Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

General Review Article

A Comprehensive Study to Explore Tyrosinase Inhibitory Medicinal Plants and Respective Phytochemicals for Hyperpigmentation; Molecular Approach and Future Perspectives

Author(s): Areeba Insaf, Rabea Parveen, Gaurav Gautam, Monalisha Samal, Sultan Zahiruddin and Sayeed Ahmad*

Volume 24, Issue 6, 2023

Published on: 29 September, 2022

Page: [780 - 813] Pages: 34

DOI: 10.2174/1389201023666220823144242

Price: $65

Abstract

Tyrosinase is a copper-containing key substance in the pigmentation of mammalian hair and skin. Melanin synthesis is influenced by a variety of extrinsic and internal variables, including hormone fluctuations, inflammation, ageing, and subsequent ultraviolet light exposure. Melasma, senile lentigines, freckles, and diminished colour are all undesirable side effects of excessive melanin production. The current review provides the pursuit of effective and safe tyrosinase inhibitors derived from medicinal plants and ascribes updated inferences on current practices. Commercially available tyrosinase inhibitors provide an even skin tone and are used clinically to treat hyperpigmentation and related disorders. This review focuses on the mechanism of melanogenesis and on experimentally verified potent and natural tyrosinase inhibitors. Bioactive compounds such as phenols, flavonoids, stilbenes, and few traditional herbal formulations from the Indian system of medicine, have been used for long in India and subcontinents for the effective management of melanogenesis and related problems. Scientific information was gathered from different sources of databases such as PubMed, Google Scholar, Springer, Scopus, and Science Direct, as well as the literature found in medicinal plant books. This critically summarized review ensures to aid researchers and enterprises working on tyrosinase inhibitors and on conditions associated with melanogenesis, to get one-step solutions for identifying more safe and effective natural remedies.

Keywords: Hyperpigmentation, Anti-browning, Tyrosinase, Melanogenesis, Phenols, Flavonoids

Graphical Abstract

[1]
Hwang, J.H.; Lee, B.M. Inhibitory effects of plant extracts on tyrosinase, L-DOPA oxidation, and melanin synthesis. J. Toxicol. Environ. Health A, 2007, 70(5), 393-407.
[http://dx.doi.org/10.1080/10937400600882871] [PMID: 17454565]
[2]
Petit, L.; Piérard, G.E.; Pi, G.E. Skin-lightening products revisited. Int. J. Cosmet. Sci., 2003, 25(4), 169-181.
[http://dx.doi.org/10.1046/j.1467-2494.2003.00182.x] [PMID: 18494898]
[3]
Kadekaro, A.L.; Leachman, S.; Kavanagh, R.J.; Swope, V.; Cassidy, P.; Supp, D.; Sartor, M.; Schwemberger, S.; Babcock, G.; Wakamatsu, K.; Ito, S.; Koshoffer, A.; Boissy, R.E.; Manga, P.; Sturm, R.A.; Abdel-Malek, Z.A. Melanocortin 1 receptor genotype: An important determinant of the damage response of melanocytes to ultraviolet radiation. FASEB J., 2010, 24(10), 3850-3860.
[http://dx.doi.org/10.1096/fj.10-158485] [PMID: 20519635]
[4]
Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 279-309.
[http://dx.doi.org/10.1080/14756366.2018.1545767] [PMID: 30734608]
[5]
Sivamani, R.; Clark, A. Phytochemicals in the treatment of hyperpigmentation. Botanics, 2016, 6, 89-96.
[http://dx.doi.org/10.2147/BTAT.S69113]
[6]
Draelos, Z.D. Skin lightening preparations and the hydroquinone controversy. Dermatol. Ther., 2007, 20(5), 308-313.
[http://dx.doi.org/10.1111/j.1529-8019.2007.00144.x] [PMID: 18045355]
[7]
Li, J.; Feng, L.; Liu, L.; Wang, F.; Ouyang, L.; Zhang, L.; Hu, X.; Wang, G. Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur. J. Med. Chem., 2021, 224113744
[http://dx.doi.org/10.1016/j.ejmech.2021.113744] [PMID: 34365131]
[8]
Peng, Z.; Wang, G.; Zeng, Q.H.; Li, Y.; Liu, H.; Wang, J.J.; Zhao, Y. A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Sys. Rev. food Sci. Nut., 2022, 62(15), 4053-4094.
[http://dx.doi.org/10.1080/10408398.2021.1871724]
[9]
Rescigno, A.; Sollai, F.; Pisu, B.; Rinaldi, A.; Sanjust, E. Tyrosinase inhibition: General and applied aspects. J. Enzyme Inhib. Med. Chem., 2002, 17(4), 207-218.
[http://dx.doi.org/10.1080/14756360210000010923] [PMID: 12530473]
[10]
Shoukat, P. Moonkyu, Kang.; Hwan, S.C.; Hyunsu, B. Naturally occurring tyrosinase inhibitors: Mechanism and applications in skin health, cosmetics and agriculture industries. Phytother. Res., 2007, 21(9), 805-816.
[11]
Ito, S.; Wakamatsu, K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: A comparative review. Pigment Cell Res., 2003, 16(5), 523-531.
[http://dx.doi.org/10.1034/j.1600-0749.2003.00072.x] [PMID: 12950732]
[12]
Gillbro, J.M.; Olsson, M.J.; First, O.; Gillbro, J.M. The melanogenesis and mechanisms of skin-lightening agents- Existing and new approaches. Int. J. Cosmet. Sci., 2011, 33(3), 210-221.
[http://dx.doi.org/10.1111/j.1468-2494.2010.00616.x] [PMID: 21265866]
[13]
Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci., 2009, 10(6), 2440-2475.
[http://dx.doi.org/10.3390/ijms10062440] [PMID: 19582213]
[14]
Leekha, S.; Terrell, C.L.; Edson, R.S. General principles of antimicrobial therapy. Mayo Clin. Proc., 2011, 86(2), 156-167.
[http://dx.doi.org/10.4065/mcp.2010.0639] [PMID: 21282489]
[15]
Crawford, N.G.; Kelly, D.E.; Hansen, M.E.B.; Beltrame, M.H.; Fan, S.; Bowman, S.L.; Jewett, E.; Ranciaro, A.; Thompson, S. Loci associated with skin pigmentation identified in African populations. Science, 2017, 358(6365)
[http://dx.doi.org/10.1126/science.aan8433] [PMID: 29025994]
[16]
Yu, C. CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Science, 2013, 342(6165), 1518-1521.
[http://dx.doi.org/10.1126/science.344.6183.470-b]
[17]
Serre, C.; Busuttil, V.; Botto, J.M. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int. J. Cosmet. Sci., 2018, 40(4), 328-347.
[http://dx.doi.org/10.1111/ics.12466] [PMID: 29752874]
[18]
Vanitha, M.; Soundhari, C. Isolation and characterisation of mushroom tyrosinase and screening of herbal extracts for anti tyrosinase activity. Int. J. Chemtech Res., 2017, 10, 1156-1167.
[19]
Marková, E.; Kotik, M. Křenková, A.; Man, P.; Haudecoeur, R.; Boumendjel, A.; Hardré, R.; Mekmouche, Y.; Courvoisier-Dezord, E.; Réglier, M.; Martínková, L. Recombinant tyrosinase from Polyporus arcularius: Overproduction in Escherichia coli, characterization, and use in a study of aurones as tyrosinase effectors. J. Agric. Food Chem., 2016, 64(14), 2925-2931.
[http://dx.doi.org/10.1021/acs.jafc.6b00286] [PMID: 26961852]
[20]
D’Mello, S.; Finlay, G.; Baguley, B.; Askarian-Amiri, M. Signaling pathways in melanogenesis. Int. J. Mol. Sci., 2016, 17(7), 1144.
[http://dx.doi.org/10.3390/ijms17071144] [PMID: 27428965]
[21]
Likhitwitayawuid, K. Stilbenes with tyrosinase inhibitory activity. Curr. Sci., 2008, 94, 44-52.
[22]
Panzella, L. Natural and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment of skin hyperpigmentation: Recent advances. Cosmetics, 2019, 6(4), 57.
[23]
Goldfeder, M.; Kanteev, M.; Adir, N.; Fishman, A. Influencing the monophenolase/diphenolase activity ratio in tyrosinase. Biochim. Biophys. Acta. Proteins Proteomics, 2013, 1834(3), 629-633.
[http://dx.doi.org/10.1016/j.bbapap.2012.12.021] [PMID: 23305929]
[24]
Arndt, K.A.; Fitzpatrick, T.B. Topical use of hydroquinone as a depigmenting agent. JAMA, 1965, 194(9), 965-967.
[http://dx.doi.org/10.1001/jama.1965.03090220021006] [PMID: 5897965]
[25]
Vaezi, M. Structure and inhibition mechanism of some synthetic compounds and phenolic derivatives as tyrosinase inhibitors: Review and new insight. J. Biomol. Struct. Dyn., 2022, 2022, 1-13.
[http://dx.doi.org/10.1080/07391102.2022.2069157]
[26]
Nam, J.H.; Lee, D.U. Foeniculum vulgare extract and its constituent, trans-anethole, inhibit UV-induced melanogenesis via ORAI1 channel inhibition. J. Dermatol. Sci., 2016, 84(3), 305-313.
[http://dx.doi.org/10.1016/j.jdermsci.2016.09.017] [PMID: 27712859]
[27]
Nihei, K.; Kubo, I. Benzonitriles as tyrosinase inhibitors with hyperbolic inhibition manner. Int. J. Biol. Macromol., 2019, 133, 929-932.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.156] [PMID: 31026526]
[28]
Sarikurkcu, C.; Sahinler, S.S.; Tepe, B. Onosma aucheriana, O. frutescens, and O. sericea: Phytochemical profiling and biological activity. Ind. Crops Prod., 2020, 154112633
[http://dx.doi.org/10.1016/j.indcrop.2020.112633]
[29]
Obaid, R.J.; Mughal, E.U.; Naeem, N.; Sadiq, A.; Alsantali, R.I.; Jassas, R.S.; Moussa, Z.; Ahmed, S.A. Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: A systematic review. RSC Advances, 2021, 11(36), 22159-22198.
[http://dx.doi.org/10.1039/D1RA03196A] [PMID: 35480807]
[30]
Revoltella, S.; Rainer, B.; Waltenberger, B.; Pagitz, K.; Schwaiger, S.; Stuppner, H. HPTLC autography based screening and isolation of mushroom tyrosinase inhibitors of European plant species. Chem. Biodivers., 2019, 16(3)e1800541
[http://dx.doi.org/10.1002/cbdv.201800541] [PMID: 30556957]
[31]
Yu, Z.Y.; Xu, K.; Wang, X.; Wen, Y.T.; Wang, L.J.; Huang, D.Q.; Chen, X.X.; Chai, W.M. Punicalagin as a novel tyrosinase and melanin inhibitor: Inhibitory activity and mechanism. Lebensm. Wiss. Technol., 2022, 161113318
[http://dx.doi.org/10.1016/j.lwt.2022.113318]
[32]
Cespedes, C.L.; Balbontin, C.; Avila, J.G.; Dominguez, M.; Alarcon, J.; Paz, C.; Burgos, V.; Ortiz, L.; Peñaloza-Castro, I.; Seigler, D.S.; Kubo, I. Inhibition on cholinesterase and tyrosinase by alkaloids and phenolics from Aristotelia chilensis leaves. Food Chem. Toxicol., 2017, 109(Pt 2), 984-995.
[http://dx.doi.org/10.1016/j.fct.2017.05.009] [PMID: 28501487]
[33]
Honisch, C.; Osto, A.; Dupas de Matos, A.; Vincenzi, S.; Ruzza, P. Isolation of a tyrosinase inhibitor from unripe grapes juice: A spectrophotometric study. Food Chem., 2020, 305125506
[http://dx.doi.org/10.1016/j.foodchem.2019.125506] [PMID: 31606690]
[34]
Jeon, H.; Jeong, Y.H.; Choi, H.; Lee, J.E.; Byon, I.; Park, S.W. Clinical features of Toxocara -seropositive optic neuritis in Korea. Ocul. Immunol. Inflamm., 2019, 27(5), 829-835.
[http://dx.doi.org/10.1080/09273948.2018.1449866] [PMID: 29652203]
[35]
Sarikurkcu, C.; Jeszka-Skowron, M.; Ozer, M.S. Valeriana dioscoridis aerial parts’ extracts - A new source of phytochemicals with antioxidant and enzyme inhibitory activities. Ind. Crops Prod., 2020, 148112273
[http://dx.doi.org/10.1016/j.indcrop.2020.112273]
[36]
Sirat, H.M.; Rezali, M.F.; Ujang, Z. Isolation and identification of radical scavenging and tyrosinase inhibition of polyphenols from Tibouchina semidecandra L. J. Agric. Food Chem., 2010, 58(19), 10404-10409.
[http://dx.doi.org/10.1021/jf102231h] [PMID: 20809630]
[37]
Quispe, Y.; Hwang, S.; Wang, Z.; Lim, S. Screening of peruvian medicinal plants for tyrosinase inhibitory properties: Identification of tyrosinase inhibitors in Hypericum laricifolium juss. Molecules, 2017, 22(3), 402.
[http://dx.doi.org/10.3390/molecules22030402] [PMID: 28273864]
[38]
Lien, G.T.K.; Van, D.T.T.; Cuong, D.H.; Tai, P.H.Y.B.H. A new phenolic constituent from Carica papaya flowers and its tyrosinase inhibitory activity. Nat. Prod. Commun., 2019, 8, 4-10.
[39]
Stefanis, I.; Hadjipavlou-Litina, D.; Bilia, A.R.; Karioti, A. LC-MS- and NMR-guided isolation of monoterpene dimers from cultivated Thymus vulgaris varico 3 hybrid and their antityrosinase activity. Planta Med., 2019, 85(11/12), 941-946.
[http://dx.doi.org/10.1055/a-0927-7041] [PMID: 31163460]
[40]
Dong, W.H.; Wang, H.; Guo, F.J.; Mei, W.L.; Chen, H.Q.; Kong, F.D.; Li, W.; Zhou, K.B.; Dai, H.F. Three new 2-(2-Phenylethyl)chromone derivatives of agarwood originated from Gyrinops salicifolia. Molecules, 2019, 24(3), 576.
[http://dx.doi.org/10.3390/molecules24030576] [PMID: 30736275]
[41]
Ahmed, M.H.; Aldesouki, H.M.; Badria, F.A. Effect of phenolic compounds from the leaves of Psidium guajava on the activity of three metabolismrelated enzymes. Biotechnol. Appl. Biochem., 2021, 68(3), 497-512.
[http://dx.doi.org/10.1002/bab.1956]
[42]
Lee, J.Y.; Lee, J.; Min, D.; Kim, J.; Kim, H.J. Tyrosinase-targeting gallacetophenone inhibits melanogenesis in melanocytes and human skin- equivalents. IJMS, 2020, 21, 4-25.
[43]
Khongkarat, P.; Ramadhan, R.; Phuwapraisirisan, P.; Chanchao, C. Safflospermidines from the bee pollen of Helianthus annuus L. exhibit a higher in vitro antityrosinase activity than kojic acid. Heliyon, 2020, 6(3)e03638
[http://dx.doi.org/10.1016/j.heliyon.2020.e03638] [PMID: 32215336]
[44]
Alsantali, R.I.; Mughal, E.U.; Naeem, N.; Alsharif, M.A.; Sadiq, A.; Ali, A.; Jassas, R.S.; Javed, Q.; Javid, A.; Sumrra, S.H.; Alsimaree, A.A.; Zafar, M.N.; Asghar, B.H.; Altass, H.M.; Moussa, Z.; Ahmed, S.A. Flavone-based hydrazones as new tyrosinase inhibitors: Synthetic imines with emerging biological potential, SAR, molecular docking and drug-likeness studies. J. Mol. Struct., 2022, 1251131933
[http://dx.doi.org/10.1016/j.molstruc.2021.131933]
[45]
Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci., 2012, 3, 1-16.
[http://dx.doi.org/10.3389/fpls.2012.00222]
[46]
Lin, Y.F.; Hu, Y.H.; Jia, Y.L.; Li, Z.C.; Guo, Y.J.; Chen, Q.X.; Lin, H.T. Inhibitory effects of naphthols on the activity of mushroom tyrosinase. Int. J. Biol. Macromol., 2012, 51(1-2), 32-36.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.04.026] [PMID: 22569532]
[47]
Cheng, K.T.; Hsu, F.L.; Chen, S.H.; Hsieh, P.K.; Huang, H.S.; Lee, C.K.; Lee, M.H. New constituent from Podocarpus macrophyllus var. macrophyllus shows anti-tyrosinase effect and regulates tyrosinase-related proteins and mRNA in human epidermal melanocytes. Chem. Pharm. Bull., 2007, 55(5), 757-761.
[http://dx.doi.org/10.1248/cpb.55.757] [PMID: 17473463]
[48]
Promden, W.; Viriyabancha, W.; Monthakantirat, O.; Umehara, K.; Noguchi, H.; De-Eknamkul, W. Correlation between the potency of flavonoids on mushroom tyrosinase inhibitory activity and melanin synthesis in melanocytes. Molecules, 2018, 23(6), 1403.
[http://dx.doi.org/10.3390/molecules23061403] [PMID: 29890751]
[49]
Ko, H.H.; Chiang, Y.C.; Tsai, M.H.; Liang, C.J.; Hsu, L.F.; Li, S.Y.; Wang, M.C.; Yen, F.L.; Lee, C.W. Eupafolin, a skin whitening flavonoid isolated from Phyla nodiflora, downregulated melanogenesis: Role of MAPK and Akt pathways. J. Ethnopharmacol., 2014, 151(1), 386-393.
[http://dx.doi.org/10.1016/j.jep.2013.10.054] [PMID: 24212072]
[50]
Peralta, M.A.; Santi, M.D.; Agnese, A.M.; Cabrera, J.L.; Ortega, M.G. Flavanoids from Dalea elegans: Chemical reassignment and determination of kinetics parameters related to their anti-tyrosinase activity. Phytochem. Lett., 2014, 10, 260-267.
[http://dx.doi.org/10.1016/j.phytol.2014.10.012]
[51]
Piao, L.Z.; Park, H.R.; Park, Y.K.; Lee, S.K.; Park, J.H.; Park, M.K. Mushroom tyrosinase inhibition activity of some chromones. Chem. Pharm. Bull. (Tokyo), 2002, 50(3), 309-311.
[http://dx.doi.org/10.1248/cpb.50.309] [PMID: 11911191]
[52]
Shimizu, K.; Kondo, R.; Sakai, K. Inhibition of tyrosinase by flavonoids, stilbenes and related 4-substituted resorcinols: Structure-activity investigations. Planta Med., 2000, 66(1), 11-15.
[http://dx.doi.org/10.1055/s-2000-11113] [PMID: 10705726]
[53]
Wang, Y.; Curtis-Long, M.J.; Lee, B.W.; Yuk, H.J.; Kim, D.W.; Tan, X.F.; Park, K.H. Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philippinensis roots. Bioorg. Med. Chem., 2014, 22(3), 1115-1120.
[http://dx.doi.org/10.1016/j.bmc.2013.12.047] [PMID: 24412339]
[54]
Tian, J.L.; Liu, T.L.; Xue, J.J.; Hong, W.; Zhang, Y.; Zhang, D.X.; Cui, C.C.; Liu, M.C.; Niu, S.L. Flavanoids derivatives from the root bark of Broussonetia papyrifera as a tyrosinase inhibitor. Ind. Crops Prod., 2019, 138111445
[http://dx.doi.org/10.1016/j.indcrop.2019.06.008]
[55]
Nguyen, H.X.; Nguyen, N.T.; Nguyen, M.H.K.; Le, T.H.; Van Do, T.N.; Hung, T.M.; Nguyen, M.T.T. Tyrosinase inhibitory activity of flavonoids from Artocarpus heterophyllous. Chem. Cent. J., 2016, 10(1), 2.
[http://dx.doi.org/10.1186/s13065-016-0150-7] [PMID: 26834825]
[56]
Dej-adisai, S.; Meechai, I.; Puripattanavong, J.; Kummee, S. Antityrosinase and antimicrobial activities from Thai medicinal plants. Arch. Pharm. Res., 2014, 37(4), 473-483.
[http://dx.doi.org/10.1007/s12272-013-0198-z] [PMID: 23835832]
[57]
Zuo, A.R.; Dong, H.H.; Yu, Y.Y.; Shu, Q.L.; Zheng, L.X.; Yu, X.Y.; Cao, S.W. The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chin. Med., 2018, 13(1), 51.
[http://dx.doi.org/10.1186/s13020-018-0206-9] [PMID: 30364385]
[58]
Masuoka, C.; Ono, M.; Ito, Y.; Nohara, T. Antioxidative, antihyaluronidase and antityrosinase activities of some constituents from the aerial part of Piper elongatum VAHL. Food Sci. Technol. Res., 2003, 9(2), 197-201.
[http://dx.doi.org/10.3136/fstr.9.197]
[59]
Baek, Y.S.; Ryu, Y.B.; Curtis-Long, M.J.; Ha, T.J.; Rengasamy, R.; Yang, M.S.; Park, K.H. Tyrosinase inhibitory effects of 1,3-diphenylpropanes from Broussonetia kazinoki. Bioorg. Med. Chem., 2009, 17(1), 35-41.
[http://dx.doi.org/10.1016/j.bmc.2008.11.022] [PMID: 19046886]
[60]
Chen, Y.S.; Lee, S.M.; Lin, C.C.; Liu, C.Y.; Wu, M.C.; Shi, W.L. Kinetic study on the tyrosinase and melanin formation inhibitory activities of carthamus yellow isolated from Carthamus tinctorius L. J. Biosci. Bioeng., 2013, 115(3), 242-245.
[http://dx.doi.org/10.1016/j.jbiosc.2012.09.013] [PMID: 23063243]
[61]
Neagu, E.; Paun, G.; Albu, C.; Radu, G.L. Assessment of acetylcholinesterase and tyrosinase inhibitory and antioxidant activity of Alchemilla vulgaris and Filipendula ulmaria extracts. J. Taiwan Inst. Chem. Eng., 2015, 52, 1-6.
[http://dx.doi.org/10.1016/j.jtice.2015.01.026]
[62]
Biswas, R.; Mukherjee, P.K.; Kar, A.; Bahadur, S.; Harwansh, R.K.; Biswas, S.; Al-Dhabi, N.A.; Duraipandiyan, V. Evaluation of ubtan – A traditional Indian skin care formulation. J. Ethnopharmacol., 2016, 192, 283-291.
[http://dx.doi.org/10.1016/j.jep.2016.07.034] [PMID: 27416804]
[63]
Kim, S.J.; Son, K.H.; Chang, H.W.; Kang, S.S.; Kim, H.P. Tyrosinase inhibitory prenylated flavonoids from Sophora flavescens. Biol. Pharm. Bull., 2003, 26(9), 1348-1350.
[http://dx.doi.org/10.1248/bpb.26.1348] [PMID: 12951485]
[64]
Lee, N.K.; Son, K.H.; Chang, H.W.; Kang, S.S.; Park, H.; Heo, M.Y.; Kim, H.P. Prenylated flavonoids as tyrosinase inhibitors. Arch. Pharm. Res., 2004, 27(11), 1132-1135.
[http://dx.doi.org/10.1007/BF02975118] [PMID: 15595416]
[65]
Chen, X.X.; Shi, Y.; Chai, W.M.; Feng, H.L.; Zhuang, J.X.; Chen, Q.X. Condensed tannins from Ficus virens as tyrosinase inhibitors: Structure, inhibitory activity and molecular mechanism. PLoS One, 2014, 9(3)e91809
[http://dx.doi.org/10.1371/journal.pone.0091809] [PMID: 24637701]
[66]
Hassan, A.M.S. TLC bioautographic method for detecting lipase inhibitors. Phytochem. Anal., 2012, 23(4), 405-407.
[http://dx.doi.org/10.1002/pca.1372] [PMID: 22095552]
[67]
Souza, P.M.; Elias, S.T.; Simeoni, L.A.; de Paula, J.E.; Gomes, S.M.; Guerra, E.N.S.; Fonseca, Y.M.; Silva, E.C.; Silveira, D.; Magalhães, P.O. Plants from Brazilian Cerrado with potent tyrosinase inhibitory activity. PLoS One, 2012, 7(11)e48589
[http://dx.doi.org/10.1371/journal.pone.0048589] [PMID: 23173036]
[68]
Chai, W.M.; Lin, M.Z.; Feng, H.L.; Zou, Z.R.; Wang, Y.X. Proanthocyanidins purified from fruit pericarp of Clausena lansium (Lour.) Skeels as efficient tyrosinase inhibitors: Structure evaluation, inhibitory activity and molecular mechanism. Food Funct., 2017, 8(3), 1043-1051.
[69]
Peng, W.W.; Wang, Z.Q.; Ji, M.Y.; Liao, Z.L.; Liu, Z.Q.; Wu, P. Tyrosinase inhibitory activity of three new glycosides from Breynia fruticosa. Phytochem. Lett., 2017, 22, 1-5.
[http://dx.doi.org/10.1016/j.phytol.2017.08.003]
[70]
Thitimuta, S.; Pithayanukul, P.; Nithitanakool, S.; Saparpakorn, J.L. Extract and its potential beneficial effects in antioxidant, antiinflammatory, anti-hepatotoxic, and anti-tyrosinase activities. J. Carbon Res., 1999, 7, 4-25.
[71]
No, J.K.; Soung, D.Y.; Kim, Y.J.; Shim, K.H.; Jun, Y.S.; Rhee, S.H.; Yokozawa, T.; Chung, H.Y. Inhibition of tyrosinase by green tea components. Life Sci., 1999, 65(21), PL241-PL246.
[http://dx.doi.org/10.1016/S0024-3205(99)00492-0] [PMID: 10576599]
[72]
Bahmani, M.; Zargaran, A.; Rafieian-Kopaei, M.; Saki, K. Ethnobotanical study of medicinal plants used in the management of diabetes mellitus in the Urmia, Northwest Iran. Asian Pac. J. Trop. Med., 2014, 7, S348-S354.
[http://dx.doi.org/10.1016/S1995-7645(14)60257-1] [PMID: 25312149]
[73]
Garcia-Molina, M.S.; Munoz-Munoz, J.L.; Garcia-Molina, F.; Rodriguez-Lopez, J.N.; Garcia-Canovas, F. Study of umbelliferone hydroxylation to esculetin catalyzed by polyphenol oxidase. Biol. Pharm. Bull., 2013, 36(7), 1140-1145.
[http://dx.doi.org/10.1248/bpb.b13-00119] [PMID: 23811563]
[74]
Arung, E.T.; Kuspradini, H.; Kusuma, I.W.; Shimizu, K.; Kondo, R. Validation of Eupatorium triplinerve Vahl leaves, a skin care herb from East Kalimantan, using a melanin biosynthesis assay. J. Acupunct. Meridian Stud., 2012, 5(2), 87-92.
[http://dx.doi.org/10.1016/j.jams.2012.01.003] [PMID: 22483187]
[75]
Misra, B.B.; Dey, S. TLC-bioautographic evaluation of in vitro anti-tyrosinase and anti-cholinesterase potentials of sandalwood oil. Nat. Prod. Commun., 2013, 8(2), 1934578X1300800.
[http://dx.doi.org/10.1177/1934578X1300800231] [PMID: 23513742]
[76]
Biswas, R.; Chanda, J.; Kar, A.; Mukherjee, P.K. Tyrosinase inhibitory mechanism of betulinic acid from Dillenia indica. Food Chem., 2017, 232, 689-696.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.008] [PMID: 28490129]
[77]
Ko, H.H.; Chang, W.L.; Lu, T.M. Antityrosinase and antioxidant effects of ent-kaurane diterpenes from leaves of Broussonetia papyrifera. J. Nat. Prod., 2008, 71(11), 1930-1933.
[http://dx.doi.org/10.1021/np800564z] [PMID: 18986201]
[78]
Gardelly, M.; Trimech, B.; Belkacem, M.A.; Harbach, M.; Abdelwahed, S.; Mosbah, A.; Bouajila, J.; Ben Jannet, H. Synthesis of novel diazaphosphinanes coumarin derivatives with promoted cytotoxic and anti-tyrosinase activities. Bioorg. Med. Chem. Lett., 2016, 26(10), 2450-2454.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.108] [PMID: 27080182]
[79]
Sasaki, A.; Yamano, Y.; Sugimoto, S.; Otsuka, H.; Matsunami, K.; Shinzato, T. Phenolic compounds from the leaves of Breynia officinalis and their tyrosinase and melanogenesis inhibitory activities. J. Nat. Med., 2018, 72(2), 381-389.
[http://dx.doi.org/10.1007/s11418-017-1148-8] [PMID: 29264846]
[80]
Khan, S.; Tareq Hassan Khan, M.; Nadeem Kardar, M. Tyrosinase inhibitors from the fruits of Madhuca latifolia. Curr. Bioact. Compd., 2014, 10(1), 31-36.
[http://dx.doi.org/10.2174/1573407210666140311234806]
[81]
Jin, K.S.; Oh, Y.N.; Hyun, S.K.; Kwon, H.J.; Kim, B.W. Betulinic acid isolated from Vitis amurensis root inhibits 3-isobutyl-1-methylxanthine induced melanogenesis via the regulation of MEK/ERK and PI3K/Akt pathways in B16F10 cells. Food Chem. Toxicol., 2014, 68, 38-43.
[http://dx.doi.org/10.1016/j.fct.2014.03.001] [PMID: 24632067]
[82]
Roh, E.; Jeong, I.Y.; Shin, H.; Song, S.; Doo Kim, N.; Jung, S.H.; Tae Hong, J.; Ho Lee, S.; Han, S.B.; Kim, Y. Downregulation of melanocyte-specific facultative melanogenesis by 4-hydroxy-3-methoxycinnamaldehyde acting as a cAMP antagonist. J. Invest. Dermatol., 2014, 134(2), 551-553.
[http://dx.doi.org/10.1038/jid.2013.341] [PMID: 23934066]
[83]
Altun, M.L. Yılmaz, B.S.; Orhan, I.E.; Citoglu, G.S. Assessment of cholinesterase and tyrosinase inhibitory and antioxidant effects of Hypericum perforatum L. (St. John’s wort). Ind. Crops Prod., 2013, 43, 87-92.
[http://dx.doi.org/10.1016/j.indcrop.2012.07.017]
[84]
Mukherjee, P.K.; Biswas, R.; Sharma, A.; Banerjee, S.; Biswas, S.; Katiyar, C.K. Validation of medicinal herbs for anti-tyrosinase potential. J. Herb. Med., 2018, 14, 1-16.
[http://dx.doi.org/10.1016/j.hermed.2018.09.002]
[85]
Takahashi, M.; Takara, K.; Toyozato, T.; Wada, K. A novel bioactive chalcone of Morus australis inhibits tyrosinase activity and melanin biosynthesis in B16 melanoma cells. J. Oleo Sci., 2012, 61(10), 585-592.
[http://dx.doi.org/10.5650/jos.61.585] [PMID: 23018855]
[86]
Huang, X.X.; Liu, Q.B.; Wu, J.; Yu, L.H.; Cong, Q.; Zhang, Y.; Lou, L.L.; Li, L.Z.; Song, S.J. Antioxidant and tyrosinase inhibitory effects of neolignan glycosides from Crataegus pinnatifida seeds. Planta Med., 2014, 80(18), 1732-1738.
[http://dx.doi.org/10.1055/s-0034-1383253] [PMID: 25377118]
[87]
Benmerache, A.; Alabdul Magid, A.; Berrehal, D.; Kabouche, A.; Voutquenne-Nazabadioko, L.; Messaili, S.; Abedini, A.; Harakat, D. Kabouche, Z. Chemical composition, antibacterial, antioxidant and tyrosinase inhibitory activities of glycosides from aerial parts of Eryngium tricuspidatum L. Phytochem. Lett., 2016, 18, 23-28.
[http://dx.doi.org/10.1016/j.phytol.2016.08.018]
[88]
Lu, T.M.; Ko, H.H. A new anthraquinone glycoside from Rhamnus nakaharai and anti-tyrosinase effect of 6-methoxysorigenin. Nat. Prod. Res., 2016, 30(23), 2655-2661.
[http://dx.doi.org/10.1080/14786419.2016.1138300] [PMID: 26828875]
[89]
Chaita, E.; Lambrinidis, G.; Cheimonidi, C.; Agalou, A.; Beis, D.; Trougakos, I.; Mikros, E.; Skaltsounis, A.L.; Aligiannis, N. Anti-melanogenic properties of Greek plants. A novel depigmenting agent from Morus alba wood. Molecules, 1999, 22(4), 514.
[90]
Likhitwitayawuid, K.; Sritularak, B. A new dimeric stilbene with tyrosinase inhibitiory activity from Artocarpus gomezianus. J. Nat. Prod., 2001, 64(11), 1457-1459.
[http://dx.doi.org/10.1021/np0101806] [PMID: 11720533]
[91]
Ha, T.J.; Tamura, S.; Kubo, I. Effects of mushroom tyrosinase on anisaldehyde. J. Agric. Food Chem., 2005, 53(18), 7024-7028.
[http://dx.doi.org/10.1021/jf047943q] [PMID: 16131106]
[92]
Gandía-Herrero, F.; Jiménez, M.; Cabanes, J.; García-Carmona, F.; Escribano, J. Tyrosinase inhibitory activity of cucumber compounds: Enzymes responsible for browning in cucumber. J. Agric. Food Chem., 2003, 51(26), 7764-7769.
[http://dx.doi.org/10.1021/jf030131u] [PMID: 14664542]
[93]
Anantharaman, A.; Hemachandran, H.; Priya, R.R.; Sankari, M.; Gopalakrishnan, M.; Palanisami, N.; Siva, R. Inhibitory effect of apocarotenoids on the activity of tyrosinase: Multi-spectroscopic and docking studies. J. Biosci. Bioeng., 2016, 121(1), 13-20.
[http://dx.doi.org/10.1016/j.jbiosc.2015.05.007] [PMID: 26187443]
[94]
Park, H.J.; Cho, J.H.; Hong, S.H.; Kim, D.H.; Jung, H.Y.; Kang, I.K.; Cho, Y.J. Whitening and anti-wrinkle activities of ferulic acid isolated from Tetragonia tetragonioides in B16F10 melanoma and CCD-986sk fibroblast cells. J. Nat. Med., 2018, 72(1), 127-135.
[http://dx.doi.org/10.1007/s11418-017-1120-7] [PMID: 28884442]
[95]
Yu, Q.; Fan, L. Understanding the combined effect and inhibition mechanism of 4-hydroxycinnamic acid and ferulic acid as tyrosinase inhibitors. Food Chem., 2021, 352129369
[http://dx.doi.org/10.1016/j.foodchem.2021.129369] [PMID: 33706137]
[96]
Luyen, B.T.T.; Thao, N.P.; Widowati, W.; Fauziah, N.; Maesaroh, M.; Herlina, T.; Kim, Y.H. Chemical constituents of Piper aduncum and their inhibitory effects on soluble epoxide hydrolase and tyrosinase. Med. Chem. Res., 2017, 26(1), 220-226.
[http://dx.doi.org/10.1007/s00044-016-1735-3]
[97]
Solís, C.M.; Salazar, M.O.; Ramallo, I.A.; García, P.; Furlan, R.L.E. A tyrosinase inhibitor from a nitrogen-enriched chemically engineered extract. ACS Comb. Sci., 2019, 21(9), 622-627.
[http://dx.doi.org/10.1021/acscombsci.9b00064] [PMID: 31361945]
[98]
Hou, S.; Tan, T.; Du, W.; Chen, G. Chemical constituents from the bark of Juglans mandshurica Maxim. and their phenol oxidase inhibitory effects. Arch. Phytopathol. Pflanzenschutz, 2017, 50(9-10), 463-472.
[http://dx.doi.org/10.1080/03235408.2017.1328842]
[99]
Paudel, P.; Wagle, A.; Seong, S.H.; Park, H.J.; Jung, H.A.; Choi, J.S. A new tyrosinase inhibitor from the red alga Symphyocladia latiuscula (Harvey) Yamada (Rhodomelaceae). Mar. Drugs, 2019, 17(5), 295.
[http://dx.doi.org/10.3390/md17050295]
[100]
Wang, Y.; Xu, L.; Gao, W.; Niu, L.; Huang, C.; Yang, P.; Hu, X. Isoprenylated phenolic compounds from Morus macroura as potent tyrosinase inhibitors. Planta Med., 2018, 84(5), 336-343.
[http://dx.doi.org/10.1055/s-0043-121698] [PMID: 29096405]
[101]
Lopes, T.I.B.; Coelho, R.G.; Honda, N.K. Inhibition of mushroom tyrosinase activity by orsellinates. Chem. Pharm. Bull. (Tokyo), 2018, 66(1), 61-64.
[http://dx.doi.org/10.1248/cpb.c17-00502] [PMID: 29311513]
[102]
Wu, J.; Xu, J.G.; Fu, J.P.; Xiong, W.; Zhang, S.W.; Gu, Z.; Wu, L.; Hu, J.W. Characterization of tyrosinase inhibitors from white lotus receptacle. Chem. Nat. Compd., 2019, 55(5), 929-931.
[http://dx.doi.org/10.1007/s10600-019-02849-7]
[103]
Georgousaki, K.; Tsafantakis, N.; Gumeni, S.; Gonzalez, I.; Mackenzie, T.A.; Reyes, F.; Lambert, C.; Trougakos, I.P.; Genilloud, O.; Fokialakis, N. Screening for tyrosinase inhibitors from actinomycetes; identification of trichostatin derivatives from Streptomyces sp. CA-129531 and scale up production in bioreactor. Bioorg. Med. Chem. Lett., 2020, 30(6)126952
[http://dx.doi.org/10.1016/j.bmcl.2020.126952] [PMID: 32005414]
[104]
Ishihara, A.; Sugai, N.; Bito, T.; Ube, N.; Ueno, K.; Okuda, Y.; Fukushima-Sakuno, E. Isolation of 6-hydroxy- L -tryptophan from the fruiting body of Lyophyllum decastes for use as a tyrosinase inhibitor. Biosci. Biotechnol. Biochem., 2019, 83(10), 1800-1806.
[http://dx.doi.org/10.1080/09168451.2019.1621157] [PMID: 31131717]
[105]
Li, M.X.; Bai, X.; Ma, Y.P.; Zhang, H.X.; Nama, N.; Pei, S.J.; Du, Z.Z. Cosmetic potentials of extracts and compounds from Zingiber cassumunar Roxb. rhizome. Ind. Crops Prod., 2019, 141111764
[http://dx.doi.org/10.1016/j.indcrop.2019.111764]
[106]
Boutaghane, N.; Alabdul Magid, A.; Abedini, A.; Cafolla, A.; Djeghim, H.; Gangloff, S.C.; Voutquenne-Nazabadioko, L.; Kabouche, Z. Chemical constituents of Genista numidica Spach aerial parts and their antimicrobial, antioxidant and antityrosinase activities. Nat. Prod. Res., 2019, 33(12), 1734-1740.
[http://dx.doi.org/10.1080/14786419.2018.1437425] [PMID: 29448823]
[107]
Gaweł-Bęben, K.; Osika, P.; Asakawa, Y.; Antosiewicz, B.; Głowniak, K.; Ludwiczuk, A. Evaluation of anti-melanoma and tyrosinase inhibitory properties of marchantin A, a natural macrocyclic bisbibenzyl isolated from Marchantia species. Phytochem. Lett., 2019, 31, 192-195.
[http://dx.doi.org/10.1016/j.phytol.2019.04.008]
[108]
Parvez, S.; Amin, M.H.; Bae, H. Tyrosinase inhibitors of Galla rhois and its derivative components. Adv. Tradit. Med., 2020, 2021, 267-280.
[http://dx.doi.org/10.1007/s13596-020-00455-5]
[109]
Fattahifar, E.; Barzegar, M.; Ahmadi Gavlighi, H.; Sahari, M.A. Evaluation of the inhibitory effect of pistachio (Pistacia vera L.) green hull aqueous extract on mushroom tyrosinase activity and its application as a button mushroom postharvest anti-browning agent. Postharvest Biol. Technol., 2018, 145, 157-165.
[http://dx.doi.org/10.1016/j.postharvbio.2018.07.005]
[110]
Rodboon, T.; Okada, S.; Suwannalert, P. Germinated riceberry rice enhanced protocatechuic acid and vanillic acid to suppress melanogenesis through cellular oxidant-related tyrosinase activity in B16 cells. Antioxidants, 2020, 9(3), 247.
[http://dx.doi.org/10.3390/antiox9030247] [PMID: 32204345]
[111]
Yener, I.; Kocakaya, S.O.; Ertas, A.; Erhan, B.; Kaplaner, E.; Oral, E.V.; Yilmaz-Ozden, T.; Yilmaz, M.A.; Ozturk, M.; Kolak, U. Selective in vitro and in silico enzymes inhibitory activities of phenolic acids and flavonoids of food plants: Relations with oxidative stress. Food Chem., 2020, 327127045
[http://dx.doi.org/10.1016/j.foodchem.2020.127045] [PMID: 32464460]
[112]
Sarikurkcu, C.; Hanine, H.; Sarikurkcu, R.B.; Sarikurkcu, R.T.; Amarowicz, R. Micromeria myrtifolia: The influence of the extracting solvents on phenolic composition and biological activity. Ind. Crops Prod., 2020, 145111923
[http://dx.doi.org/10.1016/j.indcrop.2019.111923]
[113]
Trendafilova, A.; Ivanova, V.; Rangelov, M.; Todorova, M.; Ozek, G.; Yur, S.; Ozek, T.; Aneva, I.; Veleva, R.; Moskova-Doumanova, V.; Doumanov, J.; Topouzova-Hristova, T. Caffeoylquinic acids, cytotoxic, antioxidant, acetylcholinesterase and tyrosinase enzyme inhibitory activities of six Inula species from Bulgaria. Chem. Biodivers., 2020, 17(4)e2000051
[http://dx.doi.org/10.1002/cbdv.202000051] [PMID: 32187453]
[114]
Shen, M.; Liu, K.; Liang, Y.; Liu, G.; Sang, J.; Li, C. Extraction optimization and purification of anthocyanins from Lycium ruthenicum Murr. and evaluation of tyrosinase inhibitory activity of the anthocyanins. J. Food Sci., 2020, 85(3), 696-706.
[http://dx.doi.org/10.1111/1750-3841.15037] [PMID: 32043592]
[115]
Wang, Y.; Xu, L.Y.; Liu, X.; He, X.R.; Ren, G.; Feng, L.H.; Zhou, Z.W. Artopithecins A–D, Prenylated 2-Arylbenzofurans from the Twigs of Artocarpus pithecogallus and their tyrosinase inhibitory activities. Chem. Pharm. Bull., 2018, 66(12), 1199-1202.
[http://dx.doi.org/10.1248/cpb.c18-00523] [PMID: 30504634]
[116]
Ren, H.; Xu, Q.L.; Zhang, M.; Dong, L.M.; Zhang, Q.; Luo, B.; Luo, Q.W.; Tan, J.W. Bioactive caffeic acid derivatives from Wedelia trilobata. Phytochem. Lett., 2017, 19, 18-22.
[http://dx.doi.org/10.1016/j.phytol.2016.11.001]
[117]
Sarikurkcu, C.; Sahinler, S.S.; Tepe, B. Astragalus gymnolobus, A. leporinus var. hirsutus, and A. onobrychis: Phytochemical analysis and biological activity. Ind. Crops Prod., 2020, 150112366
[http://dx.doi.org/10.1016/j.indcrop.2020.112366]
[118]
Yang, Y.; Sun, X.; Ni, H.; Du, X.; Chen, F.; Jiang, Z.; Li, Q. Identification and characterization of the tyrosinase inhibitory activity of caffeine from Camellia pollen. J. Agric. Food Chem., 2019, 67(46), 12741-12751.
[http://dx.doi.org/10.1021/acs.jafc.9b04929] [PMID: 31659899]
[119]
Wagle, A.; Seong, S.H.; Jung, H.A.; Choi, J.S. Identifying an isoflavone from the root of Pueraria lobata as a potent tyrosinase inhibitor. Food Chem., 2019, 276, 383-389.
[http://dx.doi.org/10.1016/j.foodchem.2018.10.008] [PMID: 30409609]
[120]
Abdullah, S.A.; Jamil, S.; Basar, N.; Abdul Lathiff, S.M.; Mohd Arriffin, N. Flavonoids from the leaves and heartwoods of Artocarpus lowii King and their bioactivities. Nat. Prod. Res., 2017, 31(10), 1113-1120.
[http://dx.doi.org/10.1080/14786419.2016.1222387] [PMID: 27564208]
[121]
Chunhakant, S.; Chaicharoenpong, C. Antityrosinase, antioxidant, and cytotoxic activities of phytochemical constituents from Manilkara zapota L. bark. Molecules, 2019, 24(15), 2798.
[http://dx.doi.org/10.3390/molecules24152798] [PMID: 31370334]
[122]
Niwa, T.; Akiyama, H.; Echikawa, M.; Yokoyama, S.; Mochizuki, M.; Osawa, T. Equol inhibits mushroom tyrosinase in vitro through tight binding. Biol. Pharm. Bull., 2020, 43(3), 550-553.
[http://dx.doi.org/10.1248/bpb.b19-00756] [PMID: 32115514]
[123]
Molagoda, I.M.N.; Karunarathne, W.A.H.M.; Park, S.R.; Choi, Y.H.; Park, E.K.; Jin, C.Y.; Yu, H.; Jo, W.S.; Lee, K.T.; Kim, G.Y. GSK-3β;-targeting fisetin promotes melanogenesis in B16F10 melanoma cells and zebrafish larvae through β;-catenin activation. Int. J. Mol. Sci., 2020, 21(1), 312.
[http://dx.doi.org/10.3390/ijms21010312] [PMID: 31906440]
[124]
Asebi, N.; Nihei, K. Total synthesis of apios isoflavones and investigation of their tyrosinase inhibitory activity. Tetrahedron, 2019, 75(41)130589
[http://dx.doi.org/10.1016/j.tet.2019.130589]
[125]
Dong, Su X.; Li, W.; Eun Kim, J.; Young Yang, S.; Yeul Ma, J.; Ho Kim, Y. Prenyl-flavonoids from Epimedium koreanum Nakai and their soluble epoxide hydrolase and tyrosinase inhibitory activities. Med. Chem. Res., 2017, 26(11), 2761-2767.
[http://dx.doi.org/10.1007/s00044-017-1975-x]
[126]
Kim, D.W.; Woo, H.S.; Kim, J.Y.; Ryuk, J.A.; Park, K.H.; Ko, B.S. Phenols displaying tyrosinase inhibition from Humulus lupulus. J. Enzyme Inhib. Med. Chem., 2016, 31(5), 742-747.
[http://dx.doi.org/10.3109/14756366.2015.1063621] [PMID: 26162028]
[127]
Kim, J.H.; Cho, I.S.; So, Y.K.; Kim, H.H.; Kim, Y.H. Kushenol A and 8-prenylkaempferol, tyrosinase inhibitors, derived from Sophora flavescens. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1048-1054.
[http://dx.doi.org/10.1080/14756366.2018.1477776] [PMID: 29873272]
[128]
Zhang, J.; Zhu, W.F.; Zhu, W.Y.; Yang, P.P.; Xu, J.; Manosroi, J.; Kikuchi, T.; Abe, M.; Akihisa, T.; Feng, F. (Euphorbiaceae). Chem. Biodivers., 2018, 15(2), 1-2.
[PMID: 29144597]
[129]
Morgan, A.M.A.; Jeon, M.N.; Jeong, M.H.; Yang, S.Y.; Kim, Y.H. Chemical components from the stems of Pueraria lobata and their tyrosinase inhibitory activity. Nat. Prod. Sci., 2016, 22(2), 111-116.
[http://dx.doi.org/10.20307/nps.2016.22.2.111]
[130]
Wagle, A.; Seong, S.H.; Joung, E.J.; Kim, H.R.; Jung, H.A.; Choi, J.S. Discovery of a highly potent tyrosinase inhibitor, Luteolin 5- O -β;- D -glucopyranoside, isolated from Cirsium japonicum var. maackii (Maxim.) Matsum., Korean thistle: Kinetics and computational molecular docking simulation. ACS Omega, 2018, 3(12), 17236-17245.
[http://dx.doi.org/10.1021/acsomega.8b02694]
[131]
Zhang, L.; Tao, G.; Chen, J.; Zheng, Z.P. Characterization of a new flavone and tyrosinase inhibition constituents from the twigs of Morus alba L. Molecules, 2016, 21(9), 1130.
[http://dx.doi.org/10.3390/molecules21091130] [PMID: 27598113]
[132]
Koirala, P.; Seong, S.; Zhou, Y.; Shrestha, S.; Jung, H.; Choi, J. Structure–activity relationship of the tyrosinase inhibitors kuwanon G, mulberrofuran G, and albanol B from Morus species: A kinetics and molecular docking study. Molecules, 2018, 23(6), 1413.
[http://dx.doi.org/10.3390/molecules23061413] [PMID: 29891812]
[133]
Arroo, R.R.J. Sari, S.; Barut, B.; Özel, A.; Ruparelia, K.C.; Şöhretoğlu, D. Flavones as tyrosinase inhibitors: Kinetic studies in vitro and in silico. Phytochem. Anal., 2020, 31(3), 314-321.
[http://dx.doi.org/10.1002/pca.2897] [PMID: 31997462]
[134]
Nguyen, M.T.T.; Le, T.H.; Nguyen, H.X.; Dang, P.H.; Do, T.N.V.; Abe, M.; Takagi, R.; Nguyen, N.T. Artocarmins G–M, prenylated 4-chromenones from the stems of Artocarpus rigida and their tyrosinase inhibitory activities. J. Nat. Prod., 2017, 80(12), 3172-3178.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00453] [PMID: 29227656]
[135]
Jeong, G.H.; Kim, D.H.; Jo, C.; Park, S.; Kim, S.B. Efficient dimerization of (-)-epigallocatechin gallate using nonthermal plasma as potent melanogenesis inhibitors. J. Phys. D Appl. Phys., 2019, 27, 31.
[http://dx.doi.org/10.1080/14484846.2018.1432089]
[136]
Qu, L.; Song, K.; Zhang, Q.; Guo, J.; Huang, J. Simultaneous determination of six isoflavones from Puerariae Lobatae Radix by CPE-HPLC and effect of puerarin on tyrosinase activity. Molecules, 2020, 25(2), 344.
[http://dx.doi.org/10.3390/molecules25020344] [PMID: 31952126]
[137]
Kim, J.H.; Jang, D.H.; Lee, K.W.; Kim, K.D.; Shah, A.B.; Zhumanova, K.; Park, K.H. Tyrosinase inhibition and kinetic details of puerol A having but-2-enolide structure from Amorpha fruticosa. Molecules, 2020, 25(10), 2344.
[http://dx.doi.org/10.3390/molecules25102344] [PMID: 32443441]
[138]
Ahmed, M.H.; Aldesouki, H.M.; Badria, F.A. Effect of phenolic compounds from the rind of Punica granatum on the activity of three metabolismrelated enzymes. Biotechnol. Appl. Biochem., 2020, 67(6), 960-972.
[http://dx.doi.org/10.1002/bab.1866] [PMID: 31769157]
[139]
Omar, S.H.; Scott, C.J.; Hamlin, A.S.; Obied, H.K. Biophenols: Enzymes (β;-secretase, Cholinesterases, histone deacetylase and tyrosinase) inhibitors from olive (Olea europaea L.). Fitoterapia, 2018, 128, 118-129.
[http://dx.doi.org/10.1016/j.fitote.2018.05.011] [PMID: 29772299]
[140]
Abed, S.A.; Sirat, H.M.; Taher, M. Total phenolic, antioxidant, antimicrobial activities and toxicity study of Gynotroches axillaris blume (Rhizophoraceae). EXCLI J., 2013, 12, 404-412.
[http://dx.doi.org/10.17877/DE290R-10755] [PMID: 26600731]
[141]
Radwan, R.A.; El-Sherif, Y.A.; Salama, M.M. A novel biochemical study of anti-ageing potential of Eucalyptus camaldulensis bark waste standardized extract and silver nanoparticles. Colloids Surf. B Biointerfaces, 2020, 191111004
[http://dx.doi.org/10.1016/j.colsurfb.2020.111004] [PMID: 32335357]
[142]
Xu, L.; Huang, T.; Huang, C.; Wu, C.; Jia, A.; Hu, X. Chiral separation, absolute configuration, and bioactivity of two pairs of flavonoid enantiomers from Morus nigra. Phytochemistry, 2019, 163, 33-37.
[http://dx.doi.org/10.1016/j.phytochem.2019.03.029] [PMID: 30986688]
[143]
Lin, Y.; Kuang, Y.; Li, K.; Wang, S.; Song, W.; Qiao, X.; Sabir, G.; Ye, M. Screening for bioactive natural products from a 67-compound library of Glycyrrhiza inflata. Bioorg. Med. Chem., 2017, 25(14), 3706-3713.
[http://dx.doi.org/10.1016/j.bmc.2017.05.009] [PMID: 28522265]
[144]
Kim, J.Y.; Kim, J.Y.; Jenis, J.; Li, Z.P.; Ban, Y.J.; Baiseitova, A.; Park, K.H. Tyrosinase inhibitory study of flavonolignans from the seeds of Silybum marianum (Milk thistle). Bioorg. Med. Chem., 2019, 27(12), 2499-2507.
[http://dx.doi.org/10.1016/j.bmc.2019.03.013] [PMID: 30871862]
[145]
Ngankeu Pagning, A.L.; Tamokou, J.D.; Lateef, M.; Tapondjou, L.A.; Kuiate, J.R.; Ngnokam, D.; Ali, M.S. New triterpene and new flavone glucoside from Rhynchospora corymbosa (Cyperaceae) with their antimicrobial, tyrosinase and butyrylcholinesterase inhibitory activities. Phytochem. Lett., 2016, 16, 121-128.
[http://dx.doi.org/10.1016/j.phytol.2016.03.011]
[146]
Moon, K.M.; Hwang, Y.H.; Yang, J.H.; Ma, J.Y.; Lee, B. Spinosin is a flavonoid in the seed of Ziziphus jujuba that prevents skin pigmentation in a human skin model. J. Funct. Foods, 2019, 54, 449-456.
[http://dx.doi.org/10.1016/j.jff.2019.01.044]
[147]
He, X.R.; Xu, L.Y.; Jin, C.; Yue, P.F.; Zhou, Z.W.; Liang, X.L. Tamariscinols U–W, new dihydrobenzofuran-type norneolignans with tyrosinase inhibitory activity from Selaginella tamariscina. Phytochem. Lett., 2019, 34, 79-83.
[http://dx.doi.org/10.1016/j.phytol.2019.08.013]
[148]
Poppe, J.; Reichelt, J.; Blankenfeldt, W. Pseudomonas aeruginosa pyoverdine maturation enzyme PvdP has a noncanonical domain architecture and affords insight into a new subclass of tyrosinases. J. Biol. Chem., 2018, 293(38), 14926-14936.
[http://dx.doi.org/10.1074/jbc.RA118.002560] [PMID: 30030378]
[149]
Jugreet, B.S.; Mahomoodally, M.F.; Sinan, K.I.; Zengin, G.; Abdallah, H.H. Chemical variability, pharmacological potential, multivariate and molecular docking analyses of essential oils obtained from four medicinal plants. Ind. Crops Prod., 2020, 150112394
[http://dx.doi.org/10.1016/j.indcrop.2020.112394]
[150]
Zuo, G.; Wang, Z.; Guillen Quispe, Y.N.; Hwang, S.H.; Kim, H.Y.; Kang, B.G.; Lim, S.S. Target guided isolation of potential tyrosinase inhibitors from Otholobium pubescens (Poir.) J.W. Grimes by ultrafiltration, high-speed countercurrent chromatography and preparative HPLC. Ind. Crops Prod., 2019, 134, 195-205.
[http://dx.doi.org/10.1016/j.indcrop.2019.03.045]
[151]
Shu, P.; Li, J.; Fei, Y.; Zhu, H.; Zhang, L.; Niu, H.; Li, Y.; Liu, H.; Ju, Z.; Wei, X.; Xiao, F.; Xu, Z. Angelicosides I-IV, four undescribed furanocoumarin glycosides from Angelica dahurica roots and their tyrosinase inhibitory activities. Phytochem. Lett., 2020, 36, 32-36.
[http://dx.doi.org/10.1016/j.phytol.2020.01.006]
[152]
Saehlim, N.; Athipornchai, A.; Sirion, U.; Saeeng, R. New class of alkynyl glycoside analogues as tyrosinase inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(15)127276
[http://dx.doi.org/10.1016/j.bmcl.2020.127276] [PMID: 32527455]
[153]
Magid, A.A.; Abdellah, A.; Pecher, V.; Pasquier, L.; Harakat, D.; Voutquenne-Nazabadioko, L. Flavonol glycosides and lignans from the leaves of Opilia amentacea. Phytochem. Lett., 2017, 21, 84-89.
[http://dx.doi.org/10.1016/j.phytol.2017.05.023]
[154]
Park, S.; Jegal, J.; Chung, K.W.; Jung, H.J.; Noh, S.G.; Chung, H.Y.; Ahn, J.; Kim, J.; Yang, M.H. Isolation of tyrosinase and melanogenesis inhibitory flavonoids from Juniperus chinensis fruits. Biosci. Biotechnol. Biochem., 2018, 82(12), 2041-2048.
[http://dx.doi.org/10.1080/09168451.2018.1511367] [PMID: 30130471]
[155]
Sari, S. Barut, B.; Özel, A.; Şöhretoğlu, D. Tyrosinase inhibitory effects of Vinca major and its secondary metabolites: Enzyme kinetics and in silico inhibition model of the metabolites validated by pharmacophore modelling. Bioorg. Chem., 2019, 92103259
[http://dx.doi.org/10.1016/j.bioorg.2019.103259] [PMID: 31518762]
[156]
Lee, G.Y.; Cho, B.O.; Shin, J.Y.; Jang, S.I.; Cho, I.S.; Kim, H.Y.; Park, J.S.; Cho, C.W.; Kang, J.S.; Kim, J.H.; Kim, Y.H. Tyrosinase inhibitory components from the seeds of Cassia tora. Arch. Pharm. Res., 2018, 41(5), 490-496.
[http://dx.doi.org/10.1007/s12272-018-1032-4] [PMID: 29721815]
[157]
Sari, S. Barut, B.; Özel, A.; Kuruüzüm-Uz, A.; Şöhretoğlu, D. Tyrosinase and α-glucosidase inhibitory potential of compounds isolated from Quercus coccifera bark: In vitro and in silico perspectives. Bioorg. Chem., 2019, 86, 296-304.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.015] [PMID: 30738329]
[158]
Wang, K.W.; Zhou, M.Q.; Gu, Q.; Auckloo, N.B.; Wu, X.D.; Wu, B. Unusual new phenylethanoid and phenylpropanoid diglycosides from the leaves of Chloranthus spicatus (Thunb.). Makino. Phytochem. Lett., 2016, 17, 201-205.
[http://dx.doi.org/10.1016/j.phytol.2016.07.025]
[159]
Matsumoto, T.; Nakajima, T.; Iwadate, T.; Nihei, K. Chemical synthesis and tyrosinase-inhibitory activity of isotachioside and its related glycosides. Carbohydr. Res., 2018, 465, 22-28.
[http://dx.doi.org/10.1016/j.carres.2018.06.004] [PMID: 29920401]
[160]
Yoshida, I.; Ito, C.; Matsuda, S.; Tsuji, A.; Yanaka, N.; Yuasa, K. Alisol B, a triterpene from Alismatis rhizoma (dried rhizome of Alisma orientale), inhibits melanin production in murine B16 melanoma cells. Biosci. Biotechnol. Biochem., 2017, 81(3), 534-540.
[http://dx.doi.org/10.1080/09168451.2016.1268042] [PMID: 28051915]
[161]
Khokra, S.L.; Prakash, O.; Jain, S.; Aneja, K.R.; Dhingra, Y. Essential oil composition and antibacterial studies of Vitex negundo linn. extracts. Indian J. Pharm. Sci., 2008, 70(4), 522-526.
[http://dx.doi.org/10.4103/0250-474X.44610] [PMID: 20046787]
[162]
Deveci, E.; Tel-Çayan, G.; Usluer, Ö.; Emin Duru, M. Chemical composition, antioxidant, anticholinesterase and anti-tyrosinase activities of essential oils of two Sideritis species from Turkey. Iran. J. Pharm. Res., 2019, 18(2), 903-913.
[http://dx.doi.org/10.22037/ijpr.2019.1100657] [PMID: 31531072]
[163]
Yang, L.; Yang, Y.L.; Dong, W.H.; Li, W.; Wang, P.; Cao, X.; Yuan, J.Z.; Chen, H.Q.; Mei, W.L.; Dai, H.F. Sesquiterpenoids and 2-(2-phenylethyl)chromones respectively acting as α-glucosidase and tyrosinase inhibitors from agarwood of an Aquilaria plant. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 853-862.
[http://dx.doi.org/10.1080/14756366.2019.1576657] [PMID: 31010356]
[164]
Chen, K.; Zhao, D.Y.; Chen, Y.L.; Wei, X.Y.; Li, Y.T.; Kong, L.M.; Hider, R.C.; Zhou, T. A novel inhibitor against mushroom tyrosinase with a double action mode and its application in controlling the browning of potato. Food Bioprocess Technol., 2017, 10(12), 2146-2155.
[http://dx.doi.org/10.1007/s11947-017-1976-2]
[165]
Lin, Q.M.; Wang, Y.; Yu, J.H.; Liu, Y.L.; Wu, X.; He, X.R.; Zhou, Z.W. Tyrosinase inhibitors from the leaves of Eucalyptus globulus. Fitoterapia, 2019, 139104418
[http://dx.doi.org/10.1016/j.fitote.2019.104418] [PMID: 31704262]
[166]
Bankeu, J.J.K.; Madjouka, S.; Feuya, G.R.T.; Fongang, Y.S.F.; Siddiqui, S.; Ali, I.; Mehreen, L.; Lenta, B.N.; Yousuf, S.; Noungoué, D.T.; Ngouela, A.S.; Ali, M.S. Pobeguinine: A monoterpene indole alkaloid and other bioactive constituents from the stem bark of Nauclea pobeguinii. Z. Naturforsch. C J. Biosci., 2018, 73(9-10), 335-344.
[http://dx.doi.org/10.1515/znc-2017-0127] [PMID: 29320368]
[167]
Su, S.; Cheng, J.; Zhang, C.; Akihisa, T.; Xu, J.; Zhu, W.; Liu, W.; Kikuchi, T.; Feng, F.; Zhang, J. Melanogenesis-inhibitory activities of limonoids and tricyclic diterpenoids from Azadirachta indica. Bioorg. Chem., 2020, 100103941
[http://dx.doi.org/10.1016/j.bioorg.2020.103941] [PMID: 32450387]
[168]
Mirmortazavi, S.S.; Farvandi, M.; Ghafouri, H.; Mohammadi, A.; Shourian, M. Evaluation of novel pyrimidine derivatives as a new class of mushroom tyrosinase inhibitor. Drug Des. Devel. Ther., 2019, 13, 2169-2178.
[http://dx.doi.org/10.2147/DDDT.S209324] [PMID: 31371919]
[169]
Kim, S.B.; Liu, Q.; Ahn, J.H.; Jo, Y.H.; Turk, A.; Hong, I.P.; Han, S.M.; Hwang, B.Y.; Lee, M.K. Polyamine derivatives from the bee pollen of Quercus mongolica with tyrosinase inhibitory activity. Bioorg. Chem., 2018, 81, 127-133.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.014] [PMID: 30118984]
[170]
Yang, H.H.; Oh, K.E.; Jo, Y.H.; Ahn, J.H.; Liu, Q.; Turk, A.; Jang, J.Y.; Hwang, B.Y.; Lee, K.Y.; Lee, M.K. Characterization of tyrosinase inhibitory constituents from the aerial parts of Humulus japonicus using LC-MS/MS coupled online assay. Bioorg. Med. Chem., 2018, 26(2), 509-515.
[http://dx.doi.org/10.1016/j.bmc.2017.12.011] [PMID: 29254897]
[171]
Weng, I.T. Lin, Y.A.; Chen, G.Y.; Chiang, H.M.; Liu, Y.J.; Chen, C.J.; Lan, Y.H.; Lee, C.L.; Weng, I. (–)-β;-Homoarginine anhydride, a new antioxidant and tyrosinase inhibitor, and further active components from Trichosanthes truncata. Nat. Prod. Res., 2020, 34(16), 2262-2268.
[http://dx.doi.org/10.1080/14786419.2018.1531404] [PMID: 30580588]
[172]
Lee, J.; Hwang, I.H.; Kim, J.H.; Kim, M.A.; Hwang, J.S.; Kim, Y.H.; Na, M. Quinoxaline-, dopamine-, and amino acid-derived metabolites from the edible insect Protaetia brevitarsis seulensis. Arch. Pharm. Res., 2017, 40(9), 1064-1070.
[http://dx.doi.org/10.1007/s12272-017-0942-x] [PMID: 28780757]
[173]
Le, T.H.; Nguyen, H.X.; Do, T.V.N.; Dang, P.H.; Nguyen, N.T.; Nguyen, M.T.T. A new tyrosinase and xanthine oxidase inhibitor from the woods of Artocarpus heterophyllus Nat. Prod. Commun.,, 2017, 12(6), 1934578X1701200.
[http://dx.doi.org/10.1177/1934578X1701200623]
[174]
Gong, C.F.; Wang, Y.X.; Wang, M.L.; Su, W.C.; Wang, Q.; Chen, Q.X.; Shi, Y. Evaluation of the structure and biological activities of condensed tannins from Acanthus ilicifolius Linn. and their effect on fresh-cut fuji apples. Appl. Biochem. Biotechnol., 2019, 189(3), 855-870.
[http://dx.doi.org/10.1007/s12010-019-03038-6] [PMID: 31131419]
[175]
Chai, W.M.; Wei, Q.M.; Deng, W.L.; Zheng, Y.L.; Chen, X.Y.; Huang, Q.; Ou-Yang, C.; Peng, Y.Y. Anti-melanogenesis properties of condensed tannins from Vigna angularis seeds with potent antioxidant and DNA damage protection activities. Food Funct., 2019, 10(1), 99-111.
[http://dx.doi.org/10.1039/C8FO01979G] [PMID: 30565612]
[176]
Manandhar, B.; Wagle, A.; Seong, S.H.; Paudel, P.; Kim, H.R.; Jung, H.A.; Choi, J.S. Phlorotannins with potential anti-tyrosinase and antioxidant activity isolated from the marine seaweed Ecklonia stolonifera. Antioxidants, 2019, 8(8), 240.
[http://dx.doi.org/10.3390/antiox8080240] [PMID: 31344959]
[177]
Kim, J.H.; Lee, S.; Park, S.; Park, J.S.; Kim, Y.H.; Yang, S.Y. Slow-binding inhibition of tyrosinase by Ecklonia cava phlorotannins. Mar. Drugs, 2019, 17(6), 359.
[http://dx.doi.org/10.3390/md17060359] [PMID: 31208149]
[178]
Shim, K.B.; Yoon, N.Y. Inhibitory effect of Fucofuroeckol-A from Eisenia bicyclis on tyrosinase activity and melanin biosynthesis in murine melanoma B16F10 cells. Fish. Aquatic Sci., 2018, 21(1), 35.
[http://dx.doi.org/10.1186/s41240-018-0112-1]
[179]
Chen, H.; Song, W.; Sun, K.K.; Du, H.W.; Wei, S.D. Structure elucidation and evaluation of antioxidant and tyrosinase inhibitory effect and mechanism of proanthocyanidins from leaf and fruit of Leucaena leucocephala. J. Wood Chem. Technol., 2018, 38(6), 430-444.
[http://dx.doi.org/10.1080/02773813.2018.1533975]
[180]
Ishihara, A.; Ide, Y.; Bito, T.; Ube, N.; Endo, N.; Sotome, K.; Maekawa, N.; Ueno, K.; Nakagiri, A. Novel tyrosinase inhibitors from liquid culture of Neolentinus lepideus. Biosci. Biotechnol. Biochem., 2018, 82(1), 22-30.
[http://dx.doi.org/10.1080/09168451.2017.1415125] [PMID: 29297258]
[181]
Palareti, G.; Legnani, C.; Cosmi, B.; Antonucci, E.; Erba, N.; Poli, D.; Testa, S.; Tosetto, A.; De Micheli, V.; Ghirarduzzi, A.; Veropalumbo, M.R.; Chiara, U.M.; Prisco, D.; Paoletti, O.; Falanga, A.; Luigi, S.; Donadini, M.; Rancan, E.; Quintavalla, R.; Ferrini, P.M.; Santoro, R.C.; Orlandini, F.; Benedetti, R.; Cattaneo, M.; Lussana, F.; Bertinato, E.; Cappelli, R.; Pizzini, A.M.; Angeloni, L.; D’angelo, A.; Crippa, L.; Bortolotti, R.; Vandelli, M.R. Comparison between different D - D imer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. Int. J. Lab. Hematol., 2016, 38(1), 42-49.
[http://dx.doi.org/10.1111/ijlh.12426] [PMID: 26362346]
[182]
Ma, H.; Xu, J.; DaSilva, N.A.; Wang, L.; Wei, Z.; Guo, L.; Johnson, S.L.; Lu, W.; Xu, J.; Gu, Q.; Seeram, N.P. Cosmetic applications of glucitol-core containing gallotannins from a proprietary phenolic-enriched red maple (Acer rubrum) leaves extract: Inhibition of melanogenesis via down-regulation of tyrosinase and melanogenic gene expression in B16F10 melanoma cells. Arch. Dermatol. Res., 2017, 309(4), 265-274.
[http://dx.doi.org/10.1007/s00403-017-1728-1] [PMID: 28283753]
[183]
Tadrent, W.; Alabdul Magid, A.; Kabouche, A.; Harakat, D.; Voutquenne-Nazabadioko, L.; Kabouche, Z. A new sulfonylated flavonoid and other bioactive compounds isolated from the aerial parts of Cotula anthemoides L. Nat. Prod. Res., 2017, 31(12), 1437-1445.
[http://dx.doi.org/10.1080/14786419.2016.1261342] [PMID: 27892691]
[184]
Deering, R.W.; Chen, J.; Sun, J.; Ma, H.; Dubert, J.; Barja, J.L.; Seeram, N.P.; Wang, H.; Rowley, D.C. N-Acyl dehydrotyrosines, tyrosinase inhibitors from the marine bacterium Thalassotalea sp. PP2-459. J. Nat. Prod., 2016, 79(2), 447-450.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00972] [PMID: 26824128]
[185]
Kim, J.H.; Leem, H.H.; Lee, G.Y. The guanidine pseudoalkaloids 10-methoxy-leonurine and leonurine act as competitive inhibitors of tyrosinase. Biomolecules, 2020, 10(2), 174.
[http://dx.doi.org/10.3390/biom10020174] [PMID: 31979329]
[186]
Kim, J.; Kim, H.; Kang, S.; Kim, J.B.; Kim, Y.; Jin, C. Chemical constituents from Apios americana and their inhibitory activity on tyrosinase. Molecules, 2018, 23(1), 232.
[http://dx.doi.org/10.3390/molecules23010232] [PMID: 29361770]
[187]
Quan, N.V.; Xuan, T.D.; Anh, L.H.; Tran, H.D. Bio-guided isolation of prospective bioactive constituents from roots of Clausena indica (Dalzell) Oliv. Molecules, 2019, 24(24), 4442.
[http://dx.doi.org/10.3390/molecules24244442] [PMID: 31817276]
[188]
Lee, J.H.; Mei, H.C.; Kuo, I.C.; Lee, T.H.; Chen, Y.H.; Lee, C.K. Characterizing tyrosinase modulators from the roots of Angelica keiskei using tyrosinase inhibition assay and UPLC-MS/MS as the combinatorial novel approach. Molecules, 2019, 24(18), 3297.
[http://dx.doi.org/10.3390/molecules24183297] [PMID: 31510069]
[189]
Crespo, M.I.; Chabán, M.F.; Lanza, P.A.; Joray, M.B.; Palacios, S.M.; Vera, D.M.A.; Carpinella, M.C. Inhibitory effects of compounds isolated from Lepechinia meyenii on tyrosinase. Food Chem. Toxicol., 2019, 125, 383-391.
[http://dx.doi.org/10.1016/j.fct.2019.01.019] [PMID: 30684603]
[190]
Pynam, H.; Dharmesh, S.M. A xylorhamnoarabinogalactan I from Bael (Aegle marmelos L.) modulates UV/DMBA induced skin cancer via galectin-3 & gut microbiota. J. Funct. Foods, 2019, 60103425
[http://dx.doi.org/10.1016/j.jff.2019.103425]
[191]
Dang, P.H.; Nguyen, L.T.T.; Nguyen, H.T.T.; Le, T.H.; Do, T.N.V.; Nguyen, H.X.; Le, N.D.; Nguyen, M.T.T.; Nguyen, N.T. A new dimeric alkylresorcinol from the stem barks of Swintonia floribunda (Anacardiaceae). Nat. Prod. Res., 2019, 33(20), 2883-2889.
[http://dx.doi.org/10.1080/14786419.2018.1509329] [PMID: 30295064]
[192]
Li, F.; Guo, S.; Zhang, S.; Peng, S.; Cao, W.; Ho, C.T.; Bai, N. Bioactive constituents of F. esculentum bee pollen and quantitative analysis of samples collected from seven areas by HPLC. Molecules, 2019, 24(15), 2705.
[http://dx.doi.org/10.3390/molecules24152705] [PMID: 31349561]
[193]
Lee, D.Y.; Lee, J.; Jeong, Y.T.; Byun, G.H.; Kim, J.H. Melanogenesis inhibition activity of floralginsenoside A from Panax ginseng berry. J. Ginseng Res., 2017, 41(4), 602-607.
[http://dx.doi.org/10.1016/j.jgr.2017.03.005] [PMID: 29021710]
[194]
Masum, M.N.; Choodej, S.; Yamauchi, K.; Mitsunaga, T. Isolation of phenylpropanoid sucrose esters from the roots of Persicaria orientalis and their potential as inhibitors of melanogenesis. Med. Chem. Res., 2019, 28(5), 623-632.
[http://dx.doi.org/10.1007/s00044-019-02312-w]
[195]
Brandão, L.F.G.; Da Silva Santos, N.P.; Pereira, E.C.G.; Da Silva, N.H.; Matos, M.F.C.; Bogo, D.; Honda, N.K. Effects of fumarprotocetraric acid, a depsidone from the lichen Cladonia verticillaris, on tyrosinase activity. Orbital - The Electron. J. Chem., 2017, 9(4), 256-260.
[http://dx.doi.org/10.17807/orbital.v9i4.999]
[196]
Jia, Y.L.; Zheng, J.; Yu, F.; Cai, Y.X.; Zhan, X.L.; Wang, H.F.; Chen, Q.X. Anti-tyrosinase kinetics and antibacterial process of caffeic acid N-nonyl ester in Chinese Olive (Canarium album) postharvest. Int. J. Biol. Macromol., 2016, 91, 486-495.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.098] [PMID: 27246378]
[197]
Schulz, J.M.; Lanovoi, H.T.; Ames, A.M.; McKegg, P.C.; Patrone, J.D. Concise modular synthesis of thalassotalic acids A–C. J. Nat. Prod., 2019, 82(4), 1045-1048.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00028] [PMID: 30907079]
[198]
Wang, Y.L.; Hu, G.; Zhang, Q.; Yang, Y.X.; Li, Q.Q.; Hu, Y.J.; Chen, H.; Yang, F.Q. Screening and characterizing tyrosinase inhibitors from Salvia miltiorrhiza and Carthamus tinctorius by spectrum-effect relationship analysis and molecular docking. J. Anal. Methods Chem., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/2141389] [PMID: 29862119]
[199]
Zeng, H.; Sun, D.; Chu, S.; Zhang, J.; Hu, G.; Yang, R. Inhibitory effects of four anthraquinones on tyrosinase activity: Insight from spectroscopic analysis and molecular docking. Int. J. Biol. Macromol., 2020, 160, 153-163.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.193] [PMID: 32464200]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy