
Curiel, T.J. Tregs and rethinking cancer immunotherapy. J. Clin. Invest., 2007, 117(5), 1167-1174.
[http://dx.doi.org/10.1172/JCI31202] [PMID: 17476346]
[17]
Marincola, F.M.; Wang, E.; Herlyn, M.; Seliger, B.; Ferrone, S. Tumors as elusive targets of T-cell-based active immunotherapy. Trends Immunol., 2003, 24(6), 334-341.
[http://dx.doi.org/10.1016/S1471-4906(03)00116-9] [PMID: 12810110]
[18]
Quaglino, E.; Iezzi, M.; Mastini, C.; Amici, A.; Pericle, F.; Di Carlo, E.; Pupa, S.M.; De Giovanni, C.; Spadaro, M.; Curcio, C.; Lollini, P.L.; Musiani, P.; Forni, G.; Cavallo, F. Electroporated DNA vaccine clears away multifocal mammary carcinomas in her-2/neu transgenic mice. Cancer Res., 2004, 64(8), 2858-2864.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2962] [PMID: 15087404]
[19]
Cavallo, F.; Di Pierro, F.; Giovarelli, M.; Gulino, A.; Vacca, A.; Stoppacciaro, A.; Forni, M.; Modesti, A.; Forni, G. Protective and curative potential of vaccination with interleukin-2-gene-transfected cells from a spontaneous mouse mammary adenocarcinoma. Cancer Res., 1993, 53(21), 5067-5070.
[PMID: 8221636]
[20]
Degl’Innocenti, E.; Grioni, M.; Boni, A.; Camporeale, A.; Bertilaccio, M.T.S.; Freschi, M.; Monno, A.; Arcelloni, C.; Greenberg, N.M.; Bellone, M. Peripheral T-cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunization. Eur. J. Immunol., 2005, 35(1), 66-75.
[http://dx.doi.org/10.1002/eji.200425531] [PMID: 15597325]
[21]
Ye, X.; McCarrick, J.; Jewett, L.; Knowles, B.B. Timely immunization subverts the development of peripheral nonresponsiveness and suppresses tumor development in simian virus 40 tumor antigen-transgenic mice. Proc. Natl. Acad. Sci., 1994, 91(9), 3916-3920.
[http://dx.doi.org/10.1073/pnas.91.9.3916] [PMID: 8171012]
[22]
Pardoll, D. Does the immune system see tumors as foreign or self? Annu. Rev. Immunol., 2003, 21(1), 807-839.
[http://dx.doi.org/10.1146/annurev.immunol.21.120601.141135] [PMID: 12615893]
[23]
Porgador, A.; Mandelboim, O.; Restifo, N.P.; Strominger, J.L. Natural killer cell lines kill autologous β 2 -microglobulin-deficient melanoma cells: Implications for cancer immunotherapy. Proc. Natl. Acad. Sci., 1997, 94(24), 13140-13145.
[http://dx.doi.org/10.1073/pnas.94.24.13140] [PMID: 9371813]
[24]
Bottino, C.; Moretta, L.; Moretta, A. NK cell activating receptors and tumor recognition in humans. In: Immunobiology of Natural Killer Cell Receptors; Springer, 2006; pp. 175-182.
[http://dx.doi.org/10.1007/3-540-27743-9_9]
[25]
Groh, V.; Wu, J.; Yee, C.; Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature, 2002, 419(6908), 734-738.
[http://dx.doi.org/10.1038/nature01112] [PMID: 12384702]
[26]
Kaiser, B.K.; Yim, D.; Chow, I.T.; Gonzalez, S.; Dai, Z.; Mann, H.H.; Strong, R.K.; Groh, V.; Spies, T. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature, 2007, 447(7143), 482-486.
[http://dx.doi.org/10.1038/nature05768] [PMID: 17495932]
[27]
Kaplan, D.H.; Shankaran, V.; Dighe, A.S.; Stockert, E.; Aguet, M.; Old, L.J.; Schreiber, R.D. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl. Acad. Sci., 1998, 95(13), 7556-7561.
[http://dx.doi.org/10.1073/pnas.95.13.7556] [PMID: 9636188]
[28]
Smyth, M.J.; Takeda, K.; Hayakawa, Y.; Peschon, J.J.; van den Brink, M.R.M.; Yagita, H. Nature’s TRAIL-on a path to cancer immunotherapy. Immunity, 2003, 18(1), 1-6.
[http://dx.doi.org/10.1016/S1074-7613(02)00502-2] [PMID: 12530970]
[29]
Krammer, P.H. CD95's deadly mission in the immune system. Nature, 2000, 407(6805), 789-795.
[http://dx.doi.org/10.1038/35037728] [PMID: 11048730]
[30]
Medema, J.P.; de Jong, J.; Peltenburg, L.T.C.; Verdegaal, E.M.E.; Gorter, A.; Bres, S.A.; Franken, K.L.M.C.; Hahne, M.; Albar, J.P.; Melief, C.J.M.; Offringa, R. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc. Natl. Acad. Sci., 2001, 98(20), 11515-11520.
[http://dx.doi.org/10.1073/pnas.201398198] [PMID: 11562487]
[31]
Thompson, R.H.; Dong, H.; Lohse, C.M.; Leibovich, B.C.; Blute, M.L.; Cheville, J.C.; Kwon, E.D. PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin. Cancer Res., 2007, 13(6), 1757-1761.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2599] [PMID: 17363529]
[32]
Banchereau, J.; Briere, F.; Caux, C.; Davoust, J.; Lebecque, S.; Liu, Y.J.; Pulendran, B.; Palucka, K. Immunobiology of dendritic cells. Annu. Rev. Immunol., 2000, 18(1), 767-811.
[http://dx.doi.org/10.1146/annurev.immunol.18.1.767] [PMID: 10837075]
[33]
Albert, M.L.; Sauter, B.; Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature, 1998, 392(6671), 86-89.
[http://dx.doi.org/10.1038/32183] [PMID: 9510252]
[34]
Jung, S.; Unutmaz, D.; Wong, P.; Sano, G.I.; De los Santos, K.; Sparwasser, T.; Wu, S.; Vuthoori, S.; Ko, K.; Zavala, F.; Pamer, E.G.; Littman, D.R.; Lang, R.A. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity, 2002, 17(2), 211-220.
[http://dx.doi.org/10.1016/S1074-7613(02)00365-5] [PMID: 12196292]
[35]
Ardavín, C.; Amigorena, S.; Sousa, E. C.R. Dendritic cells. Immunity, 2004, 20(1), 17-23.
[http://dx.doi.org/10.1016/S1074-7613(03)00352-2] [PMID: 14738761]
[36]
Matzinger, P. The danger model: A renewed sense of self. Science (80-), 2002, 296(5566), 301-305.
[http://dx.doi.org/10.1126/science.1071059]
[37]
Kortylewski, M.; Kujawski, M.; Wang, T.; Wei, S.; Zhang, S.; Pilon-Thomas, S.; Niu, G.; Kay, H.; Mulé, J.; Kerr, W.G.; Jove, R.; Pardoll, D.; Yu, H. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med., 2005, 11(12), 1314-1321.
[http://dx.doi.org/10.1038/nm1325] [PMID: 16288283]
[38]
Bronte, V.; Serafini, P.; Apolloni, E.; Zanovello, P. Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J. Immunother., 2001, 24(6), 431-446.
[http://dx.doi.org/10.1097/00002371-200111000-00001] [PMID: 11759067]
[39]
Gabrilovich, D.I.; Bronte, V.; Chen, S.H.; Colombo, M.P.; Ochoa, A.; Ostrand-Rosenberg, S.; Schreiber, H. The terminology issue for myeloid-derived suppressor cells. Cancer Res., 2007, 67(1), 425.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3037] [PMID: 17210725]
[40]
Quezada, S.A.; Peggs, K.S.; Curran, M.A.; Allison, J.P. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J. Clin. Invest., 2006, 116(7), 1935-1945.
[http://dx.doi.org/10.1172/JCI27745] [PMID: 16778987]
[41]
Kusmartsev, S.; Gabrilovich, D.I. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol. Immunother., 2006, 55(3), 237-245.
[http://dx.doi.org/10.1007/s00262-005-0048-z] [PMID: 16047143]
[42]
Yang, L.; DeBusk, L.M.; Fukuda, K.; Fingleton, B.; Green-Jarvis, B.; Shyr, Y.; Matrisian, L.M.; Carbone, D.P.; Lin, P.C. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 2004, 6(4), 409-421.
[http://dx.doi.org/10.1016/j.ccr.2004.08.031] [PMID: 15488763]
[43]
Jain, K.K. Nanobiotechnology: Applications, markets and companies; Basel Jain Pharma Biotech. Public, 2007, pp. 173-183.
[44]
Jain, K.K. Nanotechnology-based drug delivery for cancer. Technol. Cancer Res. Treat., 2005, 4(4), 407-416.
[http://dx.doi.org/10.1177/153303460500400408] [PMID: 16029059]
[45]
Zamboni, W.C. Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clin. Cancer Res., 2005, 11(23), 8230-8234.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1895] [PMID: 16322279]
[46]
Heath, J.R.; Davis, M.E. Nanotechnology and Cancer. Annu. Rev. Med., 2008, 59(1), 251-265.
[http://dx.doi.org/10.1146/annurev.med.59.061506.185523] [PMID: 17937588]
[47]
Boas, U.; Heegaard, P.M.H. Dendrimers in drug research. Chem. Soc. Rev., 2004, 33(1), 43-63.
[http://dx.doi.org/10.1039/b309043b] [PMID: 14737508]
[48]
Sowinska, M.; Urbanczyk-Lipkowska, Z. Advances in the chemistry of dendrimers. New J. Chem., 2014, 38(6), 2168-2203.
[http://dx.doi.org/10.1039/c3nj01239e]
[49]
Bielinska, A.; Kukowska-Latallo, J.F.; Johnson, J.; Tomalia, D.A.; Baker, J.R., Jr Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res., 1996, 24(11), 2176-2182.
[http://dx.doi.org/10.1093/nar/24.11.2176] [PMID: 8668551]
[50]
Shah, D.S.; Sakthivel, T.; Toth, I.; Florence, A.T.; Wilderspin, A.F. DNA transfection and transfected cell viability using amphipathic asymmetric dendrimers. Int. J. Pharm., 2000, 208(1-2), 41-48.
[http://dx.doi.org/10.1016/S0378-5173(00)00534-2] [PMID: 11064210]
[51]
Hughes, J.A.; Aronsohn, A.I.; Avrutskaya, A.V.; Juliano, R.L. Evaladjuv that enhance ff antisense oligodeoxynucleotides. Pharm. Res., 1996, 13(3), 404-410.
[http://dx.doi.org/10.1023/A:1016044609972] [PMID: 8692733]
[52]
Yoo, H.; Sazani, P.; Juliano, R.L. PAMAM dendrimers as delivery agents for antisense oligonucleotides. Pharm. Res., 1999, 16(12), 1799-1804.
[http://dx.doi.org/10.1023/A:1018926605871] [PMID: 10644065]
[53]
Lebedeva, I.; Benimetskaya, L.; Stein, C.A.; Vilenchik, M. Cellular delivery of antisense oligonucleotides. Eur. J. Pharm. Biopharm., 2000, 50(1), 101-119.
[http://dx.doi.org/10.1016/S0939-6411(00)00088-6] [PMID: 10840195]
[54]
Jassim, Z.E.; Al-Akkam, E.J. A review on strategies for improving nasal drug delivery systems; Drug Invent Today, 2018, p. 10.
[55]
Dass, C.R. Vehicles for oligonucleotide delivery to tumours. J. Pharm. Pharmacol., 2010, 54(1), 3-27.
[http://dx.doi.org/10.1211/0022357021771887] [PMID: 11829127]
[56]
Dennig, J.; Duncan, E. Gene transfer into eukaryotic cells using activated polyamidoamine dendrimers. J. Biotechnol., 2002, 90(3-4), 339-347.
[PMID: 12071232]
[57]
Sakharov, D.V.; Jie, A.F.H.; Bekkers, M.E.A.; Emeis, J.J.; Rijken, D.C. Polylysine as a vehicle for extracellular matrix-targeted local drug delivery, providing high accumulation and long-term retention within the vascular wall. Arterioscler. Thromb. Vasc. Biol., 2001, 21(6), 943-948.
[http://dx.doi.org/10.1161/01.ATV.21.6.943] [PMID: 11397701]
[58]
Kono, K.; Liu, M.; Fréchet, J.M.J. Design of dendritic macromolecules containing folate or methotrexate residues. Bioconjug. Chem., 1999, 10(6), 1115-1121.
[http://dx.doi.org/10.1021/bc990082k] [PMID: 10563782]
[59]
Quintana, A.; Raczka, E.; Piehler, L.; Lee, I.; Myc, A.; Majoros, I.; Patri, A.K.; Thomas, T.; Mulé, J.; Baker, J.R., Jr Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res., 2002, 19(9), 1310-1316.
[http://dx.doi.org/10.1023/A:1020398624602] [PMID: 12403067]
[60]
Shukla, S.; Wu, G.; Chatterjee, M.; Yang, W.; Sekido, M.; Diop, L.A.; Müller, R.; Sudimack, J.J.; Lee, R.J.; Barth, R.F.; Tjarks, W. Synthesis and biological evaluation of folate receptor-targeted boronated PAMAM dendrimers as potential agents for neutron capture therapy. Bioconjug. Chem., 2003, 14(1), 158-167.
[http://dx.doi.org/10.1021/bc025586o] [PMID: 12526705]
[61]
Barth, R.F.; Soloway, A.H. Boron neutron capture therapy of primary and metastatic brain tumors. Mol. Chem. Neuropathol., 1994, 21(2-3), 139-154.
[http://dx.doi.org/10.1007/BF02815348] [PMID: 8086033]
[62]
Barth, R.F.; Adams, D.M.; Soloway, A.H.; Alam, F.; Darby, M.V. Boronated starburst dendrimer-monoclonal antibody immunoconjugates: Evaluation as a potential delivery system for neutron capture therapy. Bioconjug. Chem., 1994, 5(1), 58-66.
[http://dx.doi.org/10.1021/bc00025a008] [PMID: 8199235]
[63]
Malik, N.; Evagorou, E.G.; Duncan, R. Dendrimer-platinate. Anticancer Drugs, 1999, 10(8), 767-776.
[http://dx.doi.org/10.1097/00001813-199909000-00010] [PMID: 10573209]
[64]
Balogh, L.; Swanson, D.R.; Tomalia, D.A.; Hagnauer, G.L.; McManus, A.T. Dendrimer− silver complexes and nanocomposites as antimicrobial agents. Nano Lett., 2001, 1(1), 18-21.
[http://dx.doi.org/10.1021/nl005502p]
[65]
Zhuo, R.; Du, B.; Lu, Z.R. In vitro release of 5-fluorouracil with cyclic core dendritic polymer. J. Control. Release, 1999, 57(3), 249-257.
[http://dx.doi.org/10.1016/S0168-3659(98)00120-5] [PMID: 9895412]
[66]
Domb, A.J.; Sharifzadeh, G.; Nahum, V.; Hosseinkhani, H. Safety evaluation of nanotechnology products. Pharmaceutics, 2021, 13(10), 1615.
[http://dx.doi.org/10.3390/pharmaceutics13101615] [PMID: 34683908]
[67]
Lee, C.C.; MacKay, J.A.; Fréchet, J.M.J.; Szoka, F.C. Designing dendrimers for biological applications. Nat. Biotechnol., 2005, 23(12), 1517-1526.
[http://dx.doi.org/10.1038/nbt1171] [PMID: 16333296]
[68]
Kasturi, S.P.; Skountzou, I.; Albrecht, R.A.; Koutsonanos, D.; Hua, T.; Nakaya, H.I.; Ravindran, R.; Stewart, S.; Alam, M.; Kwissa, M.; Villinger, F.; Murthy, N.; Steel, J.; Jacob, J.; Hogan, R.J.; García-Sastre, A.; Compans, R.; Pulendran, B. Programming the magnitude and persistence of antibody responses with innate immunity. Nature, 2011, 470(7335), 543-547.
[http://dx.doi.org/10.1038/nature09737] [PMID: 21350488]
[69]
Liu, M.; Khan, A.R.; Ji, J.; Lin, G.; Zhao, X.; Zhai, G. Crosslinked self-assembled nanoparticles for chemo-sonodynamic combination therapy favoring antitumor, antimetastasis management and immune responses. J. Control. Release, 2018, 290, 150-164.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.007] [PMID: 30308258]
[70]
Shukla, R.; Singh, A.; Pardhi, V.; Kashyap, K.; Dubey, S.K.; Dandela, R. Dendrimer-based nanoparticulate delivery system for cancer therapy. In: Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics; Elsevier, 2019; pp. 233-255.
[http://dx.doi.org/10.1016/B978-0-12-816963-6.00011-X]
[71]
Bezouška, K. Design, functional evaluation and biomedical applications of carbohydrate dendrimers (glycodendrimers). J. Biotechnol., 2002, 90(3-4), 269-290.
[PMID: 12071229]
[72]
Huang, C.Y.; Huang, C.H.; Liu, S.J.; Chen, H.W.; Leng, C.H.; Chong, P.; Huang, M.H. Polysorbasome: A colloidal vesicle contoured by polymeric bioresorbable amphiphiles as an immunogenic depot for vaccine delivery. ACS Appl. Mater. Interfaces, 2018, 10(15), 12553-12561.
[http://dx.doi.org/10.1021/acsami.8b03044] [PMID: 29595053]
[73]
Tekade, R.K.; Kumar, P.V.; Jain, N.K. Dendrimers in oncology: An expanding horizon. Chem. Rev., 2009, 109(1), 49-87.
[http://dx.doi.org/10.1021/cr068212n] [PMID: 19099452]
[74]
Singh, P.; Gupta, U.; Asthana, A.; Jain, N.K. Folate and folate-PEG-PAMAM dendrimers: Synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug. Chem., 2008, 19(11), 2239-2252.
[http://dx.doi.org/10.1021/bc800125u] [PMID: 18950215]
[75]
He, H.; Li, Y.; Jia, X.R.; Du, J.; Ying, X.; Lu, W.L.; Lou, J.N.; Wei, Y. PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials, 2011, 32(2), 478-487.
[http://dx.doi.org/10.1016/j.biomaterials.2010.09.002] [PMID: 20934215]
[76]
Zhou, Z.; Ma, X.; Murphy, C.J.; Jin, E.; Sun, Q.; Shen, Y.; Van Kirk, E.A.; Murdoch, W.J. Molecularly precise dendrimer-drug conjugates with tunable drug release for cancer therapy. Angew. Chem. Int. Ed., 2014, 53(41), 10949-10955.
[http://dx.doi.org/10.1002/anie.201406442] [PMID: 25155439]
[77]
Jain, K.; Gupta, U.; Jain, N.K. Dendronized nanoconjugates of lysine and folate for treatment of cancer. Eur. J. Pharm. Biopharm., 2014, 87(3), 500-509.
[http://dx.doi.org/10.1016/j.ejpb.2014.03.015] [PMID: 24698808]
[78]
Lim, J.; Simanek, E.E. Triazine dendrimers as drug delivery systems: From synthesis to therapy. Adv. Drug Deliv. Rev., 2012, 64(9), 826-835.
[http://dx.doi.org/10.1016/j.addr.2012.03.008] [PMID: 22465784]
[79]
Lim, J.; Lo, S.T.; Hill, S.; Pavan, G.M.; Sun, X.; Simanek, E.E. Anti-tumor activity and molecular dynamics simulations of paclitaxel-laden triazine dendrimers. Mol. Pharm., 2012, 9(3), 404-412.
[http://dx.doi.org/10.1021/mp2005017] [PMID: 22260328]
[80]
Lim, J.; Guo, Y.; Rostollan, C.L.; Stanfield, J.; Hsieh, J.T.; Sun, X.; Simanek, E.E. The role of the size and number of polyethylene glycol chains in the biodistribution and tumor localization of triazine dendrimers. Mol. Pharm., 2008, 5(4), 540-547.
[http://dx.doi.org/10.1021/mp8000292] [PMID: 18672950]
[81]
Sánchez-Nieves, J.; Ortega, P.; Muñoz-Fernández, M.Á.; Gómez, R.; de la Mata, F.J. Synthesis of carbosilane dendrons and dendrimers derived from 1,3,5-trihydroxybenzene. Tetrahedron, 2010, 66(47), 9203-9213.
[http://dx.doi.org/10.1016/j.tet.2010.09.063]
[82]
Caminade, A.M.; Ouali, A.; Laurent, R.; Turrin, C.O.; Majoral, J.P. Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. Coord. Chem. Rev., 2016, 308, 478-497.
[http://dx.doi.org/10.1016/j.ccr.2015.06.007]
[83]
Ciepluch, K.; Katir, N.; El Kadib, A.; Felczak, A.; Zawadzka, K.; Weber, M.; Klajnert, B.; Lisowska, K.; Caminade, A.M.; Bousmina, M.; Bryszewska, M.; Majoral, J.P. Biological properties of new viologen-phosphorus dendrimers. Mol. Pharm., 2012, 9(3), 448-457.
[http://dx.doi.org/10.1021/mp200549c] [PMID: 22214284]
[84]
Sharma, A.K.; Gothwal, A.; Kesharwani, P.; Alsaab, H.; Iyer, A.K.; Gupta, U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov. Today, 2017, 22(2), 314-326.
[http://dx.doi.org/10.1016/j.drudis.2016.09.013] [PMID: 27671487]
[85]
Dvornic, P.R. PAMAMOS: The first commercial silicon-containing dendrimers and their applications. J. Polym. Sci. A Polym. Chem., 2006, 44(9), 2755-2773.
[http://dx.doi.org/10.1002/pola.21368]
[86]
Dvornic, P.R.; De Leuze-Jallouli, A.M.; Perz, S.V.; Owen, M.J. Nanostructured materials from radially layered copolymeric amidoamine- organosilicon (PAMAMOS) dendrimers. Mol cryst liq cryst sci technol sect. molecular crystals and liquid crystals science and technology. section a. molecular crystals and liquid crystals, 2000, 353(1), 223-236.
[http://dx.doi.org/10.1080/10587250008025662]
[87]
Kannan, R.M.; Nance, E.; Kannan, S.; Tomalia, D.A. Emerging concepts in dendrimer-based nanomedicine: From design principles to clinical applications. J. Intern. Med., 2014, 276(6), 579-617.
[http://dx.doi.org/10.1111/joim.12280] [PMID: 24995512]
[88]
Tomalia, D.A. Dendrons/dendrimers: Quantized, nano-element like building blocks for soft-soft and soft-hard nano-compound synthesis. Soft Matter, 2010, 6(3), 456-474.
[http://dx.doi.org/10.1039/B917370F]
[89]
Longmire, M; Choyke, PL; Kobayashi, H Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. 2008.
[http://dx.doi.org/10.2217/17435889.3.5.703]
[90]
Yang, H. Targeted nanosystems: Advances in targeted dendrimers for cancer therapy. Nanomedicine, 2016, 12(2), 309-316.
[http://dx.doi.org/10.1016/j.nano.2015.11.012] [PMID: 26706410]
[91]
van Dongen, M.A.; Silpe, J.E.; Dougherty, C.A.; Kanduluru, A.K.; Choi, S.K.; Orr, B.G.; Low, P.S.; Banaszak Holl, M.M. Avidity mechanism of dendrimer-folic acid conjugates. Mol. Pharm., 2014, 11(5), 1696-1706.
[http://dx.doi.org/10.1021/mp5000967] [PMID: 24725205]
[92]
Jain, N.K.; Tare, M.S.; Mishra, V.; Tripathi, P.K. The development, characterization and in vivo anti-ovarian cancer activity of poly(propylene imine) (PPI)-antibody conjugates containing encapsulated paclitaxel. Nanomedicine , 2015, 11(1), 207-218.
[http://dx.doi.org/10.1016/j.nano.2014.09.006] [PMID: 25262579]
[93]
Bross, P.F.; Beitz, J.; Chen, G.; Chen, X.H.; Duffy, E.; Kieffer, L.; Roy, S.; Sridhara, R.; Rahman, A.; Williams, G.; Pazdur, R. Approval summary: Gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res., 2001, 7(6), 1490-1496.
[PMID: 11410481]
[94]
Kawakami, K.; Nakajima, O.; Morishita, R.; Nagai, R. Targeted anticancer immunotoxins and cytotoxic agents with direct killing moieties. ScientificWorldJournal, 2006, 6, 781-790.
[http://dx.doi.org/10.1100/tsw.2006.162] [PMID: 16830050]
[95]
Allen, T.M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer, 2002, 2(10), 750-763.
[http://dx.doi.org/10.1038/nrc903] [PMID: 12360278]
[96]
Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 2006, 6(9), 688-701.
[http://dx.doi.org/10.1038/nrc1958] [PMID: 16900224]
[97]
Heidel, J.D.; Yu, Z.; Liu, J.Y.C.; Rele, S.M.; Liang, Y.; Zeidan, R.K.; Kornbrust, D.J.; Davis, M.E. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc. Natl. Acad. Sci. USA, 2007, 104(14), 5715-5721.
[http://dx.doi.org/10.1073/pnas.0701458104] [PMID: 17379663]
[98]
Conniot, J.; Silva, J.M.; Fernandes, J.G.; Silva, L.C.; Gaspar, R.; Brocchini, S.; Florindo, H.F.; Barata, T.S. Cancer immunotherapy: Nanodelivery approaches for immune cell targeting and tracking. Front Chem., 2014, 2, 105.
[http://dx.doi.org/10.3389/fchem.2014.00105] [PMID: 25505783]
[99]
García-Vallejo, J.J.; Ambrosini, M.; Overbeek, A.; van Riel, W.E.; Bloem, K.; Unger, W.W.J.; Chiodo, F.; Bolscher, J.G.; Nazmi, K.; Kalay, H.; van Kooyk, Y. Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells. Mol. Immunol., 2013, 53(4), 387-397.
[http://dx.doi.org/10.1016/j.molimm.2012.09.012] [PMID: 23103377]
[100]
Harrington, W.R.; Kim, S.H.; Funk, C.C.; Madak-Erdogan, Z.; Schiff, R.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Estrogen dendrimer conjugates that preferentially activate extranuclear, nongenomic versus genomic pathways of estrogen action. Mol. Endocrinol., 2006, 20(3), 491-502.
[http://dx.doi.org/10.1210/me.2005-0186] [PMID: 16306086]
[101]
Bose, C.K. Follicle stimulating hormone receptor in ovarian surface epithelium and epithelial ovarian cancer. Oncol. Res., 2008, 17(5), 231-238.
[http://dx.doi.org/10.3727/096504008786111383] [PMID: 18980020]
[102]
Choi, J.H.; Choi, K.C.; Auersperg, N.; Leung, P.C.K. Overexpression of follicle-stimulating hormone receptor activates oncogenic pathways in preneoplastic ovarian surface epithelial cells. J. Clin. Endocrinol. Metab., 2004, 89(11), 5508-5516.
[http://dx.doi.org/10.1210/jc.2004-0044] [PMID: 15531506]
[103]
Patri, A.; Kukowskalatallo, J.; Baker, J., Jr Targeted drug delivery with dendrimers: Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Deliv. Rev., 2005, 57(15), 2203-2214.
[http://dx.doi.org/10.1016/j.addr.2005.09.014] [PMID: 16290254]
[104]
Dhanikula, R.S.; Argaw, A.; Bouchard, J.F.; Hildgen, P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: Enhanced efficacy and intratumoral transport capability. Mol. Pharm., 2008, 5(1), 105-116.
[http://dx.doi.org/10.1021/mp700086j] [PMID: 18171013]
[105]
Modi, D.A.; Sunoqrot, S.; Bugno, J.; Lantvit, D.D.; Hong, S.; Burdette, J.E. Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells. Nanoscale, 2014, 6(5), 2812-2820.
[http://dx.doi.org/10.1039/C3NR05042D] [PMID: 24468839]
[106]
Quastel, J.H.; Cantero, A. Inhibition of tumour growth by D-glucosamine. Nature, 1953, 171(4345), 252-254.
[http://dx.doi.org/10.1038/171252a0] [PMID: 13036842]
[107]
Luong, D.; Kesharwani, P.; Deshmukh, R.; Mohd Amin, M.C.I.; Gupta, U.; Greish, K.; Iyer, A.K. PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater., 2016, 43, 14-29.
[http://dx.doi.org/10.1016/j.actbio.2016.07.015] [PMID: 27422195]
[108]
Yuan, H.; Luo, K.; Lai, Y.; Pu, Y.; He, B.; Wang, G.; Wu, Y.; Gu, Z. A novel poly(l-glutamic acid) dendrimer based drug delivery system with both pH-sensitive and targeting functions. Mol. Pharm., 2010, 7(4), 953-962.
[http://dx.doi.org/10.1021/mp1000923] [PMID: 20481567]
[109]
Lo, S.T.; Stern, S.; Clogston, J.D.; Zheng, J.; Adiseshaiah, P.P.; Dobrovolskaia, M.; Lim, J.; Patri, A.K.; Sun, X.; Simanek, E.E. Biological assessment of triazine dendrimer: Toxicological profiles, solution behavior, biodistribution, drug release and efficacy in a PEGylated, paclitaxel construct. Mol. Pharm., 2010, 7(4), 993-1006.
[http://dx.doi.org/10.1021/mp100104x] [PMID: 20481608]
[110]
Singh, J.; Jain, K.; Mehra, N.K.; Jain, N.K. Dendrimers in anticancer drug delivery: Mechanism of interaction of drug and dendrimers. Artif. Cells Nanomed. Biotechnol., 2016, 44(7), 1626-1634.
[http://dx.doi.org/10.3109/21691401.2015.1129625] [PMID: 26747336]
[111]
Nguyen, H.; Nguyen, N.H.; Tran, N.Q.; Nguyen, C.K. Improved method for preparing cisplatin-dendrimer nanocomplex and its behavior against NCI-H460 lung cancer cell. J. Nanosci. Nanotechnol., 2015, 15(6), 4106-4110.
[http://dx.doi.org/10.1166/jnn.2015.9808] [PMID: 26369018]
[112]
Rangaramanujam, K.; Tyler, B.M.; Zhang, F.; Mastorakos, P.; Mishra, M.K.; Mangraviti, A. Selective dendrimer delivery to brain tumors; Google Patents, 2021.
[113]
William, B.; Shukla, R.; Baker, J. Dendrimer based compositions and methods of using the same; Google Patents, 2007.
[114]
Pandey, A.; Nikam, A.; Basavraj, S.; Mutalik, S.; Gopalan, D.; Kulkarni, S. Nose-to-brain drug delivery: Regulatory aspects, clinical trials, patents, and future perspectives; Direct Nose-to-Brain Drug Delivery, 2021, pp. 495-522.
[http://dx.doi.org/10.1016/B978-0-12-822522-6.00023-0]
[115]
Baker, J.R., Jr; Cheng, X.M.; Van Der Spek, A.F.L.; Huang, B.M.; Thomas, T.P. Dendrimer conjugates. Google Patents WO2009151687A3., 2015. Available from https://patents.google. com/patent/WO2009151687A3/en
[116]
El-Sayed, M.E.H.; Ensminger, W.; Shewach, D. Targeted dendrimer-drug conjugates. Google Patents US9345781B2. 2016. Available fromhttps://patents.google.com/patent/US9345781B2/ en
[117]
Baker, J.R., Jr; Holl, M.M.B.; Cheng, X-M.; Huang, B.; McNemy, D.; Mullen, D.G. Dendrimer based modular platforms. Google Patents US8734870B2. 2010. Available from: https://patents.google.com/patent/US8734870B2/en
[118]
Belhadj-Tahar, H.; Chen, A.; Jia, Y.; Wu, S.; Sadeg, N.; Zhao, H. In situ anti-cancer agent derived from [188re] rhenium nitro-imidazole ligand loaded poly-l-lysine dendrimer administrated by direct CT guided stereotactic intrahepatic injection. Am. Soc. Clinic. Oncol., 2018, 36(15), e15569.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy