Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

Quercetin against Emerging RNA Viral Diseases: Potential and Challenges for Translation

Author(s): Bharat Bhusan Subudhi* and Ranjit Prasad Swain

Volume 23, Issue 9, 2023

Published on: 05 October, 2022

Page: [849 - 862] Pages: 14

DOI: 10.2174/1566524023666220822102805

Price: $65

Abstract

Due to higher adaptability and mutability, there is always a possibility for RNA viral disease outbreaks. There are no approved antivirals for the majority of RNA viruses, including SARS-CoV-2, CHIKV, DENV, JEV, ZIKV, and EBOV. To treat these infections and prepare for future epidemics, it is necessary to identify effective therapeutic strategies with broad-spectrum actions against RNA viruses. Unregulated inflammation is the major cause of the severity associated with these viral diseases. Quercetin is a privileged molecule that is known to interfere at different levels of inflammatory response. Besides, it modulates pathways responsible for viral translation as well as the immune response of the host. It has also been found to inhibit replication by targeting critical targets of some of these viruses. Due to its abilities to inhibit viral targets, modulate host factors or a combination of both, quercetin has been demonstrated to help recover from some of these viral diseases in preclinical /clinical studies. Thus, it can be a drug candidate for application against a broad range of viral diseases. However, its translational value is limited by the lack of large-scale clinical studies. A major hurdle for oral application is poor solubility. Thus, developing a suitable form of quercetin can enable adequate bioavailability, leading to its translational application.

Keywords: Quercetin, Inflammation, Antiviral, RNA virus, Viral Disease, Infection

[1]
Rosenberg R. Detecting the emergence of novel, zoonotic viruses pathogenic to humans. Cell Mol Life Sci 2015; 72(6): 1115-25.
[http://dx.doi.org/10.1007/s00018-014-1785-y] [PMID: 25416679]
[2]
Pawar AY. Combating devastating COVID-19 by drug repurposing. Int J Antimicrob Agents 2020; 56(2): 105984.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105984] [PMID: 32305589]
[3]
Subudhi BB, Chattopadhyay S, Chattopadhyay S. Targeting host factors of virus-induced inflammation: A strategy for tackling future epidemics by RNA viruses. Future Virol 2022; 17(4): 201-4.
[http://dx.doi.org/10.2217/fvl-2021-0218]
[4]
Pascual TS, Johnston KL, DuPont MS, et al. Quercetin metabolites downregulate cyclooxygenase-2 transcription in human lymphocytes ex vivo but not in vivo. J Nutr 2004; 134(3): 552-7.
[http://dx.doi.org/10.1093/jn/134.3.552] [PMID: 14988445]
[5]
Ferraz CR, Carvalho TT, Manchope MF, et al. Therapeutic potential of flavonoids in pain and inflammation: Mechanisms of action, pre-clinical and clinical data, and pharmaceutical development. Molecules 2020; 25(3): 762.
[http://dx.doi.org/10.3390/molecules25030762] [PMID: 32050623]
[6]
Suzuki Y, Ishihara M, Segami T, Ito M. Anti-ulcer effects of antioxidants, quercetin, α-tocopherol, nifedipine and tetracycline in rats. Jpn J Pharmacol 1998; 78(4): 435-41.
[http://dx.doi.org/10.1016/S0021-5198(19)39723-9] [PMID: 9920200]
[7]
Li Y, Yao J, Han C, et al. Quercetin, inflammation and immunity. Nutrients 2016; 8(3): 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[8]
K RM, Ghosh B. Quercetin inhibits LPS-induced nitric oxide and tumor necrosis factor-α production in murine macrophages. Int J Immunopharmacol 1999; 21(7): 435-43.
[http://dx.doi.org/10.1016/S0192-0561(99)00024-7] [PMID: 10454017]
[9]
Geraets L, Moonen HJJ, Brauers K, Wouters EFM, Bast A, Hageman GJ. Dietary flavones and flavonoles are inhibitors of poly(ADP-ribose)polymerase-1 in pulmonary epithelial cells. J Nutr 2007; 137(10): 2190-5.
[http://dx.doi.org/10.1093/jn/137.10.2190] [PMID: 17884996]
[10]
Bureau G, Longpré F, Martinoli MG. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res 2008; 86(2): 403-10.
[http://dx.doi.org/10.1002/jnr.21503] [PMID: 17929310]
[11]
Kim HP, Mani I, Iversen L, Ziboh VA. Effects of naturally-occurring flavonoids and biflavonoids on epidermal cyclooxygenase and lipoxygenase from guinea-pigs. Prostaglandins Leukot Essent Fatty Acids 1998; 58(1): 17-24.
[http://dx.doi.org/10.1016/S0952-3278(98)90125-9] [PMID: 9482162]
[12]
Lee KM, Hwang MK, Lee DE, Lee KW, Lee HJ. Protective effect of quercetin against arsenite-induced COX-2 expression by targeting PI3K in rat liver epithelial cells. J Agric Food Chem 2010; 58(9): 5815-20.
[http://dx.doi.org/10.1021/jf903698s] [PMID: 20377179]
[13]
Endale M, Park SC, Kim S, et al. Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology 2013; 218(12): 1452-67.
[http://dx.doi.org/10.1016/j.imbio.2013.04.019] [PMID: 23735482]
[14]
Nair MPN, Kandaswami C, Mahajan S, et al. The flavonoid, quercetin, differentially regulates Th-1 (IFNγ) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cells. Biochim Biophys Acta Mol Cell Res 2002; 1593(1): 29-36.
[http://dx.doi.org/10.1016/S0167-4889(02)00328-2] [PMID: 12431781]
[15]
Kandere GK, Kempuraj D, Cao J, Cetrulo CL, Theoharides TC. Regulation of IL-1-induced selective IL-6 release from human mast cells and inhibition by quercetin. Br J Pharmacol 2006; 148(2): 208-15.
[http://dx.doi.org/10.1038/sj.bjp.0706695] [PMID: 16532021]
[16]
Tanaka Y, Furuta A, Asano K, Kobayashi H. Modulation of Th1/Th2 cytokine balance by quercetin in vitro. Medicines (Basel) 2020; 7(8): 46.
[http://dx.doi.org/10.3390/medicines7080046] [PMID: 32751563]
[17]
Muthian G, Bright JJ. Quercetin, a flavonoid phytoestrogen, ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK-STAT pathway in T lymphocyte. J Clin Immunol 2004; 24(5): 542-52.
[http://dx.doi.org/10.1023/B:JOCI.0000040925.55682.a5] [PMID: 15359113]
[18]
Penissi AB, Rudolph MI, Piezzi RS. Role of mast cells in gastrointestinal mucosal defense. Biocell 2003; 27(2): 163-72.
[http://dx.doi.org/10.32604/biocell.2003.27.163] [PMID: 14510234]
[19]
Taslidere E, Dogan Z, Elbe H, Vardi N, Cetin A, Turkoz Y. Quercetin protection against ciprofloxacin induced liver damage in rats. Biotech Histochem 2016; 91(2): 116-21.
[http://dx.doi.org/10.3109/10520295.2015.1085093] [PMID: 26529398]
[20]
Ullah A, Munir S, Badshah SL, et al. Important flavonoids and their role as a therapeutic agent. Molecules 2020; 25(22): 5243.
[http://dx.doi.org/10.3390/molecules25225243] [PMID: 33187049]
[21]
Chuang CC, Martinez K, Xie G, et al. Quercetin is equally or more effective than resveratrol in attenuating tumor necrosis factor-α–mediated inflammation and insulin resistance in primary human adipocytes. Am J Clin Nutr 2010; 92(6): 1511-21.
[http://dx.doi.org/10.3945/ajcn.2010.29807] [PMID: 20943792]
[22]
Bowman LJ, Brueckner AJ, Doligalski CT. The role of mTOR inhibitors in the management of viral infections: A review of current literature. Transplantation 2018; 102 (2S Suppl 1): S50-s59.
[http://dx.doi.org/10.1097/TP.0000000000001777]
[23]
Le Sage V, Cinti A, Amorim R, Mouland A. Adapting the stress response: Viral subversion of the mTOR signaling pathway. Viruses 2016; 8(6): 152.
[http://dx.doi.org/10.3390/v8060152] [PMID: 27231932]
[24]
Das I, Basantray I, Mamidi P, et al. Heat shock protein 90 positively regulates Chikungunya virus replication by stabilizing viral non-structural protein nsP2 during infection. PLoS One 2014; 9(6): e100531.
[http://dx.doi.org/10.1371/journal.pone.0100531] [PMID: 24959709]
[25]
Kindrachuk J, Ork B, Hart BJ, et al. Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob Agents Chemother 2015; 59(2): 1088-99.
[http://dx.doi.org/10.1128/AAC.03659-14] [PMID: 25487801]
[26]
Karam BS, Morris RS, Bramante CT, et al. mTOR inhibition in COVID‐19: A commentary and review of efficacy in RNA viruses. J Med Virol 2021; 93(4): 1843-6.
[http://dx.doi.org/10.1002/jmv.26728] [PMID: 33314219]
[27]
Klappan AK, Hones S, Mylonas I, Brüning A. Proteasome inhibition by quercetin triggers macroautophagy and blocks mTOR activity. Histochem Cell Biol 2012; 137(1): 25-36.
[http://dx.doi.org/10.1007/s00418-011-0869-0] [PMID: 21993664]
[28]
Chen KC, Hsu WH, Ho JY, et al. Flavonoids luteolin and quercetin inhibit RPS19 and contributes to metastasis of cancer cells through c-Myc reduction. J Food Drug Anal 2018; 26(3): 1180-91.
[http://dx.doi.org/10.1016/j.jfda.2018.01.012] [PMID: 29976410]
[29]
Hosseinzade A, Sadeghi O, Naghdipour Biregani A, Soukhtehzari S, Brandt GS, Esmaillzadeh A. Immuno-modulatory effects of flavonoids: Possible induction of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. Front Immunol 2019; 10: 51.
[http://dx.doi.org/10.3389/fimmu.2019.00051] [PMID: 30766532]
[30]
Kuzmich N, Sivak K, Chubarev V, Porozov Y, Savateeva LT, Peri F. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines (Basel) 2017; 5(4): 34.
[http://dx.doi.org/10.3390/vaccines5040034] [PMID: 28976923]
[31]
Olejnik J, Hume AJ, Mühlberger E. Toll like receptor 4 in acute viral infection: Too much of a good thing. PLoS Pathog 2018; 14(12): e1007390.
[http://dx.doi.org/10.1371/journal.ppat.1007390] [PMID: 30571771]
[32]
Shirey KA, Lai W, Patel MC, et al. Novel strategies for targeting innate immune responses to influenza. Mucosal Immunol 2016; 9(5): 1173-82.
[http://dx.doi.org/10.1038/mi.2015.141] [PMID: 26813341]
[33]
Zhang Z, Ohto U, Shibata T, et al. Structural analyses of Toll like Receptor 7 reveal detailed RNA sequence specificity and recognition mechanism of agonistic ligands. Cell Rep 2018; 25(12): 3371-3381.e5.
[http://dx.doi.org/10.1016/j.celrep.2018.11.081] [PMID: 30566863]
[34]
Heil F, Hemmi H, Hochrein H, et al. Species specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303(5663): 1526-9.
[http://dx.doi.org/10.1126/science.1093620] [PMID: 14976262]
[35]
Uehata T, Takeuchi O. RNA recognition and immunity innate immune sensing and its posttranscriptional regulation mechanisms. Cells 2020; 9(7): 1701.
[http://dx.doi.org/10.3390/cells9071701] [PMID: 32708595]
[36]
Kopitar JN. The role of interferons in inflammation and inflammasome activation. Front Immunol 2017; 8: 873.
[http://dx.doi.org/10.3389/fimmu.2017.00873] [PMID: 28791024]
[37]
Yang Y, Lv J, Jiang S, et al. The emerging role of toll-like receptor 4 in myocardial inflammation. Cell Death Dis 2016; 7(5): e2234.
[http://dx.doi.org/10.1038/cddis.2016.140] [PMID: 27228349]
[38]
Bhaskar S, Shalini V, Helen A. Quercetin regulates oxidized LDL induced inflammatory changes in human PBMCs by modulating the TLR-NF-κB signaling pathway. Immunobiology 2011; 216(3): 367-73.
[http://dx.doi.org/10.1016/j.imbio.2010.07.011] [PMID: 20828867]
[39]
Byun EB, Yang MS, Choi HG, et al. Quercetin negatively regulates TLR4 signaling induced by lipopolysaccharide through Tollip expression. Biochem Biophys Res Commun 2013; 431(4): 698-705.
[http://dx.doi.org/10.1016/j.bbrc.2013.01.056] [PMID: 23353651]
[40]
Li T, Li F, Liu X, Liu J, Li D. Synergistic anti-inflammatory effects of quercetin and catechin via inhibiting activation of TLR4-MyD88-mediated NF-κB and MAPK signaling pathways. Phytother Res 2019; 33(3): 756-67.
[http://dx.doi.org/10.1002/ptr.6268] [PMID: 30637814]
[41]
Bhaskar S, Helen A. Quercetin modulates toll-like receptor-mediated protein kinase signaling pathways in oxLDL-challenged human PBMCs and regulates TLR-activated atherosclerotic inflammation in hypercholesterolemic rats. Mol Cell Biochem 2016; 423(1-2): 53-65.
[http://dx.doi.org/10.1007/s11010-016-2824-9] [PMID: 27665434]
[42]
Xiong G, Ji W, Wang F, et al. Quercetin inhibits inflammatory response induced by LPS from porphyromonas gingivalis in human gingival fibroblasts via suppressing NF-κB signaling pathway. BioMed Res Int 2019; 2019: 1-10.
[http://dx.doi.org/10.1155/2019/6282635] [PMID: 31531360]
[43]
Hawley C, Mankins C, Byrd SK. Effects of the bioflavonoid quercetin on TLR4 expression and NFKb activation in A375 melanoma cells. FASEB J 2020; 34(S1): 1-1.
[http://dx.doi.org/10.1096/fasebj.2020.34.s1.04930]
[44]
Chen XL, Chai GR, Liu S, Yang HW. Quercetin protects against diabetic retinopathy in rats by inducing heme oxygenase-1 expression. Neural Regen Res 2021; 16(7): 1344-50.
[http://dx.doi.org/10.4103/1673-5374.301027] [PMID: 33318415]
[45]
Yi L, Li Z, Yuan K, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 2004; 78(20): 11334-9.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[46]
Nguyen TTH, Woo HJ, Kang HK, et al. Flavonoid mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett 2012; 34(5): 831-8.
[http://dx.doi.org/10.1007/s10529-011-0845-8] [PMID: 22350287]
[47]
Saakre M, Mathew D, Ravisankar V. Perspectives on plant flavonoid quercetin based drugs for novel SARS-CoV-2. Beni Suef Univ J Basic Appl Sci 2021; 10(1): 21.
[http://dx.doi.org/10.1186/s43088-021-00107-w] [PMID: 33782651]
[48]
Di Petrillo A, Orrù G, Fais A, Fantini MC. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother Res 2022; 36(1): 266-78.
[http://dx.doi.org/10.1002/ptr.7309] [PMID: 34709675]
[49]
Derosa G, Maffioli P, D’Angelo A, Di Pierro F. A role for quercetin in coronavirus disease 2019 (COVID‐19). Phytother Res 2021; 35(3): 1230-6.
[http://dx.doi.org/10.1002/ptr.6887] [PMID: 33034398]
[50]
Bahun M, Jukić M, Oblak D, et al. Inhibition of the SARSCoV-2 3CLpro main protease by plant polyphenols. Food Chem 2022; 373(Pt B): 131594.
[51]
Mangiavacchi F, Botwina P, Menichetti E, et al. Seleno-functionalization of quercetin improves the non-covalent inhibition of Mpro and its antiviral activity in cells against SARS-CoV-2. Int J Mol Sci 2021; 22(13): 7048.
[http://dx.doi.org/10.3390/ijms22137048] [PMID: 34208928]
[52]
Bastaminejad S, Bakhtiyari S. Quercetin and its relative therapeutic potential against COVID-19: A retrospective review and prospective overview. Curr Mol Med 2021; 21(5): 385-91.
[http://dx.doi.org/10.2174/1566524020999200918150630] [PMID: 32957884]
[53]
Moradian N, Gouravani M, Salehi MA, et al. Cytokine release syndrome: Inhibition of pro-inflammatory cytokines as a solution for reducing COVID-19 mortality. Eur Cytokine Netw 2020; 31(3): 81-93.
[http://dx.doi.org/10.1684/ecn.2020.0451] [PMID: 33361013]
[54]
Di Pierro F, Khan A, Bertuccioli A, et al. Quercetin Phytosome® as a potential candidate for managing COVID-19. Minerva Gastroenterol 2021; 67(2): 190-5.
[http://dx.doi.org/10.23736/S2724-5985.20.02771-3] [PMID: 33016666]
[55]
Di Pierro F, Iqtadar S, Khan A, et al. Potential clinical benefits of quercetin in the early stage of COVID-19: Results of a second, pilot, randomized, controlled and open-label clinical trial. Int J Gen Med 2021; 14: 2807-16.
[http://dx.doi.org/10.2147/IJGM.S318949] [PMID: 34194240]
[56]
Brito JCM, Lima WG, Cordeiro LPB, Cruz NWS. Effectiveness of supplementation with quercetin‐type flavonols for treatment of viral lower respiratory tract infections: Systematic review and meta‐analysis of preclinical studies. Phytother Res 2021; 35(9): 4930-42.
[http://dx.doi.org/10.1002/ptr.7122] [PMID: 33864310]
[57]
Wintergerst ES, Maggini S, Hornig DH. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Ann Nutr Metab 2006; 50(2): 85-94.
[http://dx.doi.org/10.1159/000090495] [PMID: 16373990]
[58]
Kaushik N, Subramani C, Anang S, et al. Zinc salts block hepatitis e virus replication by inhibiting the activity of viral RNA-dependent RNA polymerase. J Virol 2017; 91(21): e00754-17.
[http://dx.doi.org/10.1128/JVI.00754-17] [PMID: 28814517]
[59]
Velthuis AJW, Worm SHE, Sims AC, Baric RS, Snijder EJ, Hemert MJ. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 2010; 6(11): e1001176.
[http://dx.doi.org/10.1371/journal.ppat.1001176] [PMID: 21079686]
[60]
Dabbagh BH, Clergeaud G, Quesada IM, Ortiz M, O’Sullivan CK, Fernández LJB. Zinc ionophore activity of quercetin and epigallocatechin-gallate: From Hepa 1-6 cells to a liposome model. J Agric Food Chem 2014; 62(32): 8085-93.
[http://dx.doi.org/10.1021/jf5014633] [PMID: 25050823]
[61]
Carr A, Maggini S. Vitamin C and immune function. Nutrients 2017; 9(11): 1211.
[http://dx.doi.org/10.3390/nu9111211] [PMID: 29099763]
[62]
Leibovitz B, Siegel BV. Ascorbic acid and the immune response. Adv Exp Med Biol 1981; 135: 1-25.
[PMID: 7010958]
[63]
Dey S, Bishayi B. Killing of S. aureus in murine peritoneal macrophages by ascorbic acid along with antibiotics Chloramphenicol or Ofloxacin: Correlation with inflammation. Microb Pathog 2018; 115: 239-50.
[http://dx.doi.org/10.1016/j.micpath.2017.12.048] [PMID: 29274459]
[64]
Furuya A, Uozaki M, Yamasaki H, Arakawa T, Arita M, Koyama AH. Antiviral effects of ascorbic and dehydroascorbic acids in vitro. Int J Mol Med 2008; 22(4): 541-5.
[PMID: 18813862]
[65]
Chen JY, Chang CY, Feng PH, Chu CC, So EC, Hu ML. Plasma vitamin C is lower in postherpetic neuralgia patients and administration of vitamin C reduces spontaneous pain but not brush-evoked pain. Clin J Pain 2009; 25(7): 562-9.
[http://dx.doi.org/10.1097/AJP.0b013e318193cf32] [PMID: 19692796]
[66]
Valero N, Mosquera J, Alcocer S, Bonilla E, Salazar J, Álvarez MM. Melatonin, minocycline and ascorbic acid reduce oxidative stress and viral titers and increase survival rate in experimental Venezuelan equine encephalitis. Brain Res 2015; 1622: 368-76.
[http://dx.doi.org/10.1016/j.brainres.2015.06.034] [PMID: 26168898]
[67]
Kimbarowski JA, Mokrow NJ. Colored precipitation reaction of the urine according to Kimbarowski (FARK) as an index of the effect of ascorbic acid during treatment of viral influenza. Dtsch Gesundheitsw 1967; 22(51): 2413-8.
[PMID: 5614915]
[68]
Davis JM, Murphy EA, McClellan JL, Carmichael MD, Gangemi JD. Quercetin reduces susceptibility to influenza infection following stressful exercise. Am J Physiol Regul Integr Comp Physiol 2008; 295(2): R505-9.
[http://dx.doi.org/10.1152/ajpregu.90319.2008] [PMID: 18579649]
[69]
Boots AW, Li H, Schins RPF, et al. The quercetin paradox. Toxicol Appl Pharmacol 2007; 222(1): 89-96.
[http://dx.doi.org/10.1016/j.taap.2007.04.004] [PMID: 17537471]
[70]
Askari G, Ghiasvand R, Feizi A, Ghanadian SM, Karimian J. The effect of quercetin supplementation on selected markers of inflammation and oxidative stress. J Res Med Sci 2012; 17(7): 637-41.
[PMID: 23798923]
[71]
Boots AW, Haenen GRMM, Bast A. Health effects of quercetin: From antioxidant to nutraceutical. Eur J Pharmacol 2008; 585(2-3): 325-37.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.008] [PMID: 18417116]
[72]
Colunga RML, Berrill M, Catravas JD, Marik PE. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol 2020; 11: 1451.
[http://dx.doi.org/10.3389/fimmu.2020.01451] [PMID: 32636851]
[73]
Cunha RV, Trinta KS. Chikungunya virus: Clinical aspects and treatment - A review. Mem Inst Oswaldo Cruz 2017; 112(8): 523-31.
[http://dx.doi.org/10.1590/0074-02760170044] [PMID: 28767976]
[74]
Subudhi B, Chattopadhyay S, Mishra P, Kumar A. Current strategies for inhibition of chikungunya infection. Viruses 2018; 10(5): 235.
[http://dx.doi.org/10.3390/v10050235] [PMID: 29751486]
[75]
Ji JJ, Lin Y, Huang SS, Zhang HL, Diao YP, Li K. Quercetin: A potential natural drug for adjuvant treatment of rheumatoid arthritis. Afr J Tradit Complement Altern Med 2013; 10(3): 418-21.
[PMID: 24146468]
[76]
Javadi F, Ahmadzadeh A, Eghtesadi S, et al. The effect of Quercetin on inflammatory factors and clinical symptoms in women with rheumatoid arthritis: A double-blind, randomized controlled trial. J Am Coll Nutr 2017; 36(1): 9-15.
[http://dx.doi.org/10.1080/07315724.2016.1140093] [PMID: 27710596]
[77]
Yuan K, Zhu Q, Lu Q, et al. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities. J Nutr Biochem 2020; 84: 108454.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108454] [PMID: 32679549]
[78]
Lani R, Hassandarvish P, Chiam CW, et al. Antiviral activity of silymarin against chikungunya virus. Sci Rep 2015; 5(1): 11421.
[http://dx.doi.org/10.1038/srep11421] [PMID: 26078201]
[79]
Wang R, Zhang H, Wang Y, Song F, Yuan Y. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-кB/IкBα p38 MAPK, and Bcl-2/Bax signaling. Int Immunopharmacol 2017; 47: 126-33.
[http://dx.doi.org/10.1016/j.intimp.2017.03.029] [PMID: 28391159]
[80]
Nayak TK, Mamidi P, Sahoo SS, et al. P38 and JNK mitogen-activated protein kinases interact with chikungunya virus non-structural protein-2 and regulate TNF induction during viral infection in macrophages. Front Immunol 2019; 10: 786.
[http://dx.doi.org/10.3389/fimmu.2019.00786] [PMID: 31031770]
[81]
Mustafa MS, Rasotgi V, Jain S, Gupta V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med J Armed Forces India 2015; 71(1): 67-70.
[http://dx.doi.org/10.1016/j.mjafi.2014.09.011] [PMID: 25609867]
[82]
Whitehorn J, Farrar J. Dengue. Br Med Bull 2010; 95(1): 161-73.
[http://dx.doi.org/10.1093/bmb/ldq019] [PMID: 20616106]
[83]
Moraes GH, Duarte EC, Fátima DE. Determinants of mortality from severe dengue in Brazil: A population based case control study. Am J Trop Med Hyg 2013; 88(4): 670-6.
[http://dx.doi.org/10.4269/ajtmh.11-0774] [PMID: 23400577]
[84]
Banu S, Choudhury MA, Abu Md, Tong S. Dengue: Emergence, determinants and climate change. In: Loukas A, Ed. Neglected tropical diseases - Oceania. Switzerland: Springer 2016; pp. 237-48.
[http://dx.doi.org/10.1007/978-3-319-43148-2_9]
[85]
Guabiraba R, Ryffel B. Dengue virus infection: Current concepts in immune mechanisms and lessons from murine models. Immunology 2014; 141(2): 143-56.
[http://dx.doi.org/10.1111/imm.12188] [PMID: 24182427]
[86]
Lin CK, Tseng CK, Wu YH, et al. Cyclooxygenase‐2 facilitates dengue virus replication and serves as a potential target for developing antiviral agents. Sci Rep 2017; 7(1): 44701.
[http://dx.doi.org/10.1038/srep44701] [PMID: 28317866]
[87]
Wijewickrama A. Dengue, bleeding and non-steroidal anti-inflammatory drugs. J Ceylon College Phys 2017; 48(2): 66-77.
[http://dx.doi.org/10.4038/jccp.v48i2.7824]
[88]
Paknikar SS, Sarala N. Papaya extract to treat dengue: A novel therapeutic option? Ann Med Health Sci Res 2014; 4(3): 320-4.
[http://dx.doi.org/10.4103/2141-9248.133452] [PMID: 24971201]
[89]
Oloyede O, Franco J, Roos D, Rocha J, Athayde M, Bolig A. Antioxidative properties of ethyl acetate fraction of unripe pulp of Carica papaya in mice. J Microbiol Biotechnol Food Sci 2011/12; 1(3): 409-25.
[90]
Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, AbuBakar S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol J 2011; 8(1): 560.
[http://dx.doi.org/10.1186/1743-422X-8-560] [PMID: 22201648]
[91]
Jasso MC, Herrera CI, Flores MLK, et al. Antiviral and immunomodulatory effects of polyphenols on macrophages infected with dengue virus serotypes 2 and 3 enhanced or not with antibodies. Infect Drug Resist 2019; 12: 1833-52.
[http://dx.doi.org/10.2147/IDR.S210890] [PMID: 31303775]
[92]
Trujillo CAI, Quintero GDC, Diaz CF, Quiñones W, Robledo SM, Martinez GM. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med 2019; 19(1): 298.
[http://dx.doi.org/10.1186/s12906-019-2695-1] [PMID: 31694638]
[93]
Chiow KH, Phoon MC, Putti T, Tan BKH, Chow VT. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac J Trop Med 2016; 9(1): 1-7.
[http://dx.doi.org/10.1016/j.apjtm.2015.12.002] [PMID: 26851778]
[94]
Dwivedi VD, Bharadwaj S, Afroz S, et al. Anti-dengue infectivity evaluation of bioflavonoid from Azadirachta indica by dengue virus serine protease inhibition. J Biomol Struct Dyn 2021; 39(4): 1417-30.
[http://dx.doi.org/10.1080/07391102.2020.1734485] [PMID: 32107969]
[95]
Dewi BE, Desti H, Ratningpoeti E, Sudiro M, Angelina M, Eds. Effectivity of quercetin as antiviral to dengue virus-2 strain new guinea C in Huh 7-it 1 cell line. Proceedings of IOP conference series earth and environmental science, the 3rd international conference on natural products and bioresource sciences. 2019 Oct 23-24; Tangerang, Indonesia: IOP publishing Ltd 2020..
[http://dx.doi.org/10.1088/1755-1315/462/1/012033]
[96]
Sousa LRF, Wu H, Nebo L, et al. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: Inhibition kinetics and docking studies. Bioorg Med Chem 2015; 23(3): 466-70.
[http://dx.doi.org/10.1016/j.bmc.2014.12.015] [PMID: 25564380]
[97]
World Health Organization (WHO). Fact Sheet, Japanese encephalitis. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/japanese-encephalitis
[98]
Solomon T, Dung NM, Kneen R, Gainsborough M, Vaughn DW, Khanh VT. Neurological aspects of tropical disease: Japanese encephalitis. J Neurol Neurosurg Psychiatry 2000; 68(4): 405-15.
[http://dx.doi.org/10.1136/jnnp.68.4.405] [PMID: 10727474]
[99]
Johari J, Kianmehr A, Mustafa M, Abubakar S, Zandi K. Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus. Int J Mol Sci 2012; 13(12): 16785-95.
[http://dx.doi.org/10.3390/ijms131216785] [PMID: 23222683]
[100]
Tayone WC, Ishida K, Goto S, et al. Anti-japanese encephalitis virus (JEV) activity of triterpenes and flavonoids from Euphorbia hirta. Philipp J Sci 2020; 149(3): 603-13.
[101]
Lannes N, Summerfield A, Filgueira L. Regulation of inflammation in Japanese encephalitis. J Neuroinflammation 2017; 14(1): 158.
[http://dx.doi.org/10.1186/s12974-017-0931-5] [PMID: 28807053]
[102]
Ghosh D, Basu A. Japanese encephalitis-a pathological and clinical perspective. PLoS Negl Trop Dis 2009; 3(9): e437.
[http://dx.doi.org/10.1371/journal.pntd.0000437] [PMID: 19787040]
[103]
Mannila A, Rautio J, Lehtonen M, Järvinen T, Savolainen J. Inefficient central nervous system delivery limits the use of ibuprofen in neurodegenerative diseases. Eur J Pharm Sci 2005; 24(1): 101-5.
[http://dx.doi.org/10.1016/j.ejps.2004.10.004] [PMID: 15626583]
[104]
Parepally JMR, Mandula H, Smith QR. Brain uptake of nonsteroidal anti-inflammatory drugs: Ibuprofen, flurbiprofen, and indomethacin. Pharm Res 2006; 23(5): 873-81.
[http://dx.doi.org/10.1007/s11095-006-9905-5] [PMID: 16715377]
[105]
Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S. Quercetin modulates NF-κ B and AP-1/JNK pathways to induce cell death in human hepatoma cells. Nutr Cancer 2010; 62(3): 390-401.
[http://dx.doi.org/10.1080/01635580903441196] [PMID: 20358477]
[106]
Suematsu N, Hosoda M, Fujimori K. Protective effects of quercetin against hydrogen peroxide-induced apoptosis in human neuronal SH-SY5Y cells. Neurosci Lett 2011; 504(3): 223-7.
[http://dx.doi.org/10.1016/j.neulet.2011.09.028] [PMID: 21964380]
[107]
Costa LG, de Laat R, Dao K, Pellacani C, Cole TB, Furlong CE. Paraoxonase-2 (PON2) in brain and its potential role in neuroprotection. Neurotoxicology 2014; 43: 3-9.
[http://dx.doi.org/10.1016/j.neuro.2013.08.011] [PMID: 24012887]
[108]
Boesch-Saadatmandi C, Pospissil R, Graeser AC, et al. Effect of quercetin on paraoxonase 2 levels in RAW264.7 macrophages and in human monocytes--role of quercetin metabolism. Int J Mol Sci 2009; 10(9): 4168-77.
[http://dx.doi.org/10.3390/ijms10094168] [PMID: 19865538]
[109]
Chen TJ, Jeng JY, Lin CW, Wu CY, Chen YC. Quercetin inhibition of ROS-dependent and -independent apoptosis in rat glioma C6 cells. Toxicology 2006; 223(1-2): 113-26.
[http://dx.doi.org/10.1016/j.tox.2006.03.007] [PMID: 16647178]
[110]
Chen JC, Ho FM, Chen CP, et al. Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IκB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur J Pharmacol 2005; 521(1-3): 9-20.
[http://dx.doi.org/10.1016/j.ejphar.2005.08.005] [PMID: 16171798]
[111]
Kim H, Park BS, Lee KG, et al. Effects of naturally occurring compounds on fibril formation and oxidative stress of β-amyloid. J Agric Food Chem 2005; 53(22): 8537-41.
[http://dx.doi.org/10.1021/jf051985c] [PMID: 16248550]
[112]
Sharma V, Mishra M, Ghosh S, et al. Modulation of interleukin-1β mediated inflammatory response in human astrocytes by flavonoids: Implications in neuroprotection. Brain Res Bull 2007; 73(1-3): 55-63.
[http://dx.doi.org/10.1016/j.brainresbull.2007.01.016] [PMID: 17499637]
[113]
Sternberg Z, Chadha K, Lieberman A, et al. Quercetin and interferon-β modulate immune response(s) in peripheral blood mononuclear cells isolated from multiple sclerosis patients. J Neuroimmunol 2008; 205(1-2): 142-7.
[http://dx.doi.org/10.1016/j.jneuroim.2008.09.008] [PMID: 18926575]
[114]
Wang DM, Li SQ, Wu WL, Zhu XY, Wang Y, Yuan HY. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease. Neurochem Res 2014; 39(8): 1533-43.
[http://dx.doi.org/10.1007/s11064-014-1343-x] [PMID: 24893798]
[115]
Khan H, Ullah H, Aschner M, Cheang WS, Akkol EK. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules 2019; 10(1): 59.
[http://dx.doi.org/10.3390/biom10010059] [PMID: 31905923]
[116]
Singh RK, Dhama K, Malik YS, et al. Zika virus – emergence, evolution, pathology, diagnosis, and control: Current global scenario and future perspectives – a comprehensive review. Vet Q 2016; 36(3): 150-75.
[http://dx.doi.org/10.1080/01652176.2016.1188333] [PMID: 27158761]
[117]
World Health Organization (WHO). Fact Sheet, Zika virus. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/zika-virus
[118]
Roy A, Lim L, Srivastava S, Lu Y, Song J. Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants. PLoS One 2017; 12(7): e0180632.
[http://dx.doi.org/10.1371/journal.pone.0180632] [PMID: 28700665]
[119]
Gaudry A, Bos S, Viranaicken W, et al. The flavonoid isoquercitrin precludes initiation of zika virus infection in human cells. Int J Mol Sci 2018; 19(4): 1093.
[http://dx.doi.org/10.3390/ijms19041093] [PMID: 29621184]
[120]
Wong G, He S, Siragam V, et al. Antiviral activity of quercetin-3-β-O-D-glucoside against Zika virus infection. Virol Sin 2017; 32(6): 545-7.
[http://dx.doi.org/10.1007/s12250-017-4057-9] [PMID: 28884445]
[121]
Ganesh K, Das A, Dickerson R, et al. Prostaglandin E-induces oncostatin M expression in human chronic wound macrophages through Axl receptor tyrosine kinase pathway. J Immunol 2012; 189(5): 2563-73.
[http://dx.doi.org/10.4049/jimmunol.1102762] [PMID: 22844123]
[122]
Savidis G, McDougall WM, Meraner P, et al. Identification of zika virus and dengue virus dependency factors using functional genomics. Cell Rep 2016; 16(1): 232-46.
[http://dx.doi.org/10.1016/j.celrep.2016.06.028] [PMID: 27342126]
[123]
Miner JJ, Sene A, Richner JM, et al. Zika virus infection in mice causes panuveitis with shedding of virus in tears. Cell Rep 2016; 16(12): 3208-18.
[http://dx.doi.org/10.1016/j.celrep.2016.08.079] [PMID: 27612415]
[124]
Meertens L, Labeau A, Dejarnac O, et al. AXL mediates ZIKA virus entry in human glial cells and modulates innate immune responses. Cell Rep 2017; 18(2): 324-33.
[http://dx.doi.org/10.1016/j.celrep.2016.12.045] [PMID: 28076778]
[125]
Pan T, Peng Z, Tan L, et al. Nonsteroidal anti-inflammatory drugs potently inhibit the replication of zika viruses by inducing the degradation of AXL. J Virol 2018; 92(20): e01018-18.
[http://dx.doi.org/10.1128/JVI.01018-18] [PMID: 30068645]
[126]
Estofolete CF, Terzian ACB, Colombo TE, et al. Co-infection between Zika and different Dengue serotypes during DENV outbreak in Brazil. J Infect Public Health 2019; 12(2): 178-81.
[http://dx.doi.org/10.1016/j.jiph.2018.09.007] [PMID: 30301701]
[127]
Xiao X, Shi D, Liu L, et al. Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling. PLoS One 2011; 6(8): e22934.
[http://dx.doi.org/10.1371/journal.pone.0022934] [PMID: 21857970]
[128]
McKay TB, Karamichos D. Quercetin and the ocular surface: What we know and where we are going. Exp Biol Med (Maywood) 2017; 242(6): 565-72.
[http://dx.doi.org/10.1177/1535370216685187] [PMID: 28056553]
[129]
World Health Organization (WHO). Fact Sheet, Ebola virus. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease
[130]
Hensley L, Young HA, Jahrling PB, Geisbert TW. Proinflammatory response during Ebola virus infection of primate models: Possible involvement of the tumor necrosis factor receptor superfamily. Immunol Lett 2002; 80(3): 169-79.
[http://dx.doi.org/10.1016/S0165-2478(01)00327-3] [PMID: 11803049]
[131]
Feldmann H, Geisbert TW. Ebola haemorrhagic fever. Lancet 2011; 377(9768): 849-62.
[http://dx.doi.org/10.1016/S0140-6736(10)60667-8] [PMID: 21084112]
[132]
Cilloniz C, Ebihara H, Ni C, et al. Functional genomics reveals the induction of inflammatory response and metalloproteinase gene expression during lethal Ebola virus infection. J Virol 2011; 85(17): 9060-8.
[http://dx.doi.org/10.1128/JVI.00659-11] [PMID: 21734050]
[133]
Hendricks K, Parrado MG, Bradley J. An existing drug to assess in vivo for potential adjunctive therapy of ebola virus disease and post-ebola syndrome. Front Pharmacol 2020; 10: 1691.
[http://dx.doi.org/10.3389/fphar.2019.01691] [PMID: 32082173]
[134]
Li H, Zhu F, Sun Y, et al. Select dietary phytochemicals function as inhibitors of COX-1 but not COX-2. PLoS One 2013; 8(10): e76452.
[http://dx.doi.org/10.1371/journal.pone.0076452] [PMID: 24098505]
[135]
Phromnoi K, Yodkeeree S, Anuchapreeda S, Limtrakul P. Inhibition of MMP-3 activity and invasion of the MDA-MB-231 human invasive breast carcinoma cell line by bioflavonoids. Acta Pharmacol Sin 2009; 30(8): 1169-76.
[http://dx.doi.org/10.1038/aps.2009.107] [PMID: 19617894]
[136]
Fanunza E, Iampietro M, Distinto S, et al. Quercetin blocks ebola virus infection by counteracting the VP24 interferon-inhibitory function. Antimicrob Agents Chemother 2020; 64(7): e00530-20.
[http://dx.doi.org/10.1128/AAC.00530-20] [PMID: 32366711]
[137]
Qiu X, Kroeker A, He S, et al. Prophylactic efficacy of Quercetin 3-β- O - d -glucoside against ebola virus infection. Antimicrob Agents Chemother 2016; 60(9): 5182-8.
[http://dx.doi.org/10.1128/AAC.00307-16] [PMID: 27297486]
[138]
Okamoto T. Safety of quercetin for clinical application. Int J Mol Med 2005; 16(2): 275-8.
[http://dx.doi.org/10.3892/ijmm.16.2.275] [PMID: 16012761]
[139]
Sanchez GPD, Lopez HFJ, Perez BF, Morales AI, Lopez NJM. Quercetin reduces cisplatin nephrotoxicity in rats without compromising its anti-tumour activity. Nephrol Dial Transplant 2011; 26(11): 3484-95.
[http://dx.doi.org/10.1093/ndt/gfr195] [PMID: 21602180]
[140]
LiverTox: Clinical and Research Information on Drug-induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases 2012.
[PMID: 31643176]
[141]
Dong Q, Chen L, Lu Q, et al. Quercetin attenuates doxorubicin cardiotoxicity by modulating BMI-1 expression. Br J Pharmacol 2014; 171(19): 4440-54.
[http://dx.doi.org/10.1111/bph.12795] [PMID: 24902966]
[142]
Kakran M, Sahoo NG, Li L. Dissolution enhancement of quercetin through nanofabrication, complexation, and solid dispersion. Colloids Surf B Biointerfaces 2011; 88(1): 121-30.
[http://dx.doi.org/10.1016/j.colsurfb.2011.06.020] [PMID: 21764266]
[143]
Setyawan DA, Fadhil A, Juwita D, Yusuf H, Sari R. Enhancement of solubility and dissolution rate of quercetin with solid dispersion system formation using hydroxypropyl methyl cellulose matrix. Thaiphesatchasan 2017; 41(3): 112-6.
[144]
Chaubey R, Srivastava N, Singh A. Enhancement of dissolution rate of quercetin using solid dispersion approach: In vitro and in vivo evaluation. Nanosci Nanotechnol Asia 2020; 10(3): 330-49.
[http://dx.doi.org/10.2174/2210681209666190919095128]
[145]
Febriyentin PI, Zaini E, Ismed F, Lucida H. Preparation and characterization of quercetin -polyvinylpyrrolidone K-30 spray dried solid dispersion. J Pharm Pharmacogn Res 2020; 8(2): 127-34.
[146]
Kamisetti RR, Katta RR, Chengespur MKG. Solubility enhancement and development of gum based colon targeted drug delivery systems of quercetin. Int J Pharm Sci Res 2021; 12(2): 1123-30.
[147]
Tran TH, Guo Y, Song D, Bruno RS, Lu X. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J Pharm Sci 2014; 103(3): 840-52.
[http://dx.doi.org/10.1002/jps.23858] [PMID: 24464737]
[148]
Chen X, McClements DJ, Zhu Y, et al. Enhancement of the solubility, stability and bioaccessibility of quercetin using protein-based excipient emulsions. Food Res Int 2018; 114: 30-7.
[http://dx.doi.org/10.1016/j.foodres.2018.07.062] [PMID: 30361024]
[149]
Park KH, Choi JM, Cho E, et al. Enhancement of solubility and bioavailability of quercetin by inclusion complexation with the cavity of Mono-6-deoxy-6- aminoethylamino-β-cyclodextrin. Bull Korean Chem Soc 2017; 38(8): 880-9.
[http://dx.doi.org/10.1002/bkcs.11192]
[150]
Setyawan D, Permata SA, Zainul A, Lestari MLAD. Improvement in vitro dissolution rate of quercetin using cocrystallization of quercetin malonic acid. Ind J Chem 2018; 18(3): 531-6.
[http://dx.doi.org/10.22146/ijc.28511]
[151]
Han J, Tong M, Li S, et al. Surfactant-free amorphous solid dispersion with high dissolution for bioavailability enhancement of hydrophobic drugs: A case of quercetin. Drug Dev Ind Pharm 2021; 47(1): 153-62.
[http://dx.doi.org/10.1080/03639045.2020.1862173] [PMID: 33295808]
[152]
Dian L, Yu E, Chen X, et al. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Res Lett 2014; 9(1): 684.
[http://dx.doi.org/10.1186/1556-276X-9-684] [PMID: 26088982]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy