Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

General Review Article

Biosynthesized Cerium Oxide Nanoparticles CeO2NPs: Recent Progress and Medical Applications

Author(s): Humaira, Sayyad Ali Raza Bukhari, Hafiz Abdullah Shakir, Muhammad Khan, Shagufta Saeed, Irfan Ahmad and Muhammad Irfan*

Volume 24, Issue 6, 2023

Published on: 29 September, 2022

Page: [766 - 779] Pages: 14

DOI: 10.2174/1389201023666220821161737

Price: $65

conference banner
Abstract

Currently, nanobiotechnology represents a leading research area that primarily focuses on the safe, eco-friendly synthesis of biocompatible metal oxide nanoparticles. Among these, biosynthesized cerium oxide nanoparticles have particularly received attention in medical science as their unique surface chemistry and dual oxidation state make them excellent antioxidants and freeradical scavengers. Currently, plant extracts are widely explored and employed for the biosynthesis of CeO2NPs. Other biological sources such as marine oyster shell extract, egg-white, biopolymers, e.g., chitosan, agarose, alginate, and others, have also been successfully used for the fabrication of CeO2NPs. This review highlights the recent progress in the biosynthesis of CeO2NPs and the investigation of their medical use as biocompatible anticancer, antibacterial, antifungal, antioxidant, antidiabetic, and wound healing agents. Furthermore, prospects associated with the use of biogenic CeO2NPs in developing novel products in the medical sector are also highlighted.

Keywords: Biosynthesis, Cerium Oxide Nanoparticles, Nanoceria

Graphical Abstract

[1]
Yadi, M.; Mostafavi, E.; Saleh, B.; Davaran, S.; Aliyeva, I.; Khalilov, R.; Nikzamir, M.; Nikzamir, N.; Akbarzadeh, A.; Panahi, Y.; Milani, M. Current developments in green synthesis of metallic nanoparticles using plant extracts: A review. Artif. Cells Nanomed. Biotechnol., 2018, 46(3), S336-S343.
[http://dx.doi.org/10.1080/21691401.2018.1492931] [PMID: 30043657]
[2]
Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology, 2018, 16(1), 84.
[http://dx.doi.org/10.1186/s12951-018-0408-4] [PMID: 30373622]
[3]
Sharmila, G.; Muthukumaran, C.; Saraswathi, H.; Sangeetha, E.; Soundarya, S.; Kumar, N.M. Green synthesis, characterization and biological activities of nanoceria. Ceram. Int., 2019, 45(9), 12382-12386.
[http://dx.doi.org/10.1016/j.ceramint.2019.03.164]
[4]
Pugazhendhi, A.; Prabhu, R.; Muruganantham, K.; Shanmuganathan, R.; Natarajan, S. Anticancer, antimicrobial and photocatalytic activities of green synthesized Magnesium Oxide Nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J. Photochem. Photobiol. B. Biol., 2018, 190, 86-97.
[5]
Chavali, M.S.; Nikolova, M.P. Metal oxide nanoparticles and their applications in nanotechnology. SN. Appl. Sci., 2019, 1(6), 607.
[6]
Qamar, S.A.; Asgher, M.; Khalid, N.; Sadaf, M. Nanobiotechnology in health sciences: Current applications and future perspectives. Biocatal. Agric. Biotechnol., 2019, 22, 101388.
[http://dx.doi.org/10.1016/j.bcab.2019.101388]
[7]
Rafique, M.; Sadaf, I.; Rafique, M.S.; Tahir, M.B. A review on green synthesis of silver nanoparticles and their applications. Artif. Cells Nanomed. Biotechnol., 2017, 45(7), 1272-1291.
[http://dx.doi.org/10.1080/21691401.2016.1241792] [PMID: 27825269]
[8]
Mohd Fadzil, N.A.; A.B., Rahim M.H.; Maniam, GP. Brief review of ceria and modified ceria: Synthesis and application. Mater. Res. Express, 2018, 5(8), 085019.
[http://dx.doi.org/10.1088/2053-1591/aad2b5]
[9]
Hirst, S.M.; Karakoti, A.S.; Tyler, R.D.; Sriranganathan, N.; Seal, S.; Reilly, C.M. Anti-inflammatory properties of cerium oxide nanoparticles. Small, 2009, 5(24), 2848-2856.
[http://dx.doi.org/10.1002/smll.200901048] [PMID: 19802857]
[10]
He, H. Preparation and dispersion of nanosize ceria in high electrolyte slurry by ball-milling. Integr. Ferroelectr., 2015, 161(1), 36-44.
[http://dx.doi.org/10.1080/10584587.2015.1035594]
[11]
Singh, K.R.B.; Nayak, V.; Sarkar, T.; Singh, R.P. Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application. RSC Advances, 2020, 10(45), 27194-27214.
[http://dx.doi.org/10.1039/D0RA04736H] [PMID: 35515804]
[12]
Estevez, A.Y.; Erlichman, J.S. The potential of cerium oxide nanoparticles (nanoceria) for neurodegenerative disease therapy. Nanomedicine, 2014, 9(10), 1437-1440.
[http://dx.doi.org/10.2217/nnm.14.87] [PMID: 25253491]
[13]
Yulizar, Y.; Juliyanto, S. Sudirman; Apriandanu, D.O.B.; Surya, R.M. Novel sol-gel synthesis of CeO2 nanoparticles using Morinda citrifolia L. fruit extracts: Structural and optical analysis. J. Mol. Struct., 2021, 1231, 129904.
[http://dx.doi.org/10.1016/j.molstruc.2021.129904]
[14]
Mahabadi, A.G.; Mirzakhani, A.; Azizi, A.; Chavoshi, S.; Khaghani, S. Extracts of Pelargonium hortorum: A natural and efficient fluid for fast and eco-friendly biosynthesis of CeO2 nanoparticles for antioxidant and photocatalytic applications. Inorg. Chem. Commun., 2021, 127, 108553.
[http://dx.doi.org/10.1016/j.inoche.2021.108553]
[15]
Remani, K.C.; Binitha, N.N. Fluorescence sensing of picric acid by ceria nanostructures prepared using fenugreek extract. J. Iran. Chem. Soc., 2022, 19(2), 619-633.
[http://dx.doi.org/10.1007/s13738-021-02327-4]
[16]
Miri, A.; Sarani, M.; Khatami, M. Nickel-doped cerium oxide nanoparticles: Biosynthesis, cytotoxicity and UV protection studies. RSC Advances, 2020, 10(7), 3967-3977.
[http://dx.doi.org/10.1039/C9RA09076B] [PMID: 35492632]
[17]
Soren, S.; Jena, S.R.; Samanta, L.; Parhi, P. Antioxidant potential and toxicity study of the cerium oxide nanoparticles synthesized by microwave mediated synthesis. Appl. Biochem. Biotechnol., 2015, 177(1), 148-161.
[http://dx.doi.org/10.1007/s12010-015-1734-8] [PMID: 26137877]
[18]
Yu, T.; Lim, B.; Xia, Y. Aqueous-phase synthesis of single-crystal ceria nanosheets. Angew. Chem. Int. Ed., 2010, 49(26), 4484-4487.
[http://dx.doi.org/10.1002/anie.201001521] [PMID: 20458722]
[19]
Khorrami, M.B.; Sadeghnia, H.R.; Pasdar, A.; Ghayour-Mobarhan, M.; Riahi-Zanjani, B.; Hashemzadeh, A.; Zare, M.; Darroudi, M. Antioxidant and toxicity studies of biosynthesized cerium oxide nanoparticles in rats. Int. J. Nanomedicine, 2019, 14, 2915-2926.
[http://dx.doi.org/10.2147/IJN.S194192] [PMID: 31114200]
[20]
Machmudah, S.; Winardi, S.; Kanda, H.; Goto, M. Synthesis of ceria zirconia oxides using solvothermal treatment.MATEC Web of Conferences 2018, p. 05014.
[http://dx.doi.org/10.1051/matecconf/201815605014]
[21]
Gagnon, J.; Fromm, K.M. Toxicity and protective effects of cerium oxide nanoparticles (Nanoceria) depending on their preparation method, particle size, cell type, and exposure route. Eur. J. Inorg. Chem., 2015, 2015(27), 4510-4517.
[http://dx.doi.org/10.1002/ejic.201500643]
[22]
Capeness, M.J.; Echavarri-Bravo, V.; Horsfall, L.E. Production of biogenic nanoparticles for the reduction of 4-nitrophenol and oxidative laccase-like reactions. Front. Microbiol., 2019, 10, 997.
[http://dx.doi.org/10.3389/fmicb.2019.00997] [PMID: 31143166]
[23]
Munusamy, S.; Bhakyaraj, K.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V. Synthesis and characterization of cerium oxide nanoparticles using Curvularia lunata and their antibacterial properties. Int. J. Innov. Res. Sci. Eng., 2014, 2(1), 318.
[24]
Kunga, S.V.; Gopinath, K.; Palani, N.S. Plant pathogenic fungus F. solani mediated biosynthesis of Nanoceria: Antibacterial and antibiofilm activity. RSC Advances, 2016, 6(48), 42720-42729.
[25]
Khan, S.A.; Ahmad, A. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Mater. Res. Bull., 2013, 48(10), 4134-4138.
[http://dx.doi.org/10.1016/j.materresbull.2013.06.038]
[26]
İlgar, M.; Karakuş, S.; Kilislioğlu, A. Design, characterization and evaluation of the drug-loaded chitosan/cerium oxide nanoparticles with pH-controlled drug release. Polym. Bull.,, 2021, 1-6.
[http://dx.doi.org/10.1007/s00289-021-03839-y]
[27]
Rahdar, A.; Beyzaei, H.; Askari, F.; Kyzas, G.Z. Gum-based cerium oxide nanoparticles for antimicrobial assay. Appl. Phys., A Mater. Sci. Process., 2020, 126(5), 324.
[http://dx.doi.org/10.1007/s00339-020-03507-4]
[28]
Safat, S.; Buazar, F.; Albukhaty, S.; Matroodi, S. Enhanced sunlight photocatalytic activity and biosafety of marine-driven synthesized cerium oxide nanoparticles. Sci. Rep., 2021, 11(1), 14734.
[http://dx.doi.org/10.1038/s41598-021-94327-w] [PMID: 34282244]
[29]
Younas, M.; Rizwan, M.; Zubair, M.; Inam, A.; Ali, S. Biological synthesis, characterization of three metal-based nanoparticles and their anticancer activities against hepatocellular carcinoma HepG2 cells. Ecotoxicol. Environ. Saf., 2021, 223, 112575.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112575] [PMID: 34352575]
[30]
Sheela, K.; Madhusudhanan, J.; Thirumagal, J.; Chawla, N.; Jagannathan, S.; Ahmad, M.I.N. Biosynthesis and biological applications of cerium oxide nanoparticles. Annals of R.S.C.B, 2021, 25(6), 206-213.
[31]
Antony, D.; Yadav, R.; Kalimuthu, R. Accumulation of phyto-mediated nano-CeO2 and selenium doped CeO2 on Macrotyloma uniflorum (horse gram) seed by nano-priming to enhance seedling vigor. Biocatal. Agric. Biotechnol., 2021, 31, 101923.
[http://dx.doi.org/10.1016/j.bcab.2021.101923]
[32]
Heikal, Y.M. Şuţan, N.A.; Rizwan, M.; Elsayed, A. Green synthesized silver nanoparticles induced cytogenotoxic and genotoxic changes in Allium cepa L. varies with nanoparticles doses and duration of exposure.Chemosphere, 2020, 243, 125430.
[http://dx.doi.org/10.1016/j.chemosphere.2019.125430] [PMID: 31995881]
[33]
Matinise, N.; Kaviyarasu, K.; Mongwaketsi, N.; Khamlich, S.; Kotsedi, L.; Mayedwa, N.; Maaza, M. Green synthesis of novel Zinc Iron Oxide (ZnFe2O4) nanocomposite via Moringa Oleifera natural extract for electrochemical applications. Appl. Surf. Sci., 2018, 446, 66-73.
[http://dx.doi.org/10.1016/j.apsusc.2018.02.187]
[34]
Singh, A.; Hussain, I.; Singh, N.B.; Singh, H. Uptake, translocation and impact of green synthesized nanoceria on growth and antioxidant enzymes activity of Solanum lycopersicum L. Ecotoxicol. Environ. Saf., 2019, 182, 109410.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109410] [PMID: 31284122]
[35]
Nourmohammadi, E.; Kazemi Oskuee, R.; Hasanzadeh, L.; Mohajeri, M.; Hashemzadeh, A.; Rezayi, M.; Darroudi, M. Cytotoxic activity of greener synthesis of cerium oxide nanoparticles using carrageenan towards a WEHI 164 cancer cell line. Ceram. Int., 2018, 44(16), 19570-19575.
[http://dx.doi.org/10.1016/j.ceramint.2018.07.201]
[36]
Rajan, A.R.; Rajan, A.; John, A.; Philip, D. Green synthesis of CeO2 nanostructures by using Morus nigra fruit extract and its antidiabetic activity. AIP Conf. Proc., 2019, 2105(1), 020008.
[http://dx.doi.org/10.1063/1.5100693]
[37]
Abbasi, N.; Homayouni Tabrizi, M.; Ardalan, T.; Roumi, S. Cerium oxide nanoparticles-loaded on chitosan for the investigation of anticancer properties. Mater. Technol., 2021, 1-11.
[http://dx.doi.org/10.1080/10667857.2021.1954279]
[38]
Yiling, W.; Murakonda, G.K.; Jarubula, R. Application of green-synthesized cerium oxide nanoparticles to treat spinal cord injury and cytotoxicity evaluation on paediatric leukaemia cells. Mater. Res. Express, 2021, 8(7), 075006.
[http://dx.doi.org/10.1088/2053-1591/ac0fad]
[39]
Sebastiammal, S. Annlin, Bezy, N.; Somaprabha, A.; Henry, J.; Biju, C.S.; Lesly, F.A. Chemical and sweet basil leaf mediated synthesis of Cerium Oxide (CeO2) nanoparticles: Antibacterial action toward human pathogens. Phosphorus Sulfur Silicon Relat. Elem., 2022, 197(3), 237-243.
[http://dx.doi.org/10.1080/10426507.2021.2017435]
[40]
Eka Putri, G.; Rilda, Y.; Syukri, S.; Labanni, A.; Arief, S. Highly antimicrobial activity of cerium oxide nanoparticles synthesized using Moringa oleifera leaf extract by a rapid green precipitation method. J. Mater. Res. Technol., 2021, 15, 2355-2364.
[http://dx.doi.org/10.1016/j.jmrt.2021.09.075]
[41]
Pavan, M.A.K.; Suresh, D.; Sneharani, A.H. Senna mediated facile green synthesis of nano ceria and its photocatalytic and biological application. Mater. Today, 2022, 49(3), 882-890.
[http://dx.doi.org/10.1016/j.matpr.2021.06.195]
[42]
Ibrahim, A.M.; Mohamed, F.; Al-Quraishy, S.; Abdel-Baki, A-A.S.; Abdel-Tawab, H. Green synthesis of Cerium oxide/Moringa oleifera seed extract nano-composite and its molluscicidsal activities against Biomophalaria alexanderina. J. King Saud Univ. Sci., 2021, 33(3), 101368.
[http://dx.doi.org/10.1016/j.jksus.2021.101368]
[43]
Zafar, N.; Uzair, B.; Niazi, M.B.K.; Menaa, F.; Samin, G.; Khan, B.A.; Iqbal, H.; Menaa, B. Green synthesis of ciprofloxacin-loaded cerium oxide/chitosan nanocarrier and its activity against MRSA-induced mastitis. J. Pharm. Sci., 2021, 110(10), 3471-3483.
[http://dx.doi.org/10.1016/j.xphs.2021.06.017] [PMID: 34126118]
[44]
Sebastiammal, S.; Sonia, S.; Henry, J.; Lesly, A.F. Green synthesis of cerium oxide nanoparticles using Aloe vera leaf extract and its optical properties. Songklanakarin J. Sci. Technol., 2021, 43(2), 582-587.
[45]
Altaf, M.; Manoharadas, S.; Zeyad, M.T. Green synthesis of cerium oxide nanoparticles using Acorus calamus extract and their antibiofilm activity against bacterial pathogens. Microsc. Res. Tech., 2021, 84(8), 1638-1648.
[http://dx.doi.org/10.1002/jemt.23724] [PMID: 33559164]
[46]
Ahmed, H.E.; Iqbal, Y.; Aziz, M.H.; Atif, M.; Batool, Z.; Hanif, A.; Yaqub, N.; Farooq, W.A.; Ahmad, S.; Fatehmulla, A.; Ahmad, H. Green synthesis of CeO2 nanoparticles from the Abelmoschus esculentus extract: Evaluation of antioxidant, anticancer, antibacterial, and wound-healing activities. Molecules, 2021, 26(15), 4659.
[http://dx.doi.org/10.3390/molecules26154659] [PMID: 34361812]
[47]
Bakkiyaraj, R.; Subramanian, R.; Balakrishnan, M.; Ravichandran, K. Biofabrication of CeO2 nanoparticles, characterization, photocatalytic, and biological activities. Inorg. Nano-Met. Chem, 2021, 2021, 1-9.
[http://dx.doi.org/10.1080/24701556.2021.1983841]
[48]
Kashyap, K.; Khan, F.; Verma, D.; Agrawal, S.; Chandra, C.; Dewangan, P.K.; Sahu, V.; Verma, P.R.; Jain, V.K. Biofabrication and structural characterization of cerium oxide nanoparticles. IOP Conf. Series Mater. Sci. Eng., 2021, 1120(1), 012008.
[http://dx.doi.org/10.1088/1757-899X/1120/1/012008]
[49]
Rajan, A.R.; Vilas, V.; Rajan, A.; John, A.; Philip, D. Synthesis of CeO2 nanostructures with its exceptional biological and chemocatalytic activities: A comparative study. Bull. Mater. Sci., 2021, 44(1), 16.
[http://dx.doi.org/10.1007/s12034-020-02315-z]
[50]
Saravanakumar, K.; Sathiyaseelan, A.; Vijaya, A.A.M.; Wang, M.H. Antioxidant and antidiabetic properties of biocompatible Ceria oxide (CeO2) nanoparticles in mouse fibroblast NIH3T3 and insulin resistant HepG2 cells. Ceram. Int., 2021, 47(6), 8618-8626.
[http://dx.doi.org/10.1016/j.ceramint.202011.230]
[51]
Sudhakar, S.P.; Perma, D.; Velmurugan, S.; Kamaraj, M. Biosynthesis, characterization, antibacterial and anticancer studies of cerium oxide nanoparticles from Indigofera colutea leaf extract. Infokara Res., 2020, 9(1), 1-17.
[52]
Muthuvel, A.; Jothibas, M.; Mohana, V.; Manoharan, C. Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. Inorg. Chem. Commun., 2020, 119, 108086.
[http://dx.doi.org/10.1016/j.inoche.2020.108086]
[53]
Bhagit, A.A.; Mhatre, S.V.; Yadav, R.P. Proteome mediated synthesis of biocompatible green fluorescence cerium oxide quantum dots with enhanced antioxidant activity. Adv. Sci. Eng. Med., 2020, 12(6), 831-839.
[http://dx.doi.org/10.1166/asem.2020.2656]
[54]
Ahmad, T.; Iqbal, J.; Bustam, M.A.; Zulfiqar, M.; Muhammad, N.; Al Hajeri, B.M.; Irfan, M.; Anwaar Asghar, H.M.; Ullah, S. Phytosynthesis of cerium oxide nanoparticles and investigation of their photocatalytic potential for degradation of phenol under visible light. J. Mol. Struct., 2020, 1217, 128292.
[http://dx.doi.org/10.1016/j.molstruc.2020.128292]
[55]
Ashna, M.; Es-Haghi, A.; Karimi, M.N.; Al-Amara, D.; Ehsan, M.T.Y. Green synthesis of cerium oxide nanoemulsion using pollen grains of Brassica napus and evaluation of its antitumor and cytotoxicity properties. Mater. Technol., 2020, 2020, 525-532.
[http://dx.doi.org/10.1080/10667857.2020.1863558]
[56]
Sabouri, Z.; Sabouri, M.; Sadegh, M.A.; Khatami, M.; Darroudi, M. Plant based synthesis of cerium oxide nanoparticles using Rheum turkestanikum extract and evaluation of their cytotoxicity and photocatalytic properties. Mater. Technol., 2020, 2020, 555-568.
[http://dx.doi.org/10.1080/10667857.2020.1863573]
[57]
Kalantari, K.; Mostafavi, E.; Saleh, B.; Soltantabar, P.; Webster, T.J. Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications. Eur. Polym. J., 2020, 134, 109853.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109853]
[58]
Jan, H.; Khan, M.A.; Usman, H.; Shah, M.; Ansir, R.; Faisal, S.; Ullah, N.; Rahman, L. The Aquilegia pubiflora (Himalayan columbine) mediated synthesis of nanoceria for diverse biomedical applications. RSC Advances, 2020, 10(33), 19219-19231.
[http://dx.doi.org/10.1039/D0RA01971B] [PMID: 35515478]
[59]
Thema, F.T.; Letsholathebe, D.; Mphale, K. Enhanced antibacterial properties of green synthesized nano ceria via Agathosma betulina natural extract. Mater. Today, 2020, 36(2), 435-439.
[http://dx.doi.org/10.1016/j.matpr.2020.05.010]
[60]
Mohamed, H.E.A.; Afridi, S.; Khalil, A.T.; Ali, M.; Zohra, T.; Akhtar, R.; Ikram, A.; Shinwari, Z.K.; Maaza, M. Promising antiviral, antimicrobial and therapeutic properties of green nanoceria. Nanomedicine, 2020, 15(5), 467-488.
[http://dx.doi.org/10.2217/nnm-2019-0368] [PMID: 32063095]
[61]
Chen, G.; Xu, Y. Biosynthesis of cerium oxide nanoparticles and their effect on Lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction in male Sprague Dawley rats. Mater. Sci. Eng. C, 2018, 83, 148-153.
[http://dx.doi.org/10.1016/j.msec.2017.11.014] [PMID: 29208272]
[62]
Senthilkumar, R.P.; Bhuvaneshwari, V.; Malayaman, V.; Chitra, G.; Ranjithkumar, R.; Dinesh, K.P.B.; Chandarshekar, B. Biogenic method of cerium oxide nanoparticles synthesis using wireweed (Sida acuta Burm.f.) and its antibacterial activity against Escherichia coli. Mater. Res. Express, 2019, 6(10), 105026.
[http://dx.doi.org/10.1088/2053-1591/ab37b9]
[63]
Irshad, M.S.; Aziz, M.H.; Fatima, M.; Rehman, S.U.; Idrees, M.; Rana, S.; Shaheen, F.; Ahmed, A.; Javed, M.Q.; Huang, Q. Green synthesis, cytotoxicity, antioxidant and photocatalytic activity of CeO2 nanoparticles mediated via orange peel extract (OPE). Mater. Res. Express, 2019, 6(9), 0950a4.
[http://dx.doi.org/10.1088/2053-1591/ab3326]
[64]
Elahi, B.; Mirzaee, M.; Darroudi, M.; Kazemi, R.O.; Sadri, K.; Sadegh, M.A. Preparation of cerium oxide nanoparticles in Salvia Macrosiphon bioss seeds extract and investigation of their photo-catalytic activities. Ceram. Int., 2019, 45(4), 4790-4797.
[http://dx.doi.org/10.1016/j.ceramint.2018.11.173]
[65]
Khatami, M.; Sarani, M.; Mosazadeh, F.; Rajabalipour, M.; Izadi, A.; Abdollahpour-Alitappeh, M.; Lima Nobre, M.A.; Borhani, F. Nickel-doped cerium oxide nanoparticles: Green synthesis using Stevia and protective effect against harmful ultraviolet rays. Molecules, 2019, 24(24), 4424.
[http://dx.doi.org/10.3390/molecules24244424] [PMID: 31817060]
[66]
Dutta, D.; Mukherjee, R.; Patra, M.; Banik, M.; Dasgupta, R.; Mukherjee, M.; Basu, T. Green synthesized cerium oxide nanoparticle: A prospective drug against oxidative harm. Colloids Surf. B Biointerfaces, 2016, 147, 45-53.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.045] [PMID: 27478962]
[67]
Nadaroglu, H.; Onem, H.; Alayli, A.G. Green synthesis of Ce2O3 NPs and determination of its antioxidant activity. IET Nanobiotechnol., 2017, 11(4), 411-419.
[http://dx.doi.org/10.1049/iet-nbt.2016.0138] [PMID: 28530190]
[68]
Javadi, F.; Taghavizadeh Yazdi, M.E.; Baghani, M.; Es-haghi, A. Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. Mater. Res. Express, 2019, 6(6), 065408.
[http://dx.doi.org/10.1088/2053-1591/ab08ff]
[69]
Miri, A.; Sarani, M. Biosynthesis, characterization and cytotoxic activity of CeO2 nanoparticles. Ceram. Int., 2018, 44(11), 12642-12647.
[http://dx.doi.org/10.1016/j.ceramint.2018.04.063]
[70]
Miri, A.; Beiki, H.; Najafidoust, A.; Khatami, M.; Sarani, M. Cerium oxide nanoparticles: Green synthesis using banana peel, cytotoxic effect, UV protection and their photocatalytic activity. Bioprocess Biosyst. Eng., 2021, 44(9), 1891-1899.
[http://dx.doi.org/10.1007/s00449-021-02569-9] [PMID: 33891183]
[71]
Kumar, S.; Ahmed, F.; Shaalan, N.M.; Saber, O. Biosynthesis of CeO2 nanoparticles using egg white and their antibacterial and antibiofilm properties on clinical isolates. Crystals, 2021, 11(6), 584.
[http://dx.doi.org/10.3390/cryst11060584]
[72]
Kaygusuz, H.; Erim, F.B. Biopolymer-assisted green synthesis of functional cerium oxide nanoparticles. Chem. Pap., 2020, 74(7), 2357-2363.
[http://dx.doi.org/10.1007/s11696-020-01084-7]
[73]
Hasanzadeh, L.; Darroudi, M.; Ramezanian, N.; Zamani, P.; Aghaee-Bakhtiari, S.H.; Nourmohammadi, E.; Kazemi Oskuee, R. Polyethylenimine-associated cerium oxide nanoparticles: A novel promising gene delivery vector. Life Sci., 2019, 232, 116661.
[http://dx.doi.org/10.1016/j.lfs.2019.116661] [PMID: 31323272]
[74]
Kumar, K.M.; Mahendhiran, M.; Diaz, M.C.; Hernandez-Como, N.; Hernandez-Eligio, A.; Torres-Torres, G.; Godavarthi, S.; Gomez, L.M. Green synthesis of Ce3+ rich CeO2 nanoparticles and its antimicrobial studies. Mater. Lett., 2018, 214, 15-19.
[http://dx.doi.org/10.1016/j.matlet.2017.11.097]
[75]
Hasanzadeh, L.; Kazemi, R.O.; Sadri, K.; Nourmohammadi, E.; Mohajeri, M.; Mardani, Z. Green synthesis of labelled CeO2 nanoparticles with 99mTc and its biodistribution evaluation in mice. Life Sci., 2018, 212, 233-240.
[http://dx.doi.org/10.1016/j.lfs.2018.10.010]
[76]
Kim, S.J.; Chung, B.H. Antioxidant activity of levan coated cerium oxide nanoparticles. Carbohydr. Polym., 2016, 150, 400-407.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.021] [PMID: 27312651]
[77]
Kargar, H. Bioorganic polymer-based synthesis of cerium oxide nanoparticles and their cell viability assays. Ceram. Int., 2015, 41(1), 1589-1594.
[http://dx.doi.org/10.1016/j.ceramint.2014.09.095]
[78]
Darroudi, M.; Hoseini, S.J.; Kazemi-Oskuee, R. Food-directed synthesis of cerium oxide nanoparticles and their neurotoxicity effects. Ceram. Int., 2014, 40(5), 7425-7430.
[http://dx.doi.org/10.1016/j.ceramint.2013.12.089]
[79]
Darroudi, M.; Sarani, M.; Kazemi Oskuee, R.; Khorsand Zak, A.; Hosseini, H.A.; Gholami, L. Green synthesis and evaluation of metabolic activity of starch mediated nanoceria. Ceram. Int., 2014, 40(1), 2041-2045.
[http://dx.doi.org/10.1016/j.ceramint.2013.07.116]
[80]
Van-Lith, R.; Ameer, G.A. Antioxidant polymers as biomaterial.Oxidative Stress and Biomaterials; Dziubla, T.; Butterfield, D.A., Eds.; Elsevier Inc.: San Diego, CA, USA, 2016, pp. 251-296.
[http://dx.doi.org/10.1016/B978-0-12-803269-5.00010-3]
[81]
Xu, C.; Qu, X. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater., 2014, 6(3), e90.
[http://dx.doi.org/10.1038/am.2013.88]
[82]
Alpaslan, E.; Yazici, H.; Golshan, N.H.; Ziemer, K.S.; Webster, T.J. pH-dependent activity of dextran-coated cerium oxide nanoparticles on prohibiting osteosarcoma cell proliferation. ACS Biomater. Sci. Eng., 2015, 1(11), 1096-1103.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00194] [PMID: 33429551]
[83]
Wason, M.S.; Colon, J.; Das, S.; Seal, S.; Turkson, J.; Zhao, J.; Baker, C.H. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine, 2013, 9(4), 558-569.
[http://dx.doi.org/10.1016/j.nano.2012.10.010] [PMID: 23178284]
[84]
Madero-Visbal, R.A.; Alvarado, B.E.; Colon, J.F.; Baker, C.H.; Wason, M.S.; Isley, B.; Seal, S.; Lee, C.M.; Das, S.; Mañon, R. Harnessing nanoparticles to improve toxicity after head and neck radiation. Nanomedicine, 2012, 8(7), 1223-1231.
[http://dx.doi.org/10.1016/j.nano.2011.12.011] [PMID: 22248817]
[85]
Maleki, P.; Nemati, F.; Gholoobi, A.; Hashemzadeh, A.; Sabouri, Z.; Darroudi, M. Green facile synthesis of silver-doped cerium oxide nanoparticles and investigation of their cytotoxicity and antibacterial activity. Inorg. Chem. Commun., 2021, 131, 108762.
[http://dx.doi.org/10.1016/j.inoche.2021.108762]
[86]
Kermani, G.; Karimi, E.; Tabrizi, M.H. Hybrid nanoarchitectonics of chitosan-cerium oxide nanoparticles for anticancer potentials. J. Inorg. Organomet. Polym. Mater., 2022, 1-9.
[http://dx.doi.org/10.1007/s10904-022-02329-6]
[87]
Ganeskar, M.P.; Hucharayappa, P.G.; Rajendra, M.M.; Thatesh, A.G.; Shivappa, P.; Mukappa, C.K. Characterization and screening of anticancer properties of cerium oxide nanoparticles synthesized using Averrhoa carambola plant extract. Inorg. Nano-Met. Chem, 2022, 1-4.
[http://dx.doi.org/10.1080/24701556.2022.2077374]
[88]
Maqbool, Q.; Nazar, M.; Naz, S.; Hussain, T.; Jabeen, N.; Kausar, R.; Anwaar, S.; Abbas, F.; Jan, T. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Int. J. Nanomedicine, 2016, 11, 5015-5025.
[http://dx.doi.org/10.2147/IJN.S113508] [PMID: 27785011]
[89]
Thakur, N.; Manna, P.; Das, J. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J. Nanobiotechnology, 2019, 17(1), 84.
[http://dx.doi.org/10.1186/s12951-019-0516-9] [PMID: 31291944]
[90]
Arumugam, A.; Karthikeyan, C.; Haja-Hameed, A.S.; Gopinath, K.; Gowri, S.; Karthika, V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater. Sci. Eng. C, 2015, 49, 408-415.
[http://dx.doi.org/10.1016/j.msec.2015.01.042]
[91]
Zholobak, N.M.; Ivanov, V.K.; Shcherbakov, A.B. Interaction of nanoceria with microorganisms.Nanobiomaterials in antimicrobial therapy: Applications of nanobiomaterials; Elsevier Inc.: New York, 2016, pp. 419-450.
[http://dx.doi.org/10.1016/B978-0-323-42864-4.00012-9]
[92]
Kannan, S.K.; Sundrarajan, M. Green approach for the synthesis of a cerium oxide nanoparticle: Characterization and antibacterial activity. Int. J. Nanosci., 2014, 13(3), 1450018.
[http://dx.doi.org/10.1142/S0219581X14500185]
[93]
Tong, G.X.; Du, F.F.; Liang, Y.; Hu, Q.; Wu, R.N.; Guan, J.G.; Hu, X. Polymorphous ZnO complex architectures: Selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(4), 454-463.
[http://dx.doi.org/10.1039/C2TB00132B] [PMID: 32260816]
[94]
Bhagat, M.; Anand, R.; Datt, R.; Gupta, V.; Arya, S. Green synthesis of silver nanoparticles using aqueous extract of Rosa brunonii lindl and their morphological, biological and photocatalytic characterizations. J. Inorg. Organomet. Polym. Mater., 2019, 29(3), 1039-1047.
[http://dx.doi.org/10.1007/s10904-018-0994-5]
[95]
Ikram, M.; Hayat, S.; Imran, M.; Haider, A.; Naz, S.; Ul-Hamid, A.; Shahzadi, I.; Haider, J.; Shahzadi, A.; Nabgan, W.; Ali, S. Novel Ag/cellulose-doped CeO2 quantum dots for efficient dye degradation and bactericidal activity with molecular docking study. Carbohydr. Polym., 2021, 269, 118346.
[http://dx.doi.org/10.1016/j.carbpol.2021.118346] [PMID: 34294353]
[96]
Appu, M.; Wu, H.; Chen, H.; Huang, J. Tea polyphenols mediated biogenic synthesis of chitosan-coated cerium oxide (CS/CeO2) nanocomposites and their potent antimicrobial capabilities. Environ. Sci. Pollut. Res. Int., 2022, 1-2.
[http://dx.doi.org/10.1007/s11356-022-19349-x] [PMID: 35233667]
[97]
Ahluwalia, V.; Elumalai, S.; Kumar, V.; Kumar, S.; Sangwan, R.S. Nano silver particle synthesis using Swertia paniculata herbal extract and its antimicrobial activity. Microb. Pathog., 2018, 114, 402-408.
[http://dx.doi.org/10.1016/j.micpath.2017.11.052] [PMID: 29196171]
[98]
Singh, P.; Kim, Y.J.; Zhang, D.; Yang, D.C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol., 2016, 34(7), 588-599.
[http://dx.doi.org/10.1016/j.tibtech.2016.02.006] [PMID: 26944794]
[99]
Goyal, P.; Bhardwaj, A.; Kumar, B.M.; Mehta, D. Biosynthesis of CeO2NPs from ethanolic seed extract of H. annuus and their characterization by spectroscopic methods. SSRN,
[http://dx.doi.org/10.2139/ssrn.4062810]
[100]
Nagaich, U.; Gulati, N.; Chauhan, S. Antioxidant and antibacterial potential of silver biogenic synthesis utilizing apple extract. nanoparticles. J. Pharm., 2016, 7141523.
[http://dx.doi.org/10.1155/2016/7141523] [PMID: 28018705]
[101]
Yu, Z.; Yin, Y.; Zhao, W.; Liu, J.; Chen, F. Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase. Food Chem., 2012, 135(3), 2078-2085.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.088] [PMID: 22953959]
[102]
Rajendran, N.K.; Kumar, S.S.D.; Houreld, N.N.; Abrahamse, H. A review on nanoparticle based treatment for wound healing. J. Drug Deliv. Sci. Technol., 2018, 44, 421-430.
[http://dx.doi.org/10.1016/j.jddst.2018.01.009]
[103]
Diaconeasa, Z.; Rugină, D.; Coman, C.; Socaciu, C.; Leopold, L.F.; Vulpoi, A.; Tăbăran, F.; Suciu, M.; Mesaroş, A.; Popa, L.M.; Pop, O.L.; Simon, S.; Pintea, A. New insights regarding the selectivity and the uptake potential of nanoceria by human cells. Colloids Surf. A Physicochem. Eng. Asp., 2017, 532, 132-139.
[http://dx.doi.org/10.1016/j.colsurfa.2017.05.081]
[104]
Chigurupati, S.; Mughal, M.R.; Okun, E.; Das, S.; Kumar, A.; McCaffery, M.; Seal, S.; Mattson, M.P. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials, 2013, 34(9), 2194-2201.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.061] [PMID: 23266256]
[105]
Ranjbar, A.; Soleimani Asl, S.; Firozian, F.; Heidary Dartoti, H.; Seyedabadi, S.; Taheri Azandariani, M.; Ganji, M. Role of cerium oxide nanoparticles in a paraquat-induced model of oxidative stress: Emergence of neuroprotective results in the brain. J. Mol. Neurosci., 2018, 66(3), 420-427.
[http://dx.doi.org/10.1007/s12031-018-1191-2] [PMID: 30284226]
[106]
Javed, R.; Ahmed, M.; Haq, I.; Nisa, S.; Zia, M. PVP and PEG doped CuO nanoparticles are more biologically active: Antibacterial, antioxidant, antidiabetic and cytotoxic perspective. Mater. Sci. Eng. C, 2017, 79, 108-115.
[http://dx.doi.org/10.1016/j.msec.2017.05.006] [PMID: 28628996]
[107]
Das, M.; Devi, G. In vitro cytotoxicity and glucose uptake activity of fruits of Terminalia bellirica in vero, L-6 and 3T3 cell lines. J.Appl. Pharm. Sci.,, 2015, 5(12), 092-095.
[http://dx.doi.org/10.7324/JAPS.2015.501215]
[108]
Reddy, G.R.; Morais, A.B.; Gandhi, N.N. 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay and bacterial toxicity of protein capped silver nanoparticles for antioxidant and antibacterial applications. Asian J. Chem., 2013, 25(16), 9249-9254.
[http://dx.doi.org/10.14233/ajchem.2013.15215]
[109]
Zgheib, C.; Hilton, S.A.; Dewberry, L.C.; Hodges, M.M.; Ghatak, S.; Xu, J.; Singh, S.; Roy, S.; Sen, C.K.; Seal, S.; Liechty, K.W. Use of cerium oxide nanoparticles conjugated with microRNA-146a to correct the diabetic wound healing impairment. J. Am. Coll. Surg., 2019, 228(1), 107-115.
[http://dx.doi.org/10.1016/j.jamcollsurg.2018.09.017] [PMID: 30359833]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy