Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

General Research Article

Investigating the Impact of Covalent and Non-covalent Binding Modes of Inhibitors on Bruton’s Tyrosine Kinase in the Treatment of B Cell Malignancies - Computational Insights

Author(s): Abdul Rashid Issahaku and Mahmoud E.S. Soliman*

Volume 24, Issue 6, 2023

Published on: 29 September, 2022

Page: [814 - 824] Pages: 11

DOI: 10.2174/1389201023666220617151552

Price: $65

Abstract

Background: Bruton tyrosine kinase plays a key role in the survival, proliferation, activation, and differentiation of B-lineage cells and the signaling of other receptors. It is overexpressed and constitutively active in the pathogenesis of B cell malignancies and has therefore become a target for therapeutic intervention. Some success has been achieved in the discovery of small molecules, especially in the development of irreversible inhibitors. However, these inhibitors are punctuated by off target effects and have also become less effective in patients with mutations at Cys481. This motivated the search for inhibitors with improved efficacy and different binding modes.

Methods: In this study, we employed two new second generation inhibitors with different binding modes, Zanubrutinib and AS-1763, which are at various levels of clinical trials, to highlight the molecular determinants in the therapeutic inhibition of BTK through computational studies.

Results: This study revealed that Zanubrutinib and AS-1763 exhibited free total binding energies of -98.76 ± 4.63 kcal/mol and -51.81 ± 9.94 kcal/mol, respectively, with Zanubrutinib engaging in peculiar hydrogen bond interactions with the hinge residues Glu475 and Met477 including Asn484 and Tyr485 while AS-1763 engaged Lys430, Asp539, and Arg525. These residues contributed the most towards the free total binding energy with energies above -1.0 kcal/mol. The compounds further interacted differentially with other binding site residues through pi-alkyl, pi-cation, pianion, pi-pi-T-shaped, pi-sigma, pi-sulfur and pi-donor hydrogen bonds, and Van der Waals interactions. These interactions resulted in differential fluctuations of the residues with the consequential unfolding of the protein.

Conclusion: Insights herein would be useful in guiding the discovery of more selective and potent small molecules.

Keywords: Bruton’s Tyrosine Kinase, Zanubrutinib, AS-1763, B cell malignancies, Molecular Dynamics Simulation, covalent inhibitor

« Previous
[1]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase - Role and significance in Cancer. Int. J. Med. Sci., 2004, 1(2), 101-115.
[http://dx.doi.org/10.7150/ijms.1.101] [PMID: 15912202]
[2]
García-Merino, A. Bruton’s tyrosine kinase inhibitors: A new generation of promising agents for multiple sclerosis therapy. Cells, 2021, 10(10), 2560.
[http://dx.doi.org/10.3390/cells10102560] [PMID: 34685540]
[3]
Krupa, A.; Fudala, R.; Florence, J.M.; Tucker, T.; Allen, T.C.; Standiford, T.J.; Luchowski, R.; Fol, M.; Rahman, M.; Gryczynski, Z.; Gryczynski, I.; Kurdowska, A.K. Bruton’s tyrosine kinase mediates FcγRIIa/Toll-like receptor-4 receptor crosstalk in human neutrophils. Am. J. Respir. Cell Mol. Biol., 2013, 48(2), 240-249.
[http://dx.doi.org/10.1165/rcmb.2012-0039OC] [PMID: 23239500]
[4]
de Gorter, D.J.J.; Beuling, E.A.; Kersseboom, R.; Middendorp, S.; van Gils, J.M.; Hendriks, R.W.; Pals, S.T.; Spaargaren, M. Bruton’s tyrosine kinase and phospholipase Cγ2 mediate chemokine-controlled B cell migration and homing. Immunity, 2007, 26(1), 93-104.
[http://dx.doi.org/10.1016/j.immuni.2006.11.012] [PMID: 17239630]
[5]
Hata, D.; Kawakami, Y.; Inagaki, N.; Lantz, C.S.; Kitamura, T.; Khan, W.N.; Maeda-Yamamoto, M.; Miura, T.; Han, W.; Hartman, S.E.; Yao, L.; Nagai, H.; Goldfeld, A.E.; Alt, F.W.; Galli, S.J.; Witte, O.N.; Kawakami, T. Involvement of Bruton’s tyrosine kinase in FcepsilonRI-dependent mast cell degranulation and cytokine production. J. Exp. Med., 1998, 187(8), 1235-1247.
[http://dx.doi.org/10.1084/jem.187.8.1235] [PMID: 9547335]
[6]
Hendriks, R.W.; Middendorp, S. The pre-BCR checkpoint as a cell-autonomous proliferation switch. Trends Immunol., 2004, 25(5), 249-256.
[http://dx.doi.org/10.1016/j.it.2004.02.011] [PMID: 15099565]
[7]
Purvis, G.; Aranda, H.; Channon, K.; Greaves, D. Bruton’s tyrosine kinase (BTK) regulates myeloid cell recruitment during acute inflammation. BJP, 2022, 179(1), 2754-2770.
[http://dx.doi.org/10.22541/au.162003905.59954600/v1]
[8]
Maurya, N.; Gujar, R.; Gupta, M.; Yadav, V.; Verma, S.; Sen, P. Immunoregulation of dendritic cells by the receptor T cell Ig and mucin protein-3 via Bruton’s tyrosine kinase and c-Src. J. Immunol., 2014, 193(7), 3417-3425.
[http://dx.doi.org/10.4049/jimmunol.1400395] [PMID: 25172495]
[9]
Jongstra-Bilen, J.; Puig Cano, A.; Hasija, M.; Xiao, H.; Smith, C.I.E.; Cybulsky, M.I. Dual functions of Bruton’s tyrosine kinase and Tec kinase during Fcgamma receptor-induced signaling and phagocytosis. J. Immunol., 2008, 181(1), 288-298.
[http://dx.doi.org/10.4049/jimmunol.181.1.288] [PMID: 18566394]
[10]
Menzfeld, C.; John, M.; van Rossum, D.; Regen, T.; Scheffel, J.; Janova, H.; Götz, A.; Ribes, S.; Nau, R.; Borisch, A.; Boutin, P.; Neumann, K.; Bremes, V.; Wienands, J.; Reichardt, H.M.; Lühder, F.; Tischner, D.; Waetzig, V.; Herdegen, T.; Teismann, P.; Greig, I.; Müller, M.; Pukrop, T.; Mildner, A.; Kettenmann, H.; Brück, W.; Prinz, M.; Rotshenker, S.; Weber, M.S.; Hanisch, U.K. Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism. Glia, 2015, 63(6), 1083-1099.
[http://dx.doi.org/10.1002/glia.22803] [PMID: 25731696]
[11]
Hsu, J.; Gu, Y.; Tan, S.L.; Narula, S.; De Martino, J.A.; Liao, C. Bruton’s Tyrosine Kinase (BTK) mediates platelet receptor-induced generation of microparticles: A potential mechanism for amplification of inflammatory responses in rheumatoid arthritis synovial joints. Immunol. Lett., 2013, 150(1-2), 97-104.
[http://dx.doi.org/10.1016/j.imlet.2012.12.007] [PMID: 23266841]
[12]
Bao, Y.; Zheng, J.; Han, C.; Jin, J.; Han, H.; Liu, Y.; Lau, Y.L.; Tu, W.; Cao, X. Bruton’s Tyrosine Kinase (BTK) is required for NK cell activation. J. Biol. Chem., 2012, 287(28), 23769-23778.
[http://dx.doi.org/10.1074/jbc.M112.372425] [PMID: 22589540]
[13]
Xia, S.; Liu, X.; Cao, X.; Xu, S. T-cell expression of Bruton’s tyrosine kinase promotes autoreactive T-cell activation and exacerbates aplastic anemia. Cell. Mol. Immunol., 2020, 17(10), 1042-1052.
[http://dx.doi.org/10.1038/s41423-019-0270-9] [PMID: 31431692]
[14]
Vihinen, M.; Mattsson, P.T.; Smith, C.I. Bruton Tyrosine Kinase (BTK) in X-Linked Agammaglobulinemia (XLA). Front. Biosci., 2000, 5, D917-D928.
[http://dx.doi.org/10.2741/vihinen] [PMID: 11102316]
[15]
Rawlings, D.J.; Saffran, D.C.; Tsukada, S.; Largaespada, D.A.; Grimaldi, J.C.; Cohen, L.; Mohr, R.N.; Bazan, J.F.; Howard, M.; Copeland, N.G. Mutation of unique region of Bruton’s Tyrosine Kinase (BTK) in immunodeficient XID mice. Science, 1993, 261(5119), 358-361.
[http://dx.doi.org/10.1126/science.8332901] [PMID: 8332901]
[16]
Hendriks, R.W.; Yuvaraj, S.; Kil, L.P. Targeting Bruton’s Tyrosine Kinase (BTK) in B cell malignancies. Nat. Rev. Cancer, 2014, 14(4), 219-232.
[http://dx.doi.org/10.1038/nrc3702] [PMID: 24658273]
[17]
Lionakis, M.S.; Dunleavy, K.; Roschewski, M.; Widemann, B.C.; Butman, J.A.; Schmitz, R.; Yang, Y.; Cole, D.E.; Melani, C.; Higham, C.S.; Desai, J.V.; Ceribelli, M.; Chen, L.; Thomas, C.J.; Little, R.F.; Gea-Banacloche, J.; Bhaumik, S.; Stetler-Stevenson, M.; Pittaluga, S.; Jaffe, E.S.; Heiss, J.; Lucas, N.; Steinberg, S.M.; Staudt, L.M.; Wilson, W.H. Inhibition of B cell receptor signaling by ibrutinib in primary CNS lymphoma. Cancer Cell, 2017, 31(6), 833-843.e5.
[http://dx.doi.org/10.1016/j.ccell.2017.04.012] [PMID: 28552327]
[18]
Zhang, D.; Gong, H.; Meng, F. Recent advances in BTK inhibitors for the treatment of inflammatory and autoimmune diseases. Molecules, 2021, 26(16), 4907.
[http://dx.doi.org/10.3390/molecules26164907] [PMID: 34443496]
[19]
Wang, M.L.; Rule, S.; Martin, P.; Goy, A.; Auer, R.; Kahl, B.S.; Jurczak, W.; Advani, R.H.; Romaguera, J.E.; Williams, M.E.; Barrientos, J.C.; Chmielowska, E.; Radford, J.; Stilgenbauer, S.; Dreyling, M.; Jedrzejczak, W.W.; Johnson, P.; Spurgeon, S.E.; Li, L.; Zhang, L.; Newberry, K.; Ou, Z.; Cheng, N.; Fang, B.; McGreivy, J.; Clow, F.; Buggy, J.J.; Chang, B.Y.; Beaupre, D.M.; Kunkel, L.A.; Blum, K.A. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med., 2013, 369(6), 507-516.
[http://dx.doi.org/10.1056/NEJMoa1306220] [PMID: 23782157]
[20]
Labenski, M. In vitro reactivity assessment of covalent drugs targeting bruton’s tyrosine kinase. Poster ISSX, 2011, 774, 2011.
[21]
Multiple, R.; Logie, E.; Chirumamilla, C.S.; Perez-Novo, C. Covalent cysteine targeting of Bruton’s Tyrosine Kinase (BTK) family by withaferin-a reduces survival of glucocorticoid-resistant multiple myeloma MM1 cells. Cancers, 2021, 13(7), 1618.
[22]
Liang, C.; Tian, D.; Ren, X.; Ding, S.; Jia, M.; Xin, M.; Thareja, S. The development of Bruton’s Tyrosine Kinase (BTK) inhibitors from 2012 to 2017: A mini-review. Eur. J. Med. Chem., 2018, 151, 315-326.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.062] [PMID: 29631132]
[23]
Sutanto, F.; Konstantinidou, M.; Dömling, A. Covalent inhibitors: A rational approach to drug discovery. RSC Med. Chem., 2020, 11(8), 876-884.
[http://dx.doi.org/10.1039/D0MD00154F] [PMID: 33479682]
[24]
Gu, D.; Tang, H.; Wu, J.; Li, J.; Miao, Y. Targeting Bruton tyrosine kinase using non-covalent inhibitors in B cell malignancies. J. Hematol. Oncol., 2021, 14(1), 40.
[http://dx.doi.org/10.1186/s13045-021-01049-7] [PMID: 33676527]
[25]
Kawahata, W.; Asami, T.; Kiyoi, T.; Irie, T.; Kashimoto, S.; Furuichi, H.; Sawa, M. Discovery of AS-1763: A potent, selective, noncovalent, and orally available inhibitor of bruton’s tyrosine kinase. J. Med. Chem., 2021, 64(19), 14129-14141.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01279] [PMID: 34529443]
[26]
Guo, Y.; Liu, Y.; Hu, N.; Yu, D.; Zhou, C.; Shi, G.; Zhang, B.; Wei, M.; Liu, J.; Luo, L.; Tang, Z.; Song, H.; Guo, Y.; Liu, X.; Su, D.; Zhang, S.; Song, X.; Zhou, X.; Hong, Y.; Chen, S.; Cheng, Z.; Young, S.; Wei, Q.; Wang, H.; Wang, Q.; Lv, L.; Wang, F.; Xu, H.; Sun, H.; Xing, H.; Li, N.; Zhang, W.; Wang, Z.; Liu, G.; Sun, Z.; Zhou, D.; Li, W.; Liu, L.; Wang, L.; Wang, Z. Discovery of Zanubrutinib (BGB-3111), a novel, potent, and selective covalent inhibitor of Bruton’s tyrosine kinase. J. Med. Chem., 2019, 62(17), 7923-7940.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00687] [PMID: 31381333]
[27]
Tam, C.S.; Opat, S.; Simpson, D.; Cull, G.; Munoz, J.; Phillips, T.J.; Kim, W.S.; Rule, S.; Atwal, S.K.; Wei, R.; Novotny, W.; Huang, J.; Wang, M.; Trotman, J. Zanubrutinib for the treatment of relapsed or refractory mantle cell lymphoma. Blood Adv., 2021, 5(12), 2577-2585.
[http://dx.doi.org/10.1182/bloodadvances.2020004074] [PMID: 34152395]
[28]
Rhodes, J.M.; Mato, A.R. Zanubrutinib (BGB-3111), a second-generation selective covalent inhibitor of Bruton’s tyrosine kinase and its utility in treating chronic lymphocytic leukemia. Drug Des. Devel. Ther., 2021, 15, 919-926.
[http://dx.doi.org/10.2147/DDDT.S250823] [PMID: 33688166]
[29]
Trotman, J.; Opat, S.; Gottlieb, D.; Simpson, D.; Marlton, P.; Cull, G.; Munoz, J.; Tedeschi, A.; Roberts, A.W.; Seymour, J.F.; Atwal, S.K.; Yu, Y.; Novotny, W.; Holmgren, E.; Tan, Z.; Hilger, J.D.; Huang, J.; Tam, C.S. Zanubrutinib for the treatment of patients with Waldenström macroglobulinemia: 3 years of follow-up. Blood, 2020, 136(18), 2027-2037.
[http://dx.doi.org/10.1182/blood.2020006449] [PMID: 32698195]
[30]
Tam, C. The BTK Inhibitor, Bgb-3111, is safe, tolerable, and highly active in patients with relapsed/refractory B-cell malignancies: Initial report of a phase 1 first-in-human trial. Blood, 2015, 126(23), 832.
[http://dx.doi.org/10.1182/blood.V126.23.832.832]
[31]
Wu, J.; Liu, C.; Tsui, S.T.; Liu, D. Second-generation inhibitors of bruton tyrosine kinase. J. Hematol. Oncol., 2016, 9(1), 80.
[http://dx.doi.org/10.1186/s13045-016-0313-y] [PMID: 27590878]
[32]
Berman, H.M. The protein data bank Nucl. Ac. Res., 2000, 28, 235.
[33]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[34]
Marvin|ChemAxon. MarvinSketch-Create and Design. https://chemaxon.com/marvin/sketch/index.jsp (Accessed on May 27, 2022)
[35]
Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4(1), 17.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]
[36]
Trott, O.; Olson, A. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334.AutoDock] [PMID: 19499576]
[37]
U., Manual PostgreSQL Maestro 10.4 released. 2021. Available From: https://www.postgresql.org/about/news/postgresql-maestro-104-released-1196/
[38]
Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model., 2006, 25(2), 247-260.
[http://dx.doi.org/10.1016/j.jmgm.2005.12.005] [PMID: 16458552]
[39]
Ambermd.Org. The Amber Molecular Dynamics Package. Amber, 2014, 14 Available from: http://ambermd.org/doc12/Amber14.pdf%0A http://ambermd.org/ (Accessed on May 27, 2022).
[40]
Nikitin, S. Leap Gradient Algorithm. Optim. Control; , 2014, p. 24.
[41]
Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 2015, 11(8), 3696-3713.
[http://dx.doi.org/10.1021/acs.jctc.5b00255] [PMID: 26574453]
[42]
Larini, L.; Mannella, R.; Leporini, D. Langevin stabilization of molecular-dynamics simulations of polymers by means of quasisymplectic algorithms. J. Chem. Phys., 2007, 126(10)104101
[http://dx.doi.org/10.1063/1.2464095] [PMID: 17362055]
[43]
Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81, 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[44]
Gonnet, P. P-SHAKE: A quadratically convergent SHAKE in O (n2). J. Comput. Phys., 2007, 220(2), 740-750.
[http://dx.doi.org/10.1016/j.jcp.2006.05.032]
[45]
Sprenger, K.G.; Jaeger, V.W.; Pfaendtner, J. The General AMBER Force Field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J. Phys. Chem. B, 2015, 119(18), 5882-5895.
[http://dx.doi.org/10.1021/acs.jpcb.5b00689] [PMID: 25853313]
[46]
Roe, D.R.; Cheatham, T.E. III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[47]
Seifert, E. OriginPro 9.1: Scientific data analysis and graphing software-software review. J. Chem. Inf. Model., 2014, 54(5), 1552-1552.
[http://dx.doi.org/10.1021/ci500161d] [PMID: 24702057]
[48]
Biovia, D.S. Discovery Studio; Dassault Systèmes: San Diego, 2017.
[49]
Miller, B.R.; Mcgee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput., 2012, 8(9), 3314-3321.
[http://dx.doi.org/10.1021/ct300418h]
[50]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[51]
Daviter, T.; Johnson, C.M.; Mclaughlin, S.H. Protein ligand interactions: Methods and Applications, 3rd ed; Humana Press: NY, 2021.
[52]
Koča, J. Structural bioinformatics tools for drug design: extraction of biologically relevant information from structural databases (springer briefs in biochemistry and molecular biology). Springer Link: Amsterdam 2017.
[53]
Bornot, A.; Etchebest, C.; de Brevern, A.G. Predicting protein flexibility through the prediction of local structures. Proteins, 2011, 79(3), 839-852.
[http://dx.doi.org/10.1002/prot.22922] [PMID: 21287616]
[54]
Maiorov, V.N.; Crippen, G.M. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J. Mol. Biol., 1994, 235(2), 625-634.
[http://dx.doi.org/10.1006/jmbi.1994.1017] [PMID: 8289285]
[55]
Kiely-Collins, H.; Winter, G.E.; Bernardes, G.J.L. The role of reversible and irreversible covalent chemistry in targeted protein degradation. Cell Chem. Biol., 2021, 28(7), 952-968.
[http://dx.doi.org/10.1016/j.chembiol.2021.03.005] [PMID: 33789091]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy