Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

ASF1B, as an Independent Prognostic Biomarker, Correlates with Immune Infiltrates in Hepatocellular Carcinoma

Author(s): Renzhi Li, Xiaohan Cui, Weijun Sun, Zhen Yang, Xingyuan Shen and Chunfu Zhu*

Volume 26, Issue 7, 2023

Published on: 14 September, 2022

Page: [1311 - 1323] Pages: 13

DOI: 10.2174/1386207325666220820112111

Price: $65

Abstract

Background: Hepatocellular Carcinoma (HCC) is one of the fastest-growing malignancies globally. The impact of surgical treatment is limited, and molecular targeted therapy has not yielded a consistent efficacy. This warrants for identification of novel molecular targets. The Anti- Silencing Function of 1B histone chaperone (ASF1B) was previously studied in numerous cancers. However, the understanding of its role in HCC is limited.

Methods: The TIMER database was used to analyze the ASF1B expression in pan-cancer and paracarcinoma tissues. ASF1B expression in HCC was confirmed using the HCCDB database, Quantitative real-time PCR (q-PCR), and Western Blot (WB) assays. The relationship between clinicopathological parameters and ASF1B expression was analyzed using UALCAN, whereas the prognostic value of ASF1B was evaluated using the GEPIA database. Linkedomics and cBioPortal databases were used to validate the ASF1B co-expression associated with immune infiltration by the TIMER database. Moreover, cell proliferation after ASF1B-knockdown was determined through CCK8 and clone formation assays.

Results: ASF1B was highly expressed in HCC tissues, and the expression levels were linked to tumor grade, race, and disease stage. Univariate and multivariate Cox models showed that ASF1B is an independent prognostic factor in HCC. CCK8 and clone formation assays demonstrated that ASF1B promotes cell proliferation. Gene co-expression analysis in Linkedomics demonstrated that HJURP, KIF2C, KIF4A, KIF18B, and KIFC1 expressions were closely associated with ASF1B and immune infiltrate cells.

Conclusion: This study shows that ASF1B promotes the proliferation of HCC. Besides, ASF1B could be a potential prognostic biomarker for HCC patients.

Keywords: ASF1B, Hepatocellular Carcinoma, prognosis, bioinformatics, immune, GSEA

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
El-Serag, H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology, 2012, 142(6), 1264-1273.e1.
[http://dx.doi.org/10.1053/j.gastro.2011.12.061] [PMID: 22537432]
[3]
Dyson, J.; Jaques, B.; Chattopadyhay, D.; Lochan, R.; Graham, J.; Das, D.; Aslam, T.; Patanwala, I.; Gaggar, S.; Cole, M.; Sumpter, K.; Stewart, S.; Rose, J.; Hudson, M.; Manas, D.; Reeves, H.L. Hepatocellular cancer: The impact of obesity, type 2 diabetes and a multidisciplinary team. J. Hepatol., 2014, 60(1), 110-117.
[http://dx.doi.org/10.1016/j.jhep.2013.08.011] [PMID: 23978719]
[4]
Williams, R.; Aspinall, R.; Bellis, M.; Camps-Walsh, G.; Cramp, M.; Dhawan, A.; Ferguson, J.; Forton, D.; Foster, G.; Gilmore, I.; Hickman, M.; Hudson, M.; Kelly, D.; Langford, A.; Lombard, M.; Longworth, L.; Martin, N.; Moriarty, K.; Newsome, P.; O’Grady, J.; Pryke, R.; Rutter, H.; Ryder, S.; Sheron, N.; Smith, T. Addressing liver disease in the UK: A blueprint for attaining excellence in health care and reducing premature mortality from lifestyle issues of excess consumption of alcohol, obesity, and viral hepatitis. Lancet, 2014, 384(9958), 1953-1997.
[http://dx.doi.org/10.1016/S0140-6736(14)61838-9] [PMID: 25433429]
[5]
Tyler, J.K.; Adams, C.R.; Chen, S.R.; Kobayashi, R.; Kamakaka, R.T.; Kadonaga, J.T. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature, 1999, 402(6761), 555-560.
[http://dx.doi.org/10.1038/990147] [PMID: 10591219]
[6]
Groth, A.; Corpet, A.; Cook, A.J.; Roche, D.; Bartek, J.; Lukas, J.; Almouzni, G. Regulation of replication fork progression through histone supply and demand. Science, 2007, 318(5858), 1928-1931.
[http://dx.doi.org/10.1126/science.1148992] [PMID: 18096807]
[7]
Corpet, A.; Almouzni, G. Making copies of chromatin: The challenge of nucleosomal organization and epigenetic information. Trends Cell Biol., 2009, 19(1), 29-41.
[http://dx.doi.org/10.1016/j.tcb.2008.10.002] [PMID: 19027300]
[8]
Ransom, M.; Dennehey, B.K.; Tyler, J.K. Chaperoning histones during DNA replication and repair. Cell, 2010, 140(2), 183-195.
[http://dx.doi.org/10.1016/j.cell.2010.01.004] [PMID: 20141833]
[9]
Umehara, T.; Horikoshi, M. Transcription initiation factor IID-interactive histone chaperone CIA-II implicated in mammalian spermatogenesis. J. Biol. Chem., 2003, 278(37), 35660-35667.
[http://dx.doi.org/10.1074/jbc.M303549200] [PMID: 12842904]
[10]
Liu, X.; Song, J.; Zhang, Y.; Wang, H.; Sun, H.; Feng, X.; Hou, M.; Chen, G.; Tang, Q.; Ji, M. ASF1B promotes cervical cancer progression through stabilization of CDK9. Cell Death Dis., 2020, 11(8), 705.
[http://dx.doi.org/10.1038/s41419-020-02872-5] [PMID: 32848135]
[11]
Corpet, A.; De Koning, L.; Toedling, J.; Savignoni, A.; Berger, F.; Lemaître, C.; O’Sullivan, R.J.; Karlseder, J.; Barillot, E.; Asselain, B.; Sastre-Garau, X.; Almouzni, G. Asf1b, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer. EMBO J., 2011, 30(3), 480-493.
[http://dx.doi.org/10.1038/emboj.2010.335] [PMID: 21179005]
[12]
Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res., 2017, 77(21), e108-e110.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0307] [PMID: 29092952]
[13]
Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 2008, 5(7), 621-628.
[http://dx.doi.org/10.1038/nmeth.1226] [PMID: 18516045]
[14]
Lian, Q.; Wang, S.; Zhang, G.; Wang, D.; Luo, G.; Tang, J.; Chen, L.; Gu, J. HCCDB: A database of hepatocellular carcinoma expression atlas. Genomics Proteomics Bioinformatics, 2018, 16(4), 269-275.
[http://dx.doi.org/10.1016/j.gpb.2018.07.003] [PMID: 30266410]
[15]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[16]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[17]
Vasaikar, S.V.; Straub, P.; Wang, J.; Zhang, B. LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res., 2018, 46(D1), D956-D963.
[http://dx.doi.org/10.1093/nar/gkx1090] [PMID: 29136207]
[18]
Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sander, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 2013, 6(269), pl1.
[http://dx.doi.org/10.1126/scisignal.2004088] [PMID: 23550210]
[19]
Khan, A.M. R-software: A newer tool in epidemiological data analysis. Indian J. Community Med., 2013, 38(1), 56-58.
[http://dx.doi.org/10.4103/0970-0218.106630] [PMID: 23559706]
[20]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[21]
Malakar, P.; Shilo, A.; Mogilevsky, A.; Stein, I.; Pikarsky, E.; Nevo, Y.; Benyamini, H.; Elgavish, S.; Zong, X.; Prasanth, K.V.; Karni, R. Long noncoding RNA MALAT1 promotes hepatocellular carcinoma development by SRSF1 upregulation and mTOR activation. Cancer Res., 2017, 77(5), 1155-1167.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1508] [PMID: 27993818]
[22]
Budhu, A.; Jia, H.L.; Forgues, M.; Liu, C.G.; Goldstein, D.; Lam, A.; Zanetti, K.A.; Ye, Q.H.; Qin, L.X.; Croce, C.M.; Tang, Z.Y.; Wang, X.W. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology, 2008, 47(3), 897-907.
[http://dx.doi.org/10.1002/hep.22160] [PMID: 18176954]
[23]
Xiao, S.; Chang, R.M.; Yang, M.Y.; Lei, X.; Liu, X.; Gao, W.B.; Xiao, J.L.; Yang, L.Y. Actin-like 6A predicts poor prognosis of hepatocellular carcinoma and promotes metastasis and epithelial-mesenchymal transition. Hepatology, 2016, 63(4), 1256-1271.
[http://dx.doi.org/10.1002/hep.28417] [PMID: 26698646]
[24]
Wang, C.; Li, M.; Wang, S.; Jiang, Z.; Liu, Y. LINC00665 promotes the progression of multiple myeloma by adsorbing miR-214-3p and positively regulating the expression of PSMD10 and ASF1B. OncoTargets Ther., 2020, 13, 6511-6522.
[http://dx.doi.org/10.2147/OTT.S241627] [PMID: 32764956]
[25]
Han, G.; Zhang, X.; Liu, P.; Yu, Q.; Li, Z.; Yu, Q.; Wei, X. Knockdown of anti-silencing function 1B histone chaperone induces cell apoptosis via repressing PI3K/Akt pathway in prostate cancer. Int. J. Oncol., 2018, 53(5), 2056-2066.
[http://dx.doi.org/10.3892/ijo.2018.4526] [PMID: 30132513]
[26]
Ouyang, X.; Lv, L.; Zhao, Y.; Zhang, F.; Hu, Q.; Li, Z.; Zhu, D.; Li, L. ASF1B serves as a potential therapeutic target by influencing cell cycle and proliferation in hepatocellular carcinoma. Front. Oncol., 2021, 11, 11801506.
[PMID: 35087760]
[27]
Chen, T.; Huang, H.; Zhou, Y.; Geng, L.; Shen, T.; Yin, S.; Zhou, L.; Zheng, S. HJURP promotes hepatocellular carcinoma proliferation by destabilizing p21 via the MAPK/ERK1/2 and AKT/GSK3β signaling pathways. J. Exp. Clin. Cancer Res., 2018, 37(1), 193.
[http://dx.doi.org/10.1186/s13046-018-0866-4] [PMID: 30111352]
[28]
Wei, S.; Dai, M.; Zhang, C.; Teng, K.; Wang, F.; Li, H.; Sun, W.; Feng, Z.; Kang, T.; Guan, X.; Xu, R.; Cai, M.; Xie, D. KIF2C: A novel link between Wnt/β-catenin and mTORC1 signaling in the pathogenesis of hepatocellular carcinoma. Protein Cell, 2021, 12(10), 788-809.
[http://dx.doi.org/10.1007/s13238-020-00766-y] [PMID: 32748349]
[29]
Huang, Y.; Wang, H.; Lian, Y.; Wu, X.; Zhou, L.; Wang, J.; Deng, M.; Huang, Y. Upregulation of kinesin family member 4A enhanced cell proliferation via activation of Akt signaling and predicted a poor prognosis in hepatocellular carcinoma. Cell Death Dis., 2018, 9(2), 141.
[http://dx.doi.org/10.1038/s41419-017-0114-4] [PMID: 29396392]
[30]
Yang, B.; Wang, S.; Xie, H.; Wang, C.; Gao, X.; Rong, Y.; Liu, Z.; Lu, Y. KIF18B promotes hepatocellular carcinoma progression through activating Wnt/β-catenin-signaling pathway. J. Cell. Physiol., 2020, 235(10), 6507-6514.
[http://dx.doi.org/10.1002/jcp.29444] [PMID: 32052444]
[31]
Teng, K.; Wei, S.; Zhang, C.; Chen, J.; Chen, J.; Xiao, K.; Liu, J.; Dai, M.; Guan, X.; Yun, J.; Xie, D. KIFC1 is activated by TCF-4 and promotes hepatocellular carcinoma pathogenesis by regulating HMGA1 transcriptional activity. J. Exp. Clin. Cancer Res., 2019, 38(1), 329.
[http://dx.doi.org/10.1186/s13046-019-1331-8] [PMID: 31340839]
[32]
Zhang, J.; Li, H.; Gao, D.; Zhang, B.; Zheng, M.; Lun, M.; Wei, M.; Duan, R.; Guo, M.; Hua, J.; Liu, Q.; Bai, J.; Liu, H.; Zheng, J.; Yao, H. A prognosis and impact factor analysis of DC-CIK cell therapy for patients with hepatocellular carcinoma undergoing postoperative TACE. Cancer Biol. Ther., 2018, 19(6), 475-483.
[http://dx.doi.org/10.1080/15384047.2018.1433501] [PMID: 29400599]
[33]
Zheng, C.; Zheng, L.; Yoo, J.K.; Guo, H.; Zhang, Y.; Guo, X.; Kang, B.; Hu, R.; Huang, J.Y.; Zhang, Q.; Liu, Z.; Dong, M.; Hu, X.; Ouyang, W.; Peng, J.; Zhang, Z. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell, 2017, 169(7), 1342-1356.e16.
[http://dx.doi.org/10.1016/j.cell.2017.05.035] [PMID: 28622514]
[34]
Bian, J.; Lin, J.; Long, J.; Yang, X.; Yang, X.; Lu, X.; Sang, X.; Zhao, H. T lymphocytes in hepatocellular carcinoma immune microenvironment: Insights into human immunology and immunotherapy. Am. J. Cancer Res., 2020, 10(12), 4585-4606.
[PMID: 33415021]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy