Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Genome-Wide Screening of Differentially Expressed Genes and their Potential Associations with Aging Dental Pulp Stem Cells

Author(s): Xiaocao Ma, Hongchen Liu*, Ying Zheng, Yawen Dai, E. Lingling, Rong Zhang and Shuo Zhang

Volume 26, Issue 7, 2023

Published on: 16 September, 2022

Page: [1337 - 1350] Pages: 14

DOI: 10.2174/1386207325666220705120904

Price: $65

Abstract

Background: Dental pulp stem cells (DPSCs) refer to a type of stem cells, which is characterized by great differentiation potential and is easy to obtain. DPSCs are able to be employed for treating immune diseases and tissue regeneration. However, the differentiation ability exhibited by aging DPSCs is reduced, thereby limiting the application. As speculated by the microarray analysis, different expressions of miRNAs might be involved in DPSC senescence, whereas comprehensive transcriptome level detection has been rare.

Objective and Methods: To gain insights into the molecular mechanisms involved, RNA-sequencing, pathway enrichment and Gene Ontology Analysis were conducted on aging and young DPSCs.

Results: In this study, the differences in long non-coding RNA (lncRNA) and messenger RNA (mRNA expressions) of the aging and young DPSCs were demonstrated, and the vital factors and the relevant pathways were speculated. On the whole, 18950 mRNAs and 21854 lncRNAs were detected, among which 14 mRNAs and 7 lncRNAs were differentially expressed. Furthermore, hsa-miR-6724-5p may be a vital node in the aging process of DPSCs, and its target genes was involved in the dopaminergic synapse.

Conclusion: In brief, the aging of DPSCs was significantly dependent of differentially expressed genes (DEGs) which is related to dopaminergic synapse. However, the specific function and internal relationship of the DEGs should be verified in depth.

Keywords: Dental pulp stem cells, Senescence, RNA-seq, hsa-mir-6724, nervous system, Dopaminergic synapse

Graphical Abstract

[1]
Partridge, L.; Deelen, J.; Slagboom, P.E. Facing up to the global challenges of ageing. Nature, 2018, 561(7721), 45-56.
[http://dx.doi.org/10.1038/s41586-018-0457-8] [PMID: 30185958]
[2]
da Costa, J.P.; Vitorino, R.; Silva, G.M.; Vogel, C.; Duarte, A.C.; Rocha-Santos, T. A synopsis on aging-theories, mechanisms and future prospects. Ageing Res. Rev., 2016, 29, 90-112.
[http://dx.doi.org/10.1016/j.arr.2016.06.005] [PMID: 27353257]
[3]
Jagger, C.; Gillies, C.; Moscone, F.; Cambois, E.; Van Oyen, H.; Nusselder, W.; Robine, J.M. Inequalities in healthy life years in the 25 countries of the European Union in 2005: A cross-national meta-regression analysis. Lancet, 2008, 372(9656), 2124-2131.
[http://dx.doi.org/10.1016/S0140-6736(08)61594-9] [PMID: 19010526]
[4]
Partridge, L.; Fuentealba, M.; Kennedy, B.K. The quest to slow ageing through drug discovery. Nat. Rev. Drug Discov., 2020, 19(8), 513-532.
[http://dx.doi.org/10.1038/s41573-020-0067-7] [PMID: 32467649]
[5]
Yanai, H.; Fraifeld, V.E. The role of cellular senescence in aging through the prism of Koch-like criteria. Ageing Res. Rev., 2018, 41, 18-33.
[http://dx.doi.org/10.1016/j.arr.2017.10.004] [PMID: 29106993]
[6]
Dziechciaż, M.; Filip, R. Biological psychological and social determinants of old age: Bio-psycho-social aspects of human aging. Ann. Agric. Environ. Med., 2014, 21(4), 835-838.
[http://dx.doi.org/10.5604/12321966.1129943] [PMID: 25528930]
[7]
Campisi, J.; Kapahi, P.; Lithgow, G.J.; Melov, S.; Newman, J.C.; Verdin, E. From discoveries in ageing research to therapeutics for healthy ageing. Nature, 2019, 571(7764), 183-192.
[http://dx.doi.org/10.1038/s41586-019-1365-2] [PMID: 31292558]
[8]
Balic, A. Biology explaining tooth repair and regeneration: A mini-review. Gerontology, 2018, 64(4), 382-388.
[http://dx.doi.org/10.1159/000486592] [PMID: 29533942]
[9]
Tsutsui, T.W. Dental pulp stem cells: Advances to applications. Stem Cells Cloning, 2020, 13, 33-42.
[http://dx.doi.org/10.2147/SCCAA.S166759] [PMID: 32104005]
[10]
Nuti, N.; Corallo, C.; Chan, B.M.; Ferrari, M.; Gerami-Naini, B. Multipotent differentiation of human dental pulp stem cells: A literature review. Stem Cell Rev. Rep., 2016, 12(5), 511-523.
[http://dx.doi.org/10.1007/s12015-016-9661-9] [PMID: 27240827]
[11]
Huang, C.C.; Narayanan, R.; Alapati, S.; Ravindran, S. Exosomes as biomimetic tools for stem cell differentiation: Applications in dental pulp tissue regeneration. Biomaterials, 2016, 111, 103-115.
[http://dx.doi.org/10.1016/j.biomaterials.2016.09.029] [PMID: 27728810]
[12]
Kumar, A.; Kumar, V.; Rattan, V.; Jha, V.; Bhattacharyya, S. Secretome proteins regulate comparative osteogenic and adipogenic potential in bone marrow and dental stem cells. Biochimie, 2018, 155, 129-139.
[http://dx.doi.org/10.1016/j.biochi.2018.10.014] [PMID: 30367923]
[13]
Aghajani, F.; Hooshmand, T.; Khanmohammadi, M.; Khanjani, S.; Edalatkhah, H.; Zarnani, A.H.; Kazemnejad, S. Comparative immunophenotypic characteristics, proliferative features, and osteogenic differentiation of stem cells isolated from human permanent and deciduous teeth with bone marrow. Mol. Biotechnol., 2016, 58(6), 415-427.
[http://dx.doi.org/10.1007/s12033-016-9941-2] [PMID: 27126695]
[14]
Kang, C.M.; Kim, H.; Song, J.S.; Choi, B.J.; Kim, S.O.; Jung, H.S.; Moon, S.J.; Choi, H.J. Genetic comparison of stemness of human umbilical cord and dental pulp. Stem Cells Int., 2016, 2016, 3453890.
[http://dx.doi.org/10.1155/2016/3453890] [PMID: 27087814]
[15]
Ren, H.; Sang, Y.; Zhang, F.; Liu, Z.; Qi, N.; Chen, Y. Comparative analysis of human mesenchymal stem cells from umbilical cord, dental pulp, and menstrual blood as sources for cell therapy. Stem Cells Int., 2016, 2016, 3516574.
[http://dx.doi.org/10.1155/2016/3516574] [PMID: 26880954]
[16]
Yoshihara, M.; Hayashizaki, Y.; Murakawa, Y. Genomic instability of iPSCs: Challenges towards their clinical applications. Stem Cell Rev. Rep., 2017, 13(1), 7-16.
[http://dx.doi.org/10.1007/s12015-016-9680-6] [PMID: 27592701]
[17]
Wilson, R.; Urraca, N.; Skobowiat, C.; Hope, K.A.; Miravalle, L.; Chamberlin, R.; Donaldson, M.; Seagroves, T.N.; Reiter, L.T. Assessment of the tumorigenic potential of spontaneously immortalized and hTERT-immortalized cultured dental pulp stem cells. Stem Cells Transl. Med., 2015, 4(8), 905-912.
[http://dx.doi.org/10.5966/sctm.2014-0196] [PMID: 26032749]
[18]
Wang, Y.; Zhang, Z.; Chi, Y.; Zhang, Q.; Xu, F.; Yang, Z.; Meng, L.; Yang, S.; Yan, S.; Mao, A.; Zhang, J.; Yang, Y.; Wang, S.; Cui, J.; Liang, L.; Ji, Y.; Han, Z.B.; Fang, X.; Han, Z.C. Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death Dis., 2013, 4(12), e950.
[http://dx.doi.org/10.1038/cddis.2013.480] [PMID: 24309937]
[19]
Morsczeck, C. Cellular senescence in dental pulp stem cells. Arch. Oral Biol., 2019, 99, 150-155.
[http://dx.doi.org/10.1016/j.archoralbio.2019.01.012] [PMID: 30685471]
[20]
Iezzi, I.; Cerqueni, G.; Licini, C.; Lucarini, G.; Mattioli Belmonte, M. Dental pulp stem cells senescence and regenerative potential relationship. J. Cell. Physiol., 2019, 234(5), 7186-7197.
[http://dx.doi.org/10.1002/jcp.27472] [PMID: 30362542]
[21]
Yi, Q.; Liu, O.; Yan, F.; Lin, X.; Diao, S.; Wang, L.; Jin, L.; Wang, S.; Lu, Y.; Fan, Z. Analysis of senescence-related differentiation potentials and gene expression profiles in human dental pulp stem cells. Cells Tissues Organs, 2017, 203(1), 1-11.
[http://dx.doi.org/10.1159/000448026] [PMID: 27627434]
[22]
Gorgoulis, V.; Adams, P.D.; Alimonti, A.; Bennett, D.C.; Bischof, O.; Bishop, C.; Campisi, J.; Collado, M.; Evangelou, K.; Ferbeyre, G.; Gil, J.; Hara, E.; Krizhanovsky, V.; Jurk, D.; Maier, A.B.; Narita, M.; Niedernhofer, L.; Passos, J.F.; Robbins, P.D.; Schmitt, C.A.; Sedivy, J.; Vougas, K.; von Zglinicki, T.; Zhou, D.; Serrano, M.; Demaria, M. Cellular senescence: Defining a path forward. Cell, 2019, 179(4), 813-827.
[http://dx.doi.org/10.1016/j.cell.2019.10.005] [PMID: 31675495]
[23]
Maeda, H. Aging and senescence of dental pulp and hard tissues of the tooth. Front. Cell Dev. Biol., 2020, 8, 605996.
[http://dx.doi.org/10.3389/fcell.2020.605996] [PMID: 33330507]
[24]
van den Berg, N.; Beekman, M.; Smith, K.R.; Janssens, A.; Slagboom, P.E. Historical demography and longevity genetics: Back to the future. Ageing Res. Rev., 2017, 38, 28-39.
[http://dx.doi.org/10.1016/j.arr.2017.06.005] [PMID: 28689042]
[25]
Wang, K.; Li, L.; Wu, J.; Qiu, Q.; Zhou, F.; Wu, H. The different expression profiles of microRNAs in elderly and young human dental pulp and the role of miR-433 in human dental pulp cells. Mech. Ageing Dev., 2015, 146-148, 1-11.
[http://dx.doi.org/10.1016/j.mad.2015.03.001] [PMID: 25778413]
[26]
Zhao, S.; Fung-Leung, W.P.; Bittner, A.; Ngo, K.; Liu, X. Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One, 2014, 9(1), e78644.
[http://dx.doi.org/10.1371/journal.pone.0078644] [PMID: 24454679]
[27]
Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet., 2009, 10(1), 57-63.
[http://dx.doi.org/10.1038/nrg2484] [PMID: 19015660]
[28]
Rogler, C.E.; Tchaikovskaya, T.; Norel, R.; Massimi, A.; Plescia, C.; Rubashevsky, E.; Siebert, P.; Rogler, L.E. RNA expression microarrays (REMs), a high-throughput method to measure differences in gene expression in diverse biological samples. Nucleic Acids Res., 2004, 32(15), e120.
[http://dx.doi.org/10.1093/nar/gnh116] [PMID: 15329382]
[29]
Zhang, S. Zhang, R.; Qiao, P.; Ma, X.; Lu, R.; Wang, F.; Li, C.; e, L.; Liu, H. Metformin-induced microrna-34a-3p downregulation alleviates senescence in human dental pulp stem cells by targeting CAB39 through the AMPK/mTOR signaling pathway. Stem Cells Int., 2021, 2021, 6616240.
[http://dx.doi.org/10.1155/2021/6616240] [PMID: 33505470]
[30]
Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, Dj.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, 8(4), 315-317.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[31]
Ren, H.; Wang, G.; Chen, L.; Jiang, J.; Liu, L.; Li, N.; Zhao, J.; Sun, X.; Zhou, P. Genome-wide analysis of long non-coding RNAs at early stage of skin pigmentation in goats (Capra hircus). BMC Genomics, 2016, 17(1), 67.
[http://dx.doi.org/10.1186/s12864-016-2365-3] [PMID: 26785828]
[32]
Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods, 2012, 9(4), 357-359.
[http://dx.doi.org/10.1038/nmeth.1923] [PMID: 22388286]
[33]
Li, B.; Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 2011, 12(1), 323.
[http://dx.doi.org/10.1186/1471-2105-12-323] [PMID: 21816040]
[34]
Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; Yamanishi, Y. KEGG for linking genomes to life and the environment. Nucleic Acids Res., 2008, 36(Database issue), D480-D484.
[PMID: 18077471]
[35]
Liu, S.; Liu, D.; Chen, C.; Hamamura, K.; Moshaverinia, A.; Yang, R.; Liu, Y.; Jin, Y.; Shi, S. MSC transplantation improves osteopenia via epigenetic regulation of notch signaling in lupus. Cell Metab., 2015, 22(4), 606-618.
[http://dx.doi.org/10.1016/j.cmet.2015.08.018] [PMID: 26365178]
[36]
Zhou, G.; Kang, D.; Ma, S.; Wang, X.; Gao, Y.; Yang, Y.; Wang, X.; Chen, Y. Integrative analysis reveals ncRNA-mediated molecular regulatory network driving secondary hair follicle regression in cashmere goats. BMC Genomics, 2018, 19(1), 222.
[http://dx.doi.org/10.1186/s12864-018-4603-3] [PMID: 29587631]
[37]
Luo, Z.; Rong, Z.; Zhang, J.; Zhu, Z.; Yu, Z.; Li, T.; Fu, Z.; Qiu, Z.; Huang, C. Circular RNA circCCDC9 acts as a miR-6792-3p sponge to suppress the progression of gastric cancer through regulating CAV1 expression. Mol. Cancer, 2020, 19(1), 86.
[http://dx.doi.org/10.1186/s12943-020-01203-8] [PMID: 32386516]
[38]
Wang, Y.; Sun, L.; Wang, L.; Liu, Z.; Li, Q.; Yao, B.; Wang, C.; Chen, T.; Tu, K.; Liu, Q. Long non-coding RNA DSCR8 acts as a molecular sponge for miR-485-5p to activate Wnt/β-catenin signal pathway in hepatocellular carcinoma. Cell Death Dis., 2018, 9(9), 851.
[http://dx.doi.org/10.1038/s41419-018-0937-7] [PMID: 30154476]
[39]
Yang, H.; Du, L.; Wu, G.; Wu, Z.; Keelan, J.A. Murine exposure to gold nanoparticles during early pregnancy promotes abortion by inhibiting ectodermal differentiation. Mol. Med., 2018, 24(1), 62.
[http://dx.doi.org/10.1186/s10020-018-0061-2] [PMID: 30509178]
[40]
Ferro, F.; Spelat, R.; Baheney, C.S. Dental pulp stem cell (DPSC) isolation, characterization, and differentiation. Methods Mol. Biol., 2014, 1210, 91-115.
[http://dx.doi.org/10.1007/978-1-4939-1435-7_8] [PMID: 25173163]
[41]
Mortada, I.; Mortada, R.; Al Bazzal, M. Dental pulp stem cells and neurogenesis. Adv. Exp. Med. Biol., 2018, 1083, 63-75.
[http://dx.doi.org/10.1007/5584_2017_71] [PMID: 28687960]
[42]
Farges, J.C.; Alliot-Licht, B.; Renard, E.; Ducret, M.; Gaudin, A.; Smith, A.J.; Cooper, P.R. Dental pulp defence and repair mechanisms in dental caries. Mediators Inflamm., 2015, 2015, 230251.
[http://dx.doi.org/10.1155/2015/230251] [PMID: 26538821]
[43]
Han, N.; Chen, Z.; Zhang, Q. Expression of KLF5 in odontoblastic differentiation of dental pulp cells during in vitro odontoblastic induction and in vivo dental repair. Int. Endod. J., 2017, 50(7), 676-684.
[http://dx.doi.org/10.1111/iej.12672] [PMID: 27334851]
[44]
Gu, S.; Ran, S.; Liu, B.; Liang, J. miR-152 induces human dental pulp stem cell senescence by inhibiting SIRT7 expression. FEBS Lett., 2016, 590(8), 1123-1131.
[http://dx.doi.org/10.1002/1873-3468.12138] [PMID: 26991832]
[45]
Iezzi, I.; Lazzarini, R.; Cerqueni, G.; Hosein, A.; Rossato, M.; Licini, C.; De Quattro, C.; Orciani, M.; Belmonte, M.M. MicroRNA profiling in mesenchymal stromal cells: The tissue source as the missing piece in the puzzle of ageing. Stem Cell Rev. Rep., 2021, 17(3), 1014-1026.
[http://dx.doi.org/10.1007/s12015-020-10095-6] [PMID: 33405068]
[46]
Mas-Bargues, C.; Sanz-Ros, J.; Román-Domínguez, A.; Gimeno-Mallench, L.; Inglés, M.; Viña, J.; Borrás, C. Extracellular vesicles from healthy cells improves cell function and stemness in premature senescent stem cells by miR-302b and HIF-1α activation. Biomolecules, 2020, 10(6), E957.
[http://dx.doi.org/10.3390/biom10060957] [PMID: 32630449]
[47]
Mardis, E.R. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet., 2008, 9(1), 387-402.
[http://dx.doi.org/10.1146/annurev.genom.9.081307.164359] [PMID: 18576944]
[48]
Ambardar, S.; Gupta, R.; Trakroo, D.; Lal, R.; Vakhlu, J. High throughput sequencing: An overview of sequencing chemistry. Indian J. Microbiol., 2016, 56(4), 394-404.
[http://dx.doi.org/10.1007/s12088-016-0606-4] [PMID: 27784934]
[49]
Kukurba, K.R.; Montgomery, S.B. RNA sequencing and analysis. Cold Spring Harb. Protoc., 2015, 2015(11), 951-969.
[http://dx.doi.org/10.1101/pdb.top084970] [PMID: 25870306]
[50]
Griffith, M.; Walker, J.R.; Spies, N.C.; Ainscough, B.J.; Griffith, O.L. Informatics for RNA sequencing: A web resource for analysis on the cloud. PLOS Comput. Biol., 2015, 11(8), e1004393.
[http://dx.doi.org/10.1371/journal.pcbi.1004393] [PMID: 26248053]
[51]
Hung, J.H.; Weng, Z. Analysis of microarray and RNA-seq expression profiling data. Cold Spring Harb. Protoc., 2017, 2017(3), pdb.top093104.
[http://dx.doi.org/10.1101/pdb.top093104] [PMID: 27574194]
[52]
Achilleos, A.; Trainor, P.A. Neural crest stem cells: Discovery, properties and potential for therapy. Cell Res., 2012, 22(2), 288-304.
[http://dx.doi.org/10.1038/cr.2012.11] [PMID: 22231630]
[53]
Pisciotta, A.; Bertoni, L.; Vallarola, A.; Bertani, G.; Mecugni, D.; Carnevale, G. Neural crest derived stem cells from dental pulp and tooth-associated stem cells for peripheral nerve regeneration. Neural Regen. Res., 2020, 15(3), 373-381.
[http://dx.doi.org/10.4103/1673-5374.266043] [PMID: 31571644]
[54]
Mayo, V.; Sawatari, Y.; Huang, C.Y.; Garcia-Godoy, F. Neural crest-derived dental stem cells where we are and where we are going. J. Dent., 2014, 42(9), 1043-1051.
[http://dx.doi.org/10.1016/j.jdent.2014.04.007] [PMID: 24769107]
[55]
Kaukua, N.; Shahidi, M.K.; Konstantinidou, C.; Dyachuk, V.; Kaucka, M.; Furlan, A.; An, Z.; Wang, L.; Hultman, I.; Ahrlund-Richter, L.; Blom, H.; Brismar, H.; Lopes, N.A.; Pachnis, V.; Suter, U.; Clevers, H.; Thesleff, I.; Sharpe, P.; Ernfors, P.; Fried, K.; Adameyko, I. Glial origin of mesenchymal stem cells in a tooth model system. Nature, 2014, 513(7519), 551-554.
[http://dx.doi.org/10.1038/nature13536] [PMID: 25079316]
[56]
Shi, S.; Gronthos, S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J. Bone Miner. Res., 2003, 18(4), 696-704.
[http://dx.doi.org/10.1359/jbmr.2003.18.4.696] [PMID: 12674330]
[57]
Mitsiadis, T.A.; Feki, A.; Papaccio, G.; Catón, J. Dental pulp stem cells, niches, and notch signaling in tooth injury. Adv. Dent. Res., 2011, 23(3), 275-279.
[http://dx.doi.org/10.1177/0022034511405386] [PMID: 21677078]
[58]
Bäckström, D.; Eriksson Domellöf, M.; Granåsen, G.; Linder, J.; Mayans, S.; Elgh, E.; Zetterberg, H.; Blennow, K.; Forsgren, L. Polymorphisms in dopamine-associated genes and cognitive decline in Parkinson’s disease. Acta Neurol. Scand., 2018, 137(1), 91-98.
[http://dx.doi.org/10.1111/ane.12812] [PMID: 28869277]
[59]
Indelicato, E.; Nachbauer, W.; Karner, E.; Eigentler, A.; Wagner, M.; Unterberger, I.; Poewe, W.; Delazer, M.; Boesch, S. The neuropsychiatric phenotype in CACNA1A mutations: a retrospective single center study and review of the literature. Eur. J. Neurol., 2019, 26(1), 66-e7.
[http://dx.doi.org/10.1111/ene.13765] [PMID: 30063100]
[60]
Deng, H.; Zheng, W.; Jankovic, J. Genetics and molecular biology of brain calcification. Ageing Res. Rev., 2015, 22, 20-38.
[http://dx.doi.org/10.1016/j.arr.2015.04.004] [PMID: 25906927]
[61]
Xiao, H.; Jiang, Y.; He, W.; Xu, D.; Chen, P.; Liu, D.; Liu, J.; Wang, X.; DiSanto, M.E.; Zhang, X. Identification and functional activity of matrix-remodeling associated 5 (MXRA5) in benign hyperplastic prostate. Aging (Albany NY), 2020, 12(9), 8605-8621.
[http://dx.doi.org/10.18632/aging.103175] [PMID: 32392178]
[62]
Nosrat, I.V.; Smith, C.A.; Mullally, P.; Olson, L.; Nosrat, C.A. Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur. J. Neurosci., 2004, 19(9), 2388-2398.
[http://dx.doi.org/10.1111/j.0953-816X.2004.03314.x] [PMID: 15128393]
[63]
Baudry, A.; Schneider, B.; Launay, J.M.; Kellermann, O. Serotonin in stem cell based-dental repair and bone formation: A review. Biochimie, 2019, 161, 65-72.
[http://dx.doi.org/10.1016/j.biochi.2018.07.030] [PMID: 30077818]
[64]
Majumdar, D.; Kanafi, M.; Bhonde, R.; Gupta, P.; Datta, I. Differential neuronal plasticity of dental pulp stem cells from exfoliated deciduous and permanent teeth towards dopaminergic neurons. J. Cell. Physiol., 2016, 231(9), 2048-2063.
[http://dx.doi.org/10.1002/jcp.25314] [PMID: 26773559]
[65]
Gnanasegaran, N.; Govindasamy, V.; Kathirvaloo, P.; Musa, S.; Abu Kasim, N.H. Effects of cell cycle phases on the induction of dental pulp stem cells toward dopaminergic-like cells. J. Tissue Eng. Regen. Med., 2018, 12(2), e881-e893.
[http://dx.doi.org/10.1002/term.2401] [PMID: 28079995]
[66]
Gnanasegaran, N.; Govindasamy, V.; Musa, S.; Abu Kasim, N.H. ReNCell VM conditioned medium enhances the induction of dental pulp stem cells into dopaminergic like cells. Cytotechnology, 2016, 68(2), 343-353.
[http://dx.doi.org/10.1007/s10616-014-9787-z] [PMID: 25322895]
[67]
Kanafi, M.; Majumdar, D.; Bhonde, R.; Gupta, P.; Datta, I. Midbrain cues dictate differentiation of human dental pulp stem cells towards functional dopaminergic neurons. J. Cell. Physiol., 2014, 229(10), 1369-1377.
[http://dx.doi.org/10.1002/jcp.24570] [PMID: 24477667]
[68]
Wang, J.; Wang, X.; Sun, Z.; Wang, X.; Yang, H.; Shi, S.; Wang, S. Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev., 2010, 19(9), 1375-1383.
[http://dx.doi.org/10.1089/scd.2009.0258] [PMID: 20131979]
[69]
Zucca, F.A.; Segura-Aguilar, J.; Ferrari, E.; Muñoz, P.; Paris, I.; Sulzer, D.; Sarna, T.; Casella, L.; Zecca, L. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog. Neurobiol., 2017, 155, 96-119.
[http://dx.doi.org/10.1016/j.pneurobio.2015.09.012] [PMID: 26455458]
[70]
Karalija, N.; Wåhlin, A.; Ek, J.; Rieckmann, A.; Papenberg, G.; Salami, A.; Brandmaier, A.M.; Köhncke, Y.; Johansson, J.; Andersson, M.; Axelsson, J.; Orädd, G.; Riklund, K.; Lövdén, M.; Lindenberger, U.; Bäckman, L.; Nyberg, L. Cardiovascular factors are related to dopamine integrity and cognition in aging. Ann. Clin. Transl. Neurol., 2019, 6(11), 2291-2303.
[http://dx.doi.org/10.1002/acn3.50927] [PMID: 31663685]
[71]
Bäckman, L.; Nyberg, L.; Lindenberger, U.; Li, S.C.; Farde, L. The correlative triad among aging, dopamine, and cognition: Current status and future prospects. Neurosci. Biobehav. Rev., 2006, 30(6), 791-807.
[http://dx.doi.org/10.1016/j.neubiorev.2006.06.005] [PMID: 16901542]
[72]
Shao, W.; Zhang, S.Z.; Tang, M.; Zhang, X.H.; Zhou, Z.; Yin, Y.Q.; Zhou, Q.B.; Huang, Y.Y.; Liu, Y.J.; Wawrousek, E.; Chen, T.; Li, S.B.; Xu, M.; Zhou, J.N.; Hu, G.; Zhou, J.W. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin. Nature, 2013, 494(7435), 90-94.
[http://dx.doi.org/10.1038/nature11748] [PMID: 23242137]
[73]
Garzón, B.; Lövdén, M.; de Boer, L.; Axelsson, J.; Riklund, K.; Bäckman, L.; Nyberg, L.; Guitart-Masip, M. Role of dopamine and gray matter density in aging effects and individual differences of functional connectomes. Brain Struct. Funct., 2021, 226(3), 743-758.
[http://dx.doi.org/10.1007/s00429-020-02205-4] [PMID: 33423111]
[74]
Kaasinen, V.; Rinne, J.O. Functional imaging studies of dopamine system and cognition in normal aging and Parkinson’s disease. Neurosci. Biobehav. Rev., 2002, 26(7), 785-793.
[http://dx.doi.org/10.1016/S0149-7634(02)00065-9] [PMID: 12470690]
[75]
Bäckman, L.; Farde, L. Dopamine and cognitive functioning: brain imaging findings in Huntington’s disease and normal aging. Scand. J. Psychol., 2001, 42(3), 287-296.
[http://dx.doi.org/10.1111/1467-9450.00238] [PMID: 11501742]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy