Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

The Regulation, Functions, and Signaling of miR-153 in Neurological Disorders, and Its Potential as a Biomarker and Therapeutic Target

Author(s): Khojaste Rahimi Jaberi, Vahab Alamdari-Palangi, Abbas Rahimi Jaberi, Zahra Esmaeli, Abolfazl Shakeri, Seyed Mohammad Gheibi Hayat, Amir Tajbakhsh* and Amir Savardashtaki*

Volume 23, Issue 9, 2023

Published on: 13 October, 2022

Page: [863 - 875] Pages: 13

DOI: 10.2174/1566524023666220817145638

Price: $65

Abstract

Treatment of neurological disorders has always been one of the challenges facing scientists due to poor prognosis and symptom overlap, as well as the progress of the disease process. Neurological disorders such as Huntington’s, Parkinson's, Alzheimer's diseases, and Amyotrophic Lateral Sclerosis are very debilitating. Therefore, finding a biomarker is essential for early diagnosis and treatment goals. Recent studies have focused more on molecular factors and gene manipulation to find effective diagnostic and therapeutic biomarkers. Among these factors, microRNAs (miRNAs/ miRs) have attracted much attention. On the other hand, a growing correlation between miRNAs and neurological disorders has caused scientists to consider it as a diagnostic and therapeutic target. In this line, the miR-153 is one of the most important and highly conserved miRNAs in mice and humans, whose expression level is not only altered in neurological disorders but also improves neurogenesis. MiR-153 can regulate multiple biological processes by targeting various factors. Furthermore, the miR-153 expression also can be regulated by important regulators, such as long non-coding RNAs (e.g., KCNQ1OT1) and some compounds (e.g., Tanshinone IIA) altering the expression of miR-153. Given the growing interest in miR-153 as a biomarker and therapeutic target for neurological diseases as well as the lack of comprehensive investigation of miR-153 function in these disorders, it is necessary to identify the downstream and upstream targets and also it's potential as a therapeutic biomarker target. In this review, we will discuss the critical role of miR-153 in neurological disorders for novel diagnostic and prognostic purposes and its role in multi-drug resistance.

Keywords: MiR-153, Tanshinone IIA, Propofol, drug resistance, inflammatory response, neuroprotection.

[1]
Ridolfi B, Abdel HH. Neurodegenerative disorders treatment: The MicroRNA role. Curr Gene Ther 2017; 17(5): 327-63.
[PMID: 29357791]
[2]
Mouradian MM. MicroRNAs in Parkinson’s disease. Neurobiol Dis 2012; 46(2): 279-84.
[http://dx.doi.org/10.1016/j.nbd.2011.12.046] [PMID: 22245218]
[3]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[4]
Long JM, Ray B, Lahiri DK. MicroRNA-153 physiologically inhibits expression of amyloid-β precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. J Biol Chem 2012; 287(37): 31298-310.
[http://dx.doi.org/10.1074/jbc.M112.366336] [PMID: 22733824]
[5]
Qiao J, Zhao J, Chang S, et al. MicroRNA-153 improves the neurogenesis of neural stem cells and enhances the cognitive ability of aged mice through the notch signaling pathway. Cell Death Differ 2020; 27(2): 808-25.
[http://dx.doi.org/10.1038/s41418-019-0388-4] [PMID: 31296962]
[6]
Zhu J, Wang S, Qi W, Xu X, Liang Y. Overexpression of miR-153 promotes oxidative stress in MPP+-induced PD model by negatively regulating the Nrf2/HO-1 signaling pathway. Int J Clin Exp Pathol 2018; 11(8): 4179-87.
[PMID: 31949812]
[7]
Abe M, Bonini NM. MicroRNAs and neurodegeneration: Role and impact. Trends Cell Biol 2013; 23(1): 30-6.
[http://dx.doi.org/10.1016/j.tcb.2012.08.013] [PMID: 23026030]
[8]
Tsuyama J, Bunt J, Richards LJ, et al. MicroRNA-153 regulates the acquisition of gliogenic competence by neural stem cells. Stem Cell Reports 2015; 5(3): 365-77.
[http://dx.doi.org/10.1016/j.stemcr.2015.06.006] [PMID: 26212661]
[9]
Wei C, Salichos L, Wittgrove CM, Rokas A, Patton JG. Transcriptome wide analysis of small RNA expression in early zebrafish development. RNA 2012; 18(5): 915-29.
[http://dx.doi.org/10.1261/rna.029090.111] [PMID: 22408181]
[10]
Stappert L, Borghese L, Roese KB, et al. MicroRNA based promotion of human neuronal differentiation and subtype specification. PLoS One 2013; 8(3): e59011.
[http://dx.doi.org/10.1371/journal.pone.0059011] [PMID: 23527072]
[11]
Grandbarbe L, Bouissac J, Rand M, Hrabé de Angelis M, Artavanis TS, Mohier E. Delta-Notch signaling controls the generation of neurons/glia from neural stem cells in a stepwise process. Development 2003; 130(7): 1391-402.
[http://dx.doi.org/10.1242/dev.00374] [PMID: 12588854]
[12]
Baik SH, Fane M, Park JH, et al. Pin1 promotes neuronal death in stroke by stabilizing Notch intracellular domain. Ann Neurol 2015; 77(3): 504-16.
[http://dx.doi.org/10.1002/ana.24347] [PMID: 25558977]
[13]
Yin K, Lin W, Guo J, et al. MiR-153 regulates amelogenesis by targeting endocytotic and endosomal/lysosomal pathways–novel insight into the origins of enamel pathologies. Sci Rep 2017; 7(1): 44118.
[http://dx.doi.org/10.1038/srep44118] [PMID: 28287144]
[14]
Fragkouli A, Doxakis E. miR-7 and miR-153 protect neurons against MPP+-induced cell death via upregulation of mTOR pathway. Front Cell Neurosci 2014; 8: 182.
[http://dx.doi.org/10.3389/fncel.2014.00182] [PMID: 25071443]
[15]
Xu C, Wang C, Meng Q, et al. miR-153 promotes neural differentiation in the mouse hippocampal HT 22 cell line and increases the expression of neuron specific enolase. Mol Med Rep 2019; 20(2): 1725-35.
[http://dx.doi.org/10.3892/mmr.2019.10421] [PMID: 31257504]
[16]
Wei C, Thatcher EJ, Olena AF, et al. miR-153 regulates SNAP-25, synaptic transmission, and neuronal development. PLoS One 2013; 8(2): e57080.
[http://dx.doi.org/10.1371/journal.pone.0057080] [PMID: 23451149]
[17]
Xu H, Abuhatzira L, Carmona GN, Vadrevu S, Satin LS, Notkins AL. The Ia-2β intronic miRNA, miR-153, is a negative regulator of insulin and dopamine secretion through its effect on the Cacna1c gene in mice. Diabetologia 2015; 58(10): 2298-306.
[http://dx.doi.org/10.1007/s00125-015-3683-8] [PMID: 26141787]
[18]
Mandemakers W, Abuhatzira L, Xu H, et al. Co-regulation of intragenic microRNA miR-153 and its host gene Ia-2 β: Identification of miR-153 target genes with functions related to IA-2β in pancreas and brain. Diabetologia 2013; 56(7): 1547-56.
[http://dx.doi.org/10.1007/s00125-013-2901-5] [PMID: 23595248]
[19]
Doxakis E. Post transcriptional regulation of α-synuclein expression by mir-7 and mir-153. J Biol Chem 2010; 285(17): 12726-34.
[http://dx.doi.org/10.1074/jbc.M109.086827] [PMID: 20106983]
[20]
Wang BX, Xu JJ, Hu J, Hu ML, Huang JM, Zhu XD. Effects of miR-153 on angiogenesis in MCAO rats through Shh signaling pathway. Eur Rev Med Pharmacol Sci 2019; 23(2): 732-9.
[PMID: 30720181]
[21]
Rajgor D. Macro roles for microRNAs in neurodegenerative diseases. Noncoding RNA Res 2018; 3(3): 154-9.
[http://dx.doi.org/10.1016/j.ncrna.2018.07.001] [PMID: 30175288]
[22]
Asadi PAA, Tajbakhsh A, Savardashtaki A. MicroRNAs in temporal lobe epilepsy: A systematic review. Neurol Sci 2021; 42(2): 571-8.
[http://dx.doi.org/10.1007/s10072-020-05016-x] [PMID: 33389245]
[23]
O’Hara DM, Pawar G, Kalia SK, Kalia LV. LRRK2 and α-synuclein: Distinct or synergistic players in Parkinson’s disease? Front Neurosci 2020; 14: 577.
[http://dx.doi.org/10.3389/fnins.2020.00577] [PMID: 32625052]
[24]
Je G, Kim YS. Mitochondrial ROS-mediated post transcriptional regulation of α-synuclein through miR-7 and miR-153. Neurosci Lett 2017; 661: 132-6.
[http://dx.doi.org/10.1016/j.neulet.2017.09.065] [PMID: 28986122]
[25]
Zhang XS, Ha S, Wang XL, Shi YL, Duan SS, Li ZA. Tanshinone IIA protects dopaminergic neurons against 6-hydroxydopamine-induced neurotoxicity through miR-153/NF-E2-related factor 2/antioxidant response element signaling pathway. Neuroscience 2015; 303: 489-502.
[http://dx.doi.org/10.1016/j.neuroscience.2015.06.030] [PMID: 26116522]
[26]
Cressatti M, Juwara L, Galindez JM, et al. Salivary microR‐153 and microR‐223 levels as potential diagnostic biomarkers of idiopathic Parkinson’s disease. Mov Disord 2020; 35(3): 468-77.
[http://dx.doi.org/10.1002/mds.27935] [PMID: 31800144]
[27]
Zhao J, Geng L, Chen Y, Wu C. SNHG1 promotes MPP+-induced cytotoxicity by regulating PTEN/AKT/mTOR signaling pathway in SH-SY5Y cells via sponging miR-153-3p. Biol Res 2020; 53(1): 1.
[http://dx.doi.org/10.1186/s40659-019-0267-y] [PMID: 31907031]
[28]
Cressatti M, Song W, Turk AZ, et al. Glial HMOX1 expression promotes central and peripheral α-synuclein dysregulation and pathogenicity in parkinsonian mice. Glia 2019; 67(9): 1730-44.
[PMID: 31180611]
[29]
Zhuang L, Peng F, Huang Y, et al. CHIP modulates APP‐induced autophagy dependent pathological symptoms in Drosophila. Aging Cell 2020; 19(2): e13070.
[http://dx.doi.org/10.1111/acel.13070] [PMID: 31777182]
[30]
Zhou Q, Luo L, Wang X, Li X. Relationship between single nucleotide polymorphisms in the 3′UTR of amyloid precursor protein and risk of Alzheimer’s disease and its mechanism. Biosci Rep 2019; 39(5): BSR20182485.
[http://dx.doi.org/10.1042/BSR20182485] [PMID: 30914454]
[31]
Butler MC, Long CN, Kinkade JA, et al. Endocrine disruption of gene expression and microRNA profiles in hippocampus and hypothalamus of California mice: Association of gene expression changes with behavioural outcomes. J Neuroendocrinol 2020; 32(5): e12847.
[http://dx.doi.org/10.1111/jne.12847] [PMID: 32297422]
[32]
Torre JC. Deciphering Alzheimer’s disease pathogenic pathway: Role of chronic brain hypoperfusion on p-Tau and mTOR. J Alzheimers Dis 2021; 79(4): 1381-96.
[http://dx.doi.org/10.3233/JAD-201165] [PMID: 33459641]
[33]
Yan ML, Zhang S, Zhao HM, et al. MicroRNA-153 impairs presynaptic plasticity by blocking vesicle release following chronic brain hypoperfusion. Cell Commun Signal 2020; 18(1): 57.
[http://dx.doi.org/10.1186/s12964-020-00551-8] [PMID: 32252776]
[34]
Cook J, Hull L, Crane L, Mandy W. Camouflaging in autism: A systematic review. Clin Psychol Rev 2021; 89: 102080.
[http://dx.doi.org/10.1016/j.cpr.2021.102080] [PMID: 34563942]
[35]
Anitha A, Thanseem I. microRNA and autism. Adv Exp Med Biol 2015; 888: 71-83.
[http://dx.doi.org/10.1007/978-3-319-22671-2_5] [PMID: 26663179]
[36]
You YH, Qin ZQ, Zhang HL, Yuan ZH, Yu X. MicroRNA-153 promotes brain-derived neurotrophic factor and hippocampal neuron proliferation to alleviate autism symptoms through inhibition of JAK-STAT pathway by LEPR. Biosci Rep 2019; 39(6): BSR20181904.
[http://dx.doi.org/10.1042/BSR20181904] [PMID: 30975733]
[37]
Zhang S, Yan ML, Yang L, et al. MicroRNA-153 impairs hippocampal synaptic vesicle trafficking via downregulation of synapsin I in rats following chronic cerebral hypoperfusion. Exp Neurol 2020; 332: 113389.
[http://dx.doi.org/10.1016/j.expneurol.2020.113389] [PMID: 32580014]
[38]
Yang ZB, Li TB, Zhang Z, et al. The diagnostic value of circulating brain-specific MicroRNAs for ischemic stroke. Intern Med 2016; 55(10): 1279-86.
[http://dx.doi.org/10.2169/internalmedicine.55.5925] [PMID: 27181533]
[39]
Vaillancourt K, Ernst C, Mash D, Turecki G. DNA methylation dynamics and cocaine in the brain: Progress and prospects. Genes 2017; 8(5): 138.
[http://dx.doi.org/10.3390/genes8050138] [PMID: 28498318]
[40]
Cabana DJ, Arenas C, Cormand B, Fernàndez CN. MiR-9, miR-153 and miR-124 are down regulated by acute exposure to cocaine in a dopaminergic cell model and may contribute to cocaine dependence. Transl Psychiatry 2018; 8(1): 173.
[http://dx.doi.org/10.1038/s41398-018-0224-5] [PMID: 30166527]
[41]
Guo Y, Chen Y, Carreon S, Qiang M. Chronic intermittent ethanol exposure and its removal induce a different miRNA expression pattern in primary cortical neuronal cultures. Alcohol Clin Exp Res 2012; 36(6): 1058-66.
[http://dx.doi.org/10.1111/j.1530-0277.2011.01689.x] [PMID: 22141737]
[42]
Tang Y, Banan A, Forsyth CB, et al. Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease. Alcohol Clin Exp Res 2008; 32(2): 355-64.
[http://dx.doi.org/10.1111/j.1530-0277.2007.00584.x] [PMID: 18162065]
[43]
Steenwyk G, Janeczek P, Lewohl J. Differential effects of chronic and chronic-intermittent ethanol treatment and its withdrawal on the expression of miRNAs. Brain Sci 2013; 3(4): 744-56.
[http://dx.doi.org/10.3390/brainsci3020744] [PMID: 24961422]
[44]
Gui Y, Liu H, Zhang L, Lv W, Hu X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2015; 6(35): 37043-53.
[http://dx.doi.org/10.18632/oncotarget.6158] [PMID: 26497684]
[45]
Qiu T, Yin H, Wang Y, Zhao C, Cai D. miR-153 attenuates the inflammatory response and oxidative stress induced by spinal cord injury by targeting of NEUROD2. Am J Transl Res 2021; 13(7): 7968-75.
[PMID: 34377277]
[46]
Hou W, Zhu X, Liu J, Ma J. Correction to: Inhibition of miR-153 ameliorates ischemia/reperfusion induced cardiomyocytes apoptosis by regulating Nrf2/HO-1 signaling in rats. Biomed Eng Online 2020; 19(1): 43.
[http://dx.doi.org/10.1186/s12938-020-00781-4] [PMID: 32517768]
[47]
Gong GH, An FM, Wang Y, Bian M, Wang D, Wei CX. MiR-153 regulates expression of hypoxia-inducible factor-1α in refractory epilepsy. Oncotarget 2018; 9(9): 8542-7.
[http://dx.doi.org/10.18632/oncotarget.24012] [PMID: 29492215]
[48]
Choi HR, Ha JS, Kim EA, Cho SW, Yang SJ. MiR-30a-5p and miR-153-3p regulate LPS-induced neuroinflammatory response and neuronal apoptosis by targeting NeuroD1. BMB Rep 2022; 5616.
[PMID: 35651331]
[49]
Ma J, Dong C, Ji C. MicroRNA and drug resistance. Cancer Gene Ther 2010; 17(8): 523-31.
[http://dx.doi.org/10.1038/cgt.2010.18] [PMID: 20467450]
[50]
Si W, Shen J, Zheng H, Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 2019; 11(1): 25.
[http://dx.doi.org/10.1186/s13148-018-0587-8] [PMID: 30744689]
[51]
Alamdari PV, Amini R, Karami H. MiRNA-7 enhances erlotinib sensitivity of glioblastoma cells by blocking the IRS-1 and IRS-2 expression. J Pharm Pharmacol 2020; 72(4): 531-8.
[http://dx.doi.org/10.1111/jphp.13226] [PMID: 32026479]
[52]
Liu L, Chen R, Huang S, et al. miR-153 sensitized the K562 cells to As2O3-induced apoptosis. Med Oncol 2012; 29(1): 243-7.
[http://dx.doi.org/10.1007/s12032-010-9807-6] [PMID: 21267675]
[53]
Ngugi AK, Kariuki SM, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Incidence of epilepsy: A systematic review and meta analysis. Neurology 2011; 77(10): 1005-12.
[http://dx.doi.org/10.1212/WNL.0b013e31822cfc90] [PMID: 21893672]
[54]
Sisodiya S. Etiology and management of refractory epilepsies. Nat Clin Pract Neurol 2007; 3(6): 320-30.
[http://dx.doi.org/10.1038/ncpneuro0521] [PMID: 17549058]
[55]
Hu K, Xie YY, Zhang C, et al. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post status epilepticus. BMC Neurosci 2012; 13(1): 115.
[http://dx.doi.org/10.1186/1471-2202-13-115] [PMID: 22998082]
[56]
Gorter JA, Iyer A, White I, et al. Hippocampal subregion specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol Dis 2014; 62: 508-20.
[http://dx.doi.org/10.1016/j.nbd.2013.10.026] [PMID: 24184920]
[57]
Song Y, Tian X, Zhang S, et al. Temporal lobe epilepsy induces differential expression of hippocampal miRNAs including let-7e and miR-23a/b. Brain Res 2011; 1387: 134-40.
[http://dx.doi.org/10.1016/j.brainres.2011.02.073] [PMID: 21376023]
[58]
Li Y, Huang C, Feng P, et al. Aberrant expression of miR-153 is associated with overexpression of hypoxia-inducible factor-1α in refractory epilepsy. Sci Rep 2016; 6(1): 32091.
[http://dx.doi.org/10.1038/srep32091] [PMID: 28442746]
[59]
Li Y, Chen J, Zeng T, Lei D, Chen L, Zhou D. Expression of HIF-1α and MDR1/P-glycoprotein in refractory mesial temporal lobe epilepsy patients and pharmacoresistant temporal lobe epilepsy rat model kindled by coriaria lactone. Neurol Sci 2014; 35(8): 1203-8.
[http://dx.doi.org/10.1007/s10072-014-1681-0] [PMID: 24590840]
[60]
Rivandi M, Pasdar A, Hamzezadeh L, et al. The prognostic and therapeutic values of long noncoding RNA PANDAR in colorectal cancer. J Cell Physiol 2019; 234(2): 1230-6.
[http://dx.doi.org/10.1002/jcp.27136] [PMID: 30191971]
[61]
Wang Y, Wu N, Zhang J, Wang H, Men X. MiR-153-5p enhances the sensitivity of triple-negative breast cancer cells to paclitaxel by inducing G2M phase arrest. OncoTargets Ther 2020; 13: 4089-97.
[http://dx.doi.org/10.2147/OTT.S241640] [PMID: 32494162]
[62]
Ghafouri FS, Shoorei H, Taheri M. Non-coding RNAs are involved in the response to oxidative stress. Biomed Pharmacother 2020; 127: 110228.
[http://dx.doi.org/10.1016/j.biopha.2020.110228] [PMID: 32559852]
[63]
Wang HJ, Tang XL, Huang G, et al. Long non-coding KCNQ1OT1 promotes oxygen-glucose-deprivation/reoxy-genation-induced neurons injury through regulating MIR-153-3p/FOXO3 axis. J Stroke Cerebrovasc Dis 2020; 29(10): 105126.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105126] [PMID: 32912499]
[64]
Zhang L, Luo X, Chen F, et al. LncRNA SNHG1 regulates cerebrovascular pathologies as a competing endogenous RNA through HIF‐1α/VEGF signaling in ischemic stroke. J Cell Biochem 2018; 119(7): 5460-72.
[http://dx.doi.org/10.1002/jcb.26705] [PMID: 29377234]
[65]
Wang DQ, Fu P, Yao C, et al. Long non-coding RNAs, novel culprits, or bodyguards in neurodegenerative diseases. Mol Ther Nucleic Acids 2018; 10: 269-76.
[http://dx.doi.org/10.1016/j.omtn.2017.12.011] [PMID: 29499939]
[66]
Wang J, Zhang H, Situ J, Li M, Sun H. KCNQ1OT1 aggravates cell proliferation and migration in bladder cancer through modulating miR-145-5p/PCBP2 axis. Cancer Cell Int 2019; 19(1): 325.
[http://dx.doi.org/10.1186/s12935-019-1039-z] [PMID: 31827399]
[67]
Huang L, Jiang X, Wang Z, Zhong X, Tai S, Cui Y. Small nucleolar RNA host gene 1: A new biomarker and therapeutic target for cancers. Pathol Res Pract 2018; 214(9): 1247-52.
[http://dx.doi.org/10.1016/j.prp.2018.07.033] [PMID: 30107989]
[68]
Li LJ, Huang Q, Zhang N, Wang GB, Liu YH. miR-376b-5p regulates angiogenesis in cerebral ischemia. Mol Med Rep 2014; 10(1): 527-35.
[http://dx.doi.org/10.3892/mmr.2014.2172] [PMID: 24789343]
[69]
Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 2009; 29(4): 675-87.
[http://dx.doi.org/10.1038/jcbfm.2008.157] [PMID: 19142192]
[70]
Mineo M, Ricklefs F, Rooj AK, et al. The long non-coding RNA HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches. Cell Rep 2016; 15(11): 2500-9.
[http://dx.doi.org/10.1016/j.celrep.2016.05.018] [PMID: 27264189]
[71]
Li L, Wang M, Mei Z, et al. lncRNAs HIF1A-AS2 facilitates the up-regulation of HIF-1α by sponging to miR-153-3p, whereby promoting angiogenesis in HUVECs in hypoxia. Biomed Pharmacother 2017; 96: 165-72.
[http://dx.doi.org/10.1016/j.biopha.2017.09.113] [PMID: 28985553]
[72]
Fu J, Huang Y, Xian L. LncRNA SNHG15 regulates hypoxic ischemic brain injury via miR-153-3p/SETD7 axis. Histol Histopathol 2022; 18489.
[PMID: 35791576]
[73]
Wang XB, Wang H, Long HQ, Li DY, Zheng X. LINC00641 regulates autophagy and intervertebral disc degeneration by acting as a competitive endogenous RNA of miR‐153‐3p under nutrition deprivation stress. J Cell Physiol 2019; 234(5): 7115-27.
[http://dx.doi.org/10.1002/jcp.27466] [PMID: 30378116]
[74]
Zhang J, Yang Y, Zhou C, et al. LncRNA miR-17-92a-1 cluster host gene (MIR17HG) promotes neuronal damage and microglial activation by targeting the microRNA-153-3p/alpha-synuclein axis in Parkinson’s disease. Bioengineered 2022; 13(2): 4493-516.
[http://dx.doi.org/10.1080/21655979.2022.2033409] [PMID: 35137671]
[75]
He M, Sun H, Pang J, et al. Propofol alleviates hypoxia-induced nerve injury in PC-12 cells by up regulation of microRNA-153. BMC Anesthesiol 2018; 18(1): 197.
[http://dx.doi.org/10.1186/s12871-018-0660-z] [PMID: 30579328]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy