Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

Epigenetics in Eye Development and Ocular Disorders: A Brief Review

Author(s): Raja Amir Hassan Kuchay*, Asima Hassan and Yaser Rafiq Mir

Volume 23, Issue 9, 2023

Published on: 25 October, 2022

Page: [843 - 848] Pages: 6

DOI: 10.2174/1566524023666221003102857

Price: $65

Abstract

Epigenetics is a powerful regulator of gene expression. With advanced discoveries in underlying molecular mechanisms that can alter chromatin response to internal and external signals, epigenetic alterations have been implicated in various developmental pathways and human disorders. The extent to which this epigenetic effect contributes to eye development and progression of ocular disorders is currently less defined. However, emerging evidence suggests that epigenetic changes are relevant in the development of eye and ocular disorders like pterygium, age-related macular degeneration, glaucoma and more. This brief review will discuss the relevance of epigenetic mechanisms like DNA methylation, histone modifications, polycomb proteins and noncoding RNAs in the context of eye development and selected ocular disorders.

Keywords: Ocular Disorders, Epigenetics, Eye Development, Chromatin, Methylation, Histones

Next »
[1]
Liester MB, Sullivan EE. A review of epigenetics in human consciousness. Cogent Psychol 2019; 6(1): 1668222.
[http://dx.doi.org/10.1080/23311908.2019.1668222]
[2]
Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature 2019; 571(7766): 489-99.
[http://dx.doi.org/10.1038/s41586-019-1411-0] [PMID: 31341302]
[3]
Tchurikov NA. Molecular mechanisms of epigenetics. Biochemistry 2005; 70(4): 406-23.
[http://dx.doi.org/10.1007/s10541-005-0131-2] [PMID: 15892607]
[4]
Hamidi T, Singh AK, Chen T. Genetic alterations of DNA methylation machinery in human diseases. Epigenomics 2015; 7(2): 247-65.
[http://dx.doi.org/10.2217/epi.14.80] [PMID: 25942534]
[5]
Marmorstein R, Zhou MM. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 2014; 6(7): a018762.
[http://dx.doi.org/10.1101/cshperspect.a018762] [PMID: 24984779]
[6]
Lawrence M, Daujat S, Schneider R. Lateral Thinking: How histone modifications regulate gene expression. Trends Genet 2016; 32(1): 42-56.
[http://dx.doi.org/10.1016/j.tig.2015.10.007] [PMID: 26704082]
[7]
Arnaudo AM, Garcia BA. Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin 2013; 6(1): 24.
[http://dx.doi.org/10.1186/1756-8935-6-24] [PMID: 23916056]
[8]
Zhang T, Cooper S, Brockdorff N. The interplay of histone modifications – writers that read. EMBO Rep 2015; 16(11): 1467-81.
[http://dx.doi.org/10.15252/embr.201540945] [PMID: 26474904]
[9]
Lewis EB. A gene complex controlling segmentation in Drosophila. Nature 1978; 276(5688): 565-70.
[http://dx.doi.org/10.1038/276565a0] [PMID: 103000]
[10]
Aranda S, Mas G, Di Croce L. Regulation of gene transcription by Polycomb proteins. Sci Adv 2015; 1(11): e1500737.
[http://dx.doi.org/10.1126/sciadv.1500737] [PMID: 26665172]
[11]
Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs as regulators in epigenetics. Oncol Rep 2017; 37(1): 3-9.
[http://dx.doi.org/10.3892/or.2016.5236] [PMID: 27841002]
[12]
Zaratiegui M, Irvine DV, Martienssen RA. Noncoding RNAs and gene silencing. Cell 2007; 128(4): 763-76.
[http://dx.doi.org/10.1016/j.cell.2007.02.016] [PMID: 17320512]
[13]
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11(9): 597-610.
[http://dx.doi.org/10.1038/nrg2843] [PMID: 20661255]
[14]
Graw J. Eye development. Curr Top Dev Biol 2010; 90: 343-86.
[http://dx.doi.org/10.1016/S0070-2153(10)90010-0] [PMID: 20691855]
[15]
Chow RL, Lang RA. Early eye development in vertebrates. Annu Rev Cell Dev Biol 2001; 17(1): 255-96.
[http://dx.doi.org/10.1146/annurev.cellbio.17.1.255] [PMID: 11687490]
[16]
Wilson SW, Houart C. Early steps in the development of the forebrain. Dev Cell 2004; 6(2): 167-81.
[http://dx.doi.org/10.1016/S1534-5807(04)00027-9] [PMID: 14960272]
[17]
Heavner W, Pevny L. Eye development and retinogenesis. Cold Spring Harb Perspect Biol 2012; 4(12): a008391.
[http://dx.doi.org/10.1101/cshperspect.a008391] [PMID: 23071378]
[18]
Zuber ME, Gestri G, Viczian AS, Barsacchi G, Harris WA. Specification of the vertebrate eye by a network of eye field transcription factors. Development 2003; 130(21): 5155-67.
[http://dx.doi.org/10.1242/dev.00723] [PMID: 12944429]
[19]
Kamijyo A, Yura K, Ogura A. Distinct evolutionary rate in the eye field transcription factors found by estimation of ancestral protein structure. Gene 2015; 555(2): 73-9.
[http://dx.doi.org/10.1016/j.gene.2014.10.003] [PMID: 25300250]
[20]
Zhang L, Mathers PH, Jamrich M. Function ofRx, but notPax6, is essential for the formation of retinal progenitor cells in mice. Genesis 2000; 28(3-4): 135-42.
[http://dx.doi.org/10.1002/1526-968X(200011/12)28:3/4<135::AID-GENE70>3.0.CO;2-P] [PMID: 11105055]
[21]
Cvekl A, Mitton KP. Epigenetic regulatory mechanisms in vertebrate eye development and disease. Heredity 2010; 105(1): 135-51.
[http://dx.doi.org/10.1038/hdy.2010.16] [PMID: 20179734]
[22]
Raeisossadati R, Ferrari MFR, Kihara AH, AlDiri I, Gross JM. Epigenetic regulation of retinal development. Epigenetics Chromatin 2021; 14(1): 11.
[http://dx.doi.org/10.1186/s13072-021-00384-w] [PMID: 33563331]
[23]
Daghsni M, Aldiri I. Building a Mammalian Retina: An eye on chromatin structure. Front Genet 2021; 12: 775205.
[http://dx.doi.org/10.3389/fgene.2021.775205] [PMID: 34764989]
[24]
Aldiri I, Ajioka I, Xu B, et al. Brg1 coordinates multiple processes during retinogenesis and is a tumor suppressor in retinoblastoma. Development 2015; 142(23): 4092-106.
[http://dx.doi.org/10.1242/dev.124800] [PMID: 26628093]
[25]
Ueno K, Iwagawa T, Kuribayashi H, et al. Transition of differential histone H3 methylation in photoreceptors and other retinal cells during retinal differentiation. Sci Rep 2016; 6(1): 29264.
[http://dx.doi.org/10.1038/srep29264] [PMID: 27377164]
[26]
Seritrakul P, Gross JM. Tet-mediated DNA hydroxymethylation regulates retinal neurogenesis by modulating cell-extrinsic signaling pathways. PLoS Genet 2017; 13(9): e1006987.
[http://dx.doi.org/10.1371/journal.pgen.1006987] [PMID: 28926578]
[27]
Aldiri I, Moore KB, Hutcheson DA, Zhang J, Vetter ML. Polycomb repressive complex PRC2 regulates Xenopus retina development downstream of Wnt/β-catenin signaling. Development 2013; 140(14): 2867-78.
[http://dx.doi.org/10.1242/dev.088096] [PMID: 23739135]
[28]
Fujimura N, Kuzelova A, Ebert A, et al. Polycomb repression complex 2 is required for the maintenance of retinal progenitor cells and balanced retinal differentiation. Dev Biol 2018; 433(1): 47-60.
[http://dx.doi.org/10.1016/j.ydbio.2017.11.004] [PMID: 29137925]
[29]
Aldiri I, Xu B, Wang L, et al. Jude Children’s Research Hospital—Washington University Pediatric Cancer Genome Project. The Dynamic epigenetic landscape of the retina during development, reprogramming, and tumorigenesis. Neuron 2017; 94(3): 550-68.
[http://dx.doi.org/10.1016/j.neuron.2017.04.022] [PMID: 28472656]
[30]
Seritrakul P, Gross JM. Genetic and epigenetic control of retinal development in zebrafish. Curr Opin Neurobiol 2019; 59: 120-7.
[http://dx.doi.org/10.1016/j.conb.2019.05.008] [PMID: 31255843]
[31]
Alkozi HA, Franco R, Pintor JJ. Epigenetics in the eye: An overview of the most relevant ocular diseases. Front Genet 2017; 8: 144.
[http://dx.doi.org/10.3389/fgene.2017.00144] [PMID: 29075285]
[32]
Oliver VF, van Bysterveldt KA, Merbs SL. Epigenetics in ocular medicine. In: Medical Epigenetics. Academic Press 2016; pp. 391-412.
[http://dx.doi.org/10.1016/B978-0-12-803239-8.00022-3]
[33]
Hunter A, Spechler PA, Cwanger A, et al. DNA methylation is associated with altered gene expression in AMD. Invest Ophthalmol Vis Sci 2012; 53(4): 2089-105.
[http://dx.doi.org/10.1167/iovs.11-8449] [PMID: 22410570]
[34]
Oliver VF, Jaffe AE, Song J, et al. Differential DNA methylation identified in the blood and retina of AMD patients. Epigenetics 2015; 10(8): 698-707.
[http://dx.doi.org/10.1080/15592294.2015.1060388] [PMID: 26067391]
[35]
Chan N, He S, Spee CK, Ishikawa K, Hinton DR. Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS One 2015; 10(3): e0120587.
[http://dx.doi.org/10.1371/journal.pone.0120587] [PMID: 25807249]
[36]
Grassmann F, Schoenberger PGA, Brandl C, et al. A circulating microrna profile is associated with late-stage neovascular age-related macular degeneration. PLoS One 2014; 9(9): e107461.
[http://dx.doi.org/10.1371/journal.pone.0107461] [PMID: 25203061]
[37]
Riau AK, Wong TT, Finger SN, et al. Aberrant DNA methylation of matrix remodeling and cell adhesion related genes in pterygium. PLoS One 2011; 6(2): e14687.
[http://dx.doi.org/10.1371/journal.pone.0014687] [PMID: 21359202]
[38]
Chien KH, Chen SJ, Liu JH, et al. Correlation of microRNA-145 levels and clinical severity of pterygia. Ocul Surf 2013; 11(2): 133-8.
[http://dx.doi.org/10.1016/j.jtos.2012.12.001] [PMID: 23583047]
[39]
Engelsvold DH, Utheim TP, Olstad OK, et al. miRNA and mRNA expression profiling identifies members of the miR-200 family as potential regulators of epithelial–mesenchymal transition in pterygium. Exp Eye Res 2013; 115: 189-98.
[http://dx.doi.org/10.1016/j.exer.2013.07.003] [PMID: 23872359]
[40]
Xie L, Santhoshkumar P, Reneker LW, Sharma KK. Histone deacetylase inhibitors trichostatin A and vorinostat inhibit TGFβ2-induced lens epithelial-to-mesenchymal cell transition. Invest Ophthalmol Vis Sci 2014; 55(8): 4731-40.
[http://dx.doi.org/10.1167/iovs.14-14109] [PMID: 24994865]
[41]
Zhou P, Luo Y, Liu X, Fan L, Lu Y. Down‐regulation and CpG island hypermethylation of CRYAA in age‐related nuclear cataract. FASEB J 2012; 26(12): 4897-902.
[http://dx.doi.org/10.1096/fj.12-213702] [PMID: 22889833]
[42]
Zhang Y, Wang L, Wu Z, Yu X, Du X, Li X. The expressions of Klotho family genes in human ocular tissues and in anterior lens capsules of age-related cataract. Curr Eye Res 2017; 42(6): 871-5.
[http://dx.doi.org/10.1080/02713683.2016.1259421] [PMID: 28095050]
[43]
Li Y, Liu S, Zhang F, Jiang P, Wu X, Liang Y. Expression of the microRNAs hsa-miR-15a and hsa-miR-16-1 in lens epithelial cells of patients with age-related cataract. Int J Clin Exp Med 2015; 8(2): 2405-10.
[PMID: 25932180]
[44]
Pelzel HR, Schlamp CL, Waclawski M, Shaw MK, Nickells RW. Silencing of Fem1cR3 gene expression in the DBA/2J mouse precedes retinal ganglion cell death and is associated with histone deacetylase activity. Invest Ophthalmol Vis Sci 2012; 53(3): 1428-35.
[http://dx.doi.org/10.1167/iovs.11-8872] [PMID: 22297488]
[45]
Wiggs JL, Yaspan BL, Hauser MA, et al. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet 2012; 8(4): e1002654.
[http://dx.doi.org/10.1371/journal.pgen.1002654] [PMID: 22570617]
[46]
Pasquale LR, Loomis SJ, Kang JH, et al. CDKN2B-AS1 genotype-glaucoma feature correlations in primary open-angle glaucoma patients from the United States. Am J Ophthalmol 2013; 155(2): 342-53.
[http://dx.doi.org/10.1016/j.ajo.2012.07.023] [PMID: 23111177]
[47]
Zhou X, Ji F, An J, et al. Experimental murine myopia induces collagen type Iα1 (COL1A1) DNA methylation and altered COL1A1 messenger RNA expression in sclera. Mol Vis 2012; 18: 1312-24.
[PMID: 22690110]
[48]
Seow WJ, Ngo CS, Pan H, et al. In-utero epigenetic factors are associated with early-onset myopia in young children. PLoS One 2019; 14(5): e0214791.
[http://dx.doi.org/10.1371/journal.pone.0214791] [PMID: 31100065]
[49]
Palsamy P, Ayaki M, Elanchezhian R, Shinohara T. Promoter demethylation of Keap1 gene in human diabetic cataractous lenses. Biochem Biophys Res Commun 2012; 423(3): 542-8.
[http://dx.doi.org/10.1016/j.bbrc.2012.05.164] [PMID: 22683333]
[50]
Li F, Wang Y, Zhang G, Zhou J, Yang L, Guan H. Expression and methylation of DNA repair genes in lens epithelium cells of age-related cataract. Mutat Res 2014; 766-767: 31-6.
[http://dx.doi.org/10.1016/j.mrfmmm.2014.05.010] [PMID: 25847269]
[51]
Liu S, Hu C, Luo Y, Yao K. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract. Epigenomics 2020; 12(9): 771-88.
[http://dx.doi.org/10.2217/epi-2019-0254] [PMID: 32516005]
[52]
Jiang Y, Zhang X, Zhang X, et al. Comprehensive Analysis of the Transcriptome-Wide m6A Methylome in Pterygium by MeRIP Sequencing. Front Cell Dev Biol 2021; 9: 670528.
[http://dx.doi.org/10.3389/fcell.2021.670528] [PMID: 34249924]
[53]
Porter LF, Saptarshi N, Fang Y, et al. Whole-genome methylation profiling of the retinal pigment epithelium of individuals with age-related macular degeneration reveals differential methylation of the SKI, GTF2H4, and TNXB genes. Clin Epigenetics 2019; 11(1): 6.
[http://dx.doi.org/10.1186/s13148-019-0608-2] [PMID: 30642396]
[54]
McDonnell FS, McNally SA, Clark AF, O’Brien CJ, Wallace DM. Increased global DNA methylation and decreased TGFβ1 promoter methylation in glaucomatous lamina cribrosa cells. J Glaucoma 2016; 25(10): e834-42.
[http://dx.doi.org/10.1097/IJG.0000000000000453] [PMID: 27300643]
[55]
Yan B, Yao J, Tao ZF, Jiang Q. Epigenetics and ocular diseases: from basic biology to clinical study. J Cell Physiol 2014; 229(7): 825-33.
[http://dx.doi.org/10.1002/jcp.24522] [PMID: 24318407]
[56]
Schrott R, Murphy SK, Modliszewski JL, et al. Refraining from use diminishes cannabis-associated epigenetic changes in human sperm. Environ Epigenet 2021; 7(1): 1-10.
[http://dx.doi.org/10.1093/eep/dvab009]
[57]
Reece AS, Hulse GK. Geotemporospatial and causal inference epidemiological analysis of US survey and overview of cannabis, cannabidiol and cannabinoid genotoxicity in relation to congenital anomalies 2001–2015. BMC Pediatr 2022; 22(1): 47-124.
[http://dx.doi.org/10.1186/s12887-021-02996-3] [PMID: 35042455]
[58]
Reece AS, Hulse GK. Cannabinoid and substance relationships of European congenital anomaly patterns: a space-time panel regression and causal inferential study. Environ Epigenet 2022; 8(1): dvab015.
[http://dx.doi.org/10.1093/eep/dvab015] [PMID: 35145760]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy