Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identification of Pyroptosis Gene Signature Related Molecular Pattern, Clinical Implication, and Tumor Immunity in Hepatocellular Carcinoma

Author(s): Yao-Ting Li and Xue-Zhen Zeng*

Volume 26, Issue 7, 2023

Published on: 13 October, 2022

Page: [1324 - 1336] Pages: 13

DOI: 10.2174/1386207325666220822185035

Price: $65

conference banner
Abstract

Background: Pyroptosis is a novel form of programmed cell death in cancers, which regulates tumor cell invasion, proliferation, and metastasis, thereby affecting the prognosis of cancer patients. However, the role of Pyroptosis-Related Genes (PGs) in Hepatocellular Carcinoma (HCC) remains unclear.

Methods: Somatic mutation, copy number variation, and expression of 41 PGs were assessed in HCC and normal liver from the TCGA dataset. The Least Absolute Shrinkage and Selection Operator (LASSO) was used to construct the prognostic model. K-M curves, ROC curves, nomograph, and univariate and multivariate Cox regression were conducted to evaluate the predictive value of PGs. Immune infiltration was analyzed by CIBERSOFT and ssGSEA algorithm. The expression of prognostic PGs was validated by qPCR.

Results: Significant mutation and copy number variation of PGs were found in HCC. These genes were involved in an inflammatory response. In addition, 9 out of 41 PGs were differentially expressed in HCC and found to correlate significantly with patient survival. Then, these signature genes were selected to build a prognosis model and were utilized to stratify HCC patients into high and low PGs-score groups. It showed that the high-PGs group had a worse prognosis. Univariate and multivariate Cox regression verified that PGs-score was an independent risk factor for HCC. By ROC curves and nomogram, we showed that PGs-score effectively predicted the 1-, 3-, and 5-year survival of HCC patients and correlated with AFP level and disease stage. Immune infiltration analysis further showed that tumor immunity correlated with the PGs-score, and the expression of immune checkpoint molecule was significantly enhanced in the high PGs group. The PGs-score was also validated in the external validation cohort (ICGC). Finally, the expression of 9 signature genes was validated in normal liver and HCC cell lines.

Conclusion: This study elucidated the aberrant regulation of PGs in HCC, and those pyroptosisrelated genes may be applied as a prognostic factor of HCC.

Keywords: Pyroptosis; Hepatocellular Carcinoma; Tumor immunity; Biomarker; Prognostic model

Graphical Abstract

[1]
Rogers, C.; Fernandes-Alnemri, T.; Mayes, L.; Alnemri, D.; Cingolani, G.; Alnemri, E.S. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun., 2017, 8, 14128.
[http://dx.doi.org/10.1038/ncomms14128]
[2]
Gao, J.; Qiu, X.; Xi, G.; Liu, H.; Zhang, F.; Lv, T.; Song, Y. Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in non-small cell lung cancer. Oncol. Rep., 2018, 40(4), 1971-1984.
[http://dx.doi.org/10.3892/or.2018.6634] [PMID: 30106450]
[3]
Ye, Y.; Dai, Q.; Qi, H. A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer. Cell Death Discov., 2021, 7(1), 71.
[http://dx.doi.org/10.1038/s41420-021-00451-x] [PMID: 33828074]
[4]
Berkel, C.; Cacan, E. Differential expression and copy number variation of gasdermin (GSDM) family members, pore-forming proteins in pyroptosis, in normal and malignant serous ovarian tissue. Inflammation, 2021, 44(6), 2203-2216.
[http://dx.doi.org/10.1007/s10753-021-01493-0] [PMID: 34091823]
[5]
An, H.; Heo, J.S.; Kim, P.; Lian, Z.; Lee, S.; Park, J.; Hong, E.; Pang, K.; Park, Y.; Ooshima, A.; Lee, J.; Son, M.; Park, H.; Wu, Z.; Park, K.S.; Kim, S.J.; Bae, I.; Yang, K.M. Tetraarsenic hexoxide enhances generation of mitochondrial ROS to promote pyroptosis by inducing the activation of caspase-3/GSDME in triple-negative breast cancer cells. Cell Death Dis., 2021, 12(2), 159.
[http://dx.doi.org/10.1038/s41419-021-03454-9] [PMID: 33558527]
[6]
Kanwal, F.; Singal, A.G. Surveillance for hepatocellular carcinoma: Current best practice and future direction. Gastroenterology, 2019, 157(1), 54-64.
[http://dx.doi.org/10.1053/j.gastro.2019.02.049] [PMID: 30986389]
[7]
Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(10), 589-604.
[http://dx.doi.org/10.1038/s41575-019-0186-y] [PMID: 31439937]
[8]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[9]
Mayakonda, A.; Lin, D.C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res., 2018, 28(11), 1747-1756.
[http://dx.doi.org/10.1101/gr.239244.118] [PMID: 30341162]
[10]
Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics, 2014, 30(19), 2811-2812.
[http://dx.doi.org/10.1093/bioinformatics/btu393] [PMID: 24930139]
[11]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[12]
Zhang, Z.; Zhang, Y.; Xia, S.; Kong, Q.; Li, S.; Liu, X.; Junqueira, C.; Meza-Sosa, K.F.; Mok, T.M.Y.; Ansara, J.; Sengupta, S.; Yao, Y.; Wu, H.; Lieberman, J. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature, 2020, 579(7799), 415-420.
[http://dx.doi.org/10.1038/s41586-020-2071-9] [PMID: 32188940]
[13]
Zhou, Z.; He, H.; Wang, K.; Shi, X.; Wang, Y.; Su, Y.; Wang, Y.; Li, D.; Liu, W.; Zhang, Y.; Shen, L.; Han, W.; Shen, L.; Ding, J.; Shao, F. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science, 2020, 368(6494), eaaz7548.
[http://dx.doi.org/10.1126/science.aaz7548] [PMID: 32299851]
[14]
Camp, R.L.; Dolled-Filhart, M.; Rimm, D.L. X-tile: A new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin. Cancer Res., 2004, 10(21), 7252-7259.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0713] [PMID: 15534099]
[15]
Liu, Z.; Sun, J.; Li, C.; Xu, L.; Liu, J. MKL1 regulates hepatocellular carcinoma cell proliferation, migration and apoptosis via the COMPASS complex and NF-κB signaling. BMC Cancer, 2021, 21(1), 1184.
[http://dx.doi.org/10.1186/s12885-021-08185-w] [PMID: 34742274]
[16]
Zhou, Y.; Hu, L.; Tang, W.; Li, D.; Ma, L.; Liu, H.; Zhang, S.; Zhang, X.; Dong, L.; Shen, X.; Chen, S.; Xue, R.; Zhang, S. Hepatic NOD2 promotes hepatocarcinogenesis via a RIP2-mediated proinflammatory response and a novel nuclear autophagy-mediated DNA damage mechanism. J. Hematol. Oncol., 2021, 14(1), 9.
[http://dx.doi.org/10.1186/s13045-020-01028-4] [PMID: 33413510]
[17]
Shen, Y.; Li, X.; Wang, D.; Zhang, L.; Li, X.; Xia, T.; Shang, X.; Yang, X.; Su, L.; Fan, X. Novel prognostic model established for patients with head and neck squamous cell carcinoma based on pyroptosis-related genes. Transl. Oncol., 2021, 14(12), 101233.
[http://dx.doi.org/10.1016/j.tranon.2021.101233] [PMID: 34600420]
[18]
Xu, D.; Ji, Z.; Qiang, L. Molecular characteristics, clinical implication, and cancer immunity interactions of pyroptosis-related genes in breast cancer. Front. Med., 2021, 8, 702638.
[http://dx.doi.org/10.3389/fmed.2021.702638]
[19]
Hanley, K.L.; Liang, Y.; Wang, G.; Lin, X.; Yang, M.; Karin, M.; Fu, W.; Feng, G-S. Concurrent disruption of the Ras/MAPK and NF-κB pathways induces circadian deregulation and hepatocarcinogenesis. Mol. Cancer Res., 2022, 20(3), 337-349.
[http://dx.doi.org/10.1158/1541-7786.MCR-21-0479]
[20]
Zhuang, W.; Sun, H.; Zhang, S.; Zhou, Y.; Weng, W.; Wu, B.; Ye, T.; Huang, W.; Lin, Z.; Shi, L.; Shi, K. An immunogenomic signature for molecular classification in hepatocellular carcinoma. Mol. Ther. Nucleic Acids, 2021, 25, 105-115.
[http://dx.doi.org/10.1016/j.omtn.2021.06.024]
[21]
Zhao, Y.; Zhang, J.; Wang, S.; Jiang, Q.; Xu, K. Identification and validation of a nine-gene amino acid metabolism-related risk signature in HCC. Front. Cell Dev. Biol., 2021, 9, 731790.
[http://dx.doi.org/10.3389/fcell.2021.731790]
[22]
Liu, Z.; Wang, L.; Liu, L.; Lu, T.; Jiao, D.; Sun, Y.; Han, X. Identification and validation of two heterogenous subtypes and a risk signature based on ferroptosis in hepatocellular carcinoma. Front. Oncol., 2021, 11, 619242.
[http://dx.doi.org/10.3389/fonc.2021.619242]
[23]
Lee, A.J.; Ashkar, A.A. The dual nature of type I and type II interferons. Front. Immunol., 2018, 9, 2061.
[http://dx.doi.org/10.3389/fimmu.2018.02061]
[24]
Wang, F.; Zhang, S.; Jeon, R.; Vuckovic, I.; Jiang, X.; Lerman, A.; Folmes, C.D.; Dzeja, P.D.; Herrmann, J. Interferon gamma induces reversible metabolic reprogramming of M1 macrophages to sustain cell viability and pro-inflammatory activity. EBioMedicine, 2018, 30, 303-316.
[http://dx.doi.org/10.1016/j.ebiom.2018.02.009]
[25]
Molla, M.D.; Dessie, G.; Akalu, Y.; Ayelign, B. Hepatocellular expression of SIRT1 and its effect on hepatocellular carcinoma progression: A future therapeutic perspective. Int. J. Hepatol., 2020, 2020, 2374615.
[http://dx.doi.org/10.1155/2020/2374615]
[26]
Martins, I.J. Anti-aging genes improve appetite regulation and reverse cell senescence and apoptosis in global populations. Adv. Aging Res., 2016, 05(01), 9-26.
[http://dx.doi.org/10.4236/aar.2016.51002]
[27]
Martins, J.I. nutrition therapy regulates caffeine metabolism with relevance to NAFLD and induction of type 3 diabetes. Diabetes Metabolic Disorders, 2017, 4(1), 1-9.
[http://dx.doi.org/10.24966/DMD-201X/100019]
[28]
Al-Bahrani, R.; Tuertcher, D.; Zailaie, S.; Abuetabh, Y.; Nagamori, S.; Zetouni, N.; Bahitham, W.; Sergi, C. Differential SIRT1 expression in hepatocellular carcinomas and cholangiocarcinoma of the liver. Ann. Clin. Lab. Sci., 2015, 45(1), 3-9.
[PMID: 25696003]
[29]
Farcas, M.; Gavrea, A.A.; Gulei, D.; Ionescu, C.; Irimie, A.; Catana, C.S.; Berindan-Neagoe, I. SIRT1 in the development and treatment of hepatocellular carcinoma. Front. Nutr., 2019, 6, 148.
[http://dx.doi.org/10.3389/fnut.2019.00148]
[30]
Su, G.; Yang, W.; Wang, S.; Geng, C.; Guan, X. SIRT1-autophagy axis inhibits excess iron-induced ferroptosis of foam cells and subsequently increases IL-1Beta and IL-18. Biochem. Biophys. Res. Commun., 2021, 561, 33-39.
[http://dx.doi.org/10.1016/j.bbrc.2021.05.011]
[31]
Zhou, Y.; Li, K-S.; Liu, L.; Li, S-L. MicroRNA-132 promotes oxidative stress-induced pyroptosis by targeting sirtuin 1 in myocardial ischaemia-reperfusion injury. Int. J. Mol. Med., 2020, 45(6), 1942-1950.
[http://dx.doi.org/10.3892/ijmm.2020.4557] [PMID: 32236570]
[32]
Kozako, T.; Suzuki, T.; Yoshimitsu, M.; Uchida, Y.; Kuroki, A.; Aikawa, A.; Honda, S.; Arima, N.; Soeda, S. Novel small-molecule SIRT1 inhibitors induce cell death in adult T-cell leukaemia cells. Sci. Rep., 2015, 5, 11345.
[http://dx.doi.org/10.1038/srep11345]
[33]
Hong, H.; An, O.; Chan, T.H.M.; Ng, V.H.E.; Kwok, H.S.; Lin, J.S.; Qi, L.; Han, J.; Tay, D.J.T.; Tang, S.J.; Yang, H.; Song, Y.; Bellido Molias, F.; Tenen, D.G.; Chen, L. Bidirectional regulation of adenosine-to-inosine (A-to-I) RNA editing by DEAH box helicase 9 (DHX9) in cancer. Nucleic Acids Res., 2018, 46(15), 7953-7969.
[http://dx.doi.org/10.1093/nar/gky396] [PMID: 29796672]
[34]
Briard, B.; Place, D.E.; Kanneganti, T.D. DNA sensing in the innate immune response. Physiology (Bethesda), 2020, 35(2), 112-124.
[http://dx.doi.org/10.1152/physiol.00022.2019] [PMID: 32027562]
[35]
Tenthorey, J.L.; Chavez, R.A.; Thompson, T.W.; Deets, K.A.; Vance, R.E.; Rauch, I. NLRC4 inflammasome activation is NLRP3- and phosphorylation-independent during infection and does not protect from melanoma. J. Exp. Med., 2020, 217(7), e20191736.
[http://dx.doi.org/10.1084/jem.20191736] [PMID: 32342103]
[36]
Lim, J.; Kim, M.J.; Park, Y.; Ahn, J.W.; Hwang, S.J.; Moon, J.S.; Cho, K.G.; Kwack, K. Upregulation of the NLRC4 inflammasome contributes to poor prognosis in glioma patients. Sci. Rep., 2019, 9(1), 7895.
[http://dx.doi.org/10.1038/s41598-019-44261-9] [PMID: 31133717]
[37]
Sonohara, F.; Inokawa, Y.; Kanda, M.; Nishikawa, Y.; Yamada, S.; Fujii, T.; Sugimoto, H.; Kodera, Y.; Nomoto, S. Association of inflammasome components in background liver with poor prognosis after curatively-resected hepatocellular carcinoma. Anticancer Res., 2017, 37(1), 293-300.
[http://dx.doi.org/10.21873/anticanres.11320] [PMID: 28011505]
[38]
Sarrió, D.; Martínez-Val, J.; Molina-Crespo, Á.; Sánchez, L.; Moreno-Bueno, G. The multifaceted roles of gasdermins in cancer biology and oncologic therapies. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(2), 188635.
[http://dx.doi.org/10.1016/j.bbcan.2021.188635] [PMID: 34656686]
[39]
Hou, J.; Zhao, R.; Xia, W.; Chang, C.W.; You, Y.; Hsu, J.M.; Nie, L.; Chen, Y.; Wang, Y.C.; Liu, C.; Wang, W.J.; Wu, Y.; Ke, B.; Hsu, J.L.; Huang, K.; Ye, Z.; Yang, Y.; Xia, X.; Li, Y.; Li, C.W.; Shao, B.; Tainer, J.A.; Hung, M.C. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat. Cell Biol., 2020, 22(10), 1264-1275.
[http://dx.doi.org/10.1038/s41556-020-0575-z] [PMID: 32929201]
[40]
Cui, Y.Q.; Meng, F.; Zhan, W.L.; Dai, Z.T.; Liao, X. High expression of GSDMC is associated with poor survival in kidney clear cell cancer. BioMed Res. Int., 2021, 2021, 5282894.
[http://dx.doi.org/10.1155/2021/5282894]
[41]
Wei, J.; Xu, Z.; Chen, X.; Wang, X.; Zeng, S.; Qian, L.; Yang, X.; Ou, C.; Lin, W.; Gong, Z.; Yan, Y. Overexpression of GSDMC is a prognostic factor for predicting a poor outcome in lung adenocarcinoma. Mol. Med. Rep., 2020, 21(1), 360-370.
[http://dx.doi.org/10.3892/mmr.2019.10837] [PMID: 31939622]
[42]
Zhou, B.; Abbott, D.W. Gasdermin E permits interleukin-1 beta release in distinct sublytic and pyroptotic phases. Cell Rep., 2021, 35(2), 108998.
[http://dx.doi.org/10.1016/j.celrep.2021.108998] [PMID: 33852854]
[43]
Liu, Z.; Liu, H.; Dong, Q.; Li, H.; Zhang, B.; Liu, Y.; Zhong, L.; Tang, H. Prognostic role of DFNA5 in head and neck squamous cell carcinoma revealed by systematic expression analysis. BMC Cancer, 2021, 21(1), 951.
[http://dx.doi.org/10.1186/s12885-021-08692-w] [PMID: 34433433]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy