Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Alpha-NETA, as a CMKLR1 Small Molecule Antagonist, Protects against Renal Ischemia Reperfusion Injury in Mice

Author(s): Xue Peng*, Wenjuan Wang, Wenhao Wang and Jingrui Qi

Volume 29, Issue 11, 2022

Published on: 07 October, 2022

Page: [962 - 970] Pages: 9

DOI: 10.2174/0929866529666220822095950

Price: $65

conference banner
Abstract

Background: Ischemia-reperfusion (IR) injury is one of the major causes of acute kidney injury (AKI). Chemerin chemokine-like receptor 1 (CMKLR1) has been reported to be involved in the progression of IR injury. Here, we investigated the protective role of CMKLR1 antagonist, α-NETA, in IR mouse model, and dissected the underlying regulatory mechanism.

Methods: IR injury mouse model was established to evaluate the protective effects of α-NETA on IR injury. Kidney injury-associated parameters and functions were examined to evaluate the renal function of Sham, IR, and IR+ α-NETA mice. Renal morphological changes and apoptosis were determined by PAS and TUNEL staining in IR and α-NETA treated mice. ELISA, RT-qPCR, and western blot were performed to examine the inflammatory responses and expression of CMKLR1.

Results: α-NETA administration attenuated IR-induced renal tubular injury and epithelial cell apoptosis in IR injury mice. Kidney injury-related cystatin C, kidney injury molecule-1, neutrophil gelatinaseassociated lipocalin, and renal morphology were significantly improved. Mechanistically, α-NETA suppressed the inflammatory responses by inhibiting the expression of CMKLR1, and then protected the IR-induced renal damage and restored renal function.

Conclusion: CMKLR1 plays an important role in renal ischemia-reperfusion injury, targeting CMKLR1 by using the small molecule inhibitor α-NETA is a potential treatment strategy for AKI.

Keywords: ischemia reperfusion injury, CMKLR1, α-NETA, apoptosis inflammation

[1]
Kellum, J.A.; Romagnani, P.; Ashuntantang, G.; Ronco, C.; Zarbock, A.; Anders, H.J. Acute kidney injury. Nat. Rev. Dis. Primers, 2021, 7(1), 52.
[http://dx.doi.org/10.1038/s41572-021-00284-z] [PMID: 34267223]
[2]
Lewington, A.J.P.; Cerdá, J.; Mehta, R.L. Raising awareness of acute kidney injury: A global perspective of a silent killer. Kidney Int., 2013, 84(3), 457-467.
[http://dx.doi.org/10.1038/ki.2013.153] [PMID: 23636171]
[3]
Mehta, R.L.; Cerdá, J.; Burdmann, E.A.; Tonelli, M.; García-García, G.; Jha, V.; Susantitaphong, P.; Rocco, M.; Vanholder, R.; Sever, M.S.; Cruz, D.; Jaber, B.; Lameire, N.H.; Lombardi, R.; Lewington, A.; Feehally, J.; Finkelstein, F.; Levin, N.; Pannu, N.; Thomas, B.; Aronoff-Spencer, E.; Remuzzi, G. International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): A human rights case for nephrology. Lancet, 2015, 385(9987), 2616-2643.
[http://dx.doi.org/10.1016/S0140-6736(15)60126-X] [PMID: 25777661]
[4]
Mehta, R.L.; Burdmann, E.A.; Cerdá, J.; Feehally, J.; Finkelstein, F.; García-García, G.; Godin, M.; Jha, V.; Lameire, N.H.; Levin, N.W.; Lewington, A.; Lombardi, R.; Macedo, E.; Rocco, M.; Aronoff-Spencer, E.; Tonelli, M.; Zhang, J.; Remuzzi, G. Recognition and management of acute kidney injury in the International Society of Nephrology 0by25 Global Snapshot: A multinational cross-sectional study. Lancet, 2016, 387(10032), 2017-2025.
[http://dx.doi.org/10.1016/S0140-6736(16)30240-9] [PMID: 27086173]
[5]
Nezu, M.; Souma, T.; Yu, L.; Suzuki, T.; Saigusa, D.; Ito, S.; Suzuki, N.; Yamamoto, M. Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression. Kidney Int., 2017, 91(2), 387-401.
[http://dx.doi.org/10.1016/j.kint.2016.08.023] [PMID: 27789056]
[6]
Rewa, O.; Bagshaw, S.M. Acute kidney injury-epidemiology, outcomes and economics. Nat. Rev. Nephrol., 2014, 10(4), 193-207.
[http://dx.doi.org/10.1038/nrneph.2013.282] [PMID: 24445744]
[7]
Du, C.; Wang, S.; Diao, H.; Guan, Q.; Zhong, R.; Jevnikar, A.M. Increasing resistance of tubular epithelial cells to apoptosis by shRNA therapy ameliorates renal ischemia-reperfusion injury. Am. J. Transplant., 2006, 6(10), 2256-2267.
[http://dx.doi.org/10.1111/j.1600-6143.2006.01478.x] [PMID: 16970799]
[8]
Glorie, L.L.F.; Verhulst, A.; Matheeussen, V.; Baerts, L.; Magielse, J.; Hermans, N.; D’Haese, P.C.; De Meester, I.; De Beuf, A. DPP4 inhibition improves functional outcome after renal ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol., 2012, 303(5), F681-F688.
[http://dx.doi.org/10.1152/ajprenal.00075.2012] [PMID: 22718884]
[9]
Kennedy, A.J.; Davenport, A.P. International union of basic and clinical pharmacology CIII: Chemerin receptors CMKLR1 (Chemerin1) and GPR1 (Chemerin2) nomenclature, pharmacology, and function. Pharmacol. Rev., 2018, 70(1), 174-196.
[http://dx.doi.org/10.1124/pr.116.013177] [PMID: 29279348]
[10]
Mollica Poeta, V.; Massara, M.; Capucetti, A.; Bonecchi, R. Chemokines and chemokine receptors: New targets for cancer immunotherapy. Front. Immunol., 2019, 10, 379.
[http://dx.doi.org/10.3389/fimmu.2019.00379] [PMID: 30894861]
[11]
Perumalsamy, S.; Aqilah Mohd Zin, N.A.; Widodo, R.T.; Wan Ahmad, W.A.; Vethakkan, S.R.D.B.; Huri, H.Z. Chemokine Like Receptor-1 (CMKLR-1) receptor: A potential therapeutic target in management of chemerin induced type 2 diabetes mellitus and cancer. Curr. Pharm. Des., 2017, 23(25), 3689-3698.
[http://dx.doi.org/10.2174/1381612823666170616081256] [PMID: 28625137]
[12]
Gruben, N.; Aparicio Vergara, M.; Kloosterhuis, N.J.; van der Molen, H.; Stoelwinder, S.; Youssef, S.; de Bruin, A.; Delsing, D.J.; Kuivenhoven, J.A.; van de Sluis, B.; Hofker, M.H.; Koonen, D.P.Y. Chemokine-like receptor 1 deficiency does not affect the development of insulin resistance and nonalcoholic fatty liver disease in mice. PLoS One, 2014, 9(4), e96345.
[http://dx.doi.org/10.1371/journal.pone.0096345] [PMID: 24781986]
[13]
Issa, M.E.; Muruganandan, S.; Ernst, M.C.; Parlee, S.D.; Zabel, B.A.; Butcher, E.C.; Sinal, C.J.; Goralski, K.B. Chemokine-like receptor 1 regulates skeletal muscle cell myogenesis. Am. J. Physiol. Cell Physiol., 2012, 302(11), C1621-C1631.
[http://dx.doi.org/10.1152/ajpcell.00187.2011] [PMID: 22460713]
[14]
Legler, D.F.; Thelen, M. New insights in chemokine signaling. F1000 Res., 2018, 7, 95.
[http://dx.doi.org/10.12688/f1000research.13130.1] [PMID: 29416853]
[15]
Ernst, M.C.; Haidl, I.D.; Zúñiga, L.A.; Dranse, H.J.; Rourke, J.L.; Zabel, B.A.; Butcher, E.C.; Sinal, C.J. Disruption of the chemokine-like receptor-1 (CMKLR1) gene is associated with reduced adiposity and glucose intolerance. Endocrinology, 2012, 153(2), 672-682.
[http://dx.doi.org/10.1210/en.2011-1490] [PMID: 22186410]
[16]
Mocker, A.; Hilgers, K.F.; Cordasic, N.; Wachtveitl, R.; Menendez-Castro, C.; Woelfle, J.; Hartner, A.; Fahlbusch, F.B. Renal chemerin expression is induced in models of hypertensive nephropathy and glomerulonephritis and correlates with markers of inflammation and fibrosis. Int. J. Mol. Sci., 2019, 20(24), 6240.
[http://dx.doi.org/10.3390/ijms20246240] [PMID: 31835675]
[17]
Liu, H.; Xiong, W.; Liu, Q.; Zhang, J.; Dong, S. Chemokine-like receptor 1 regulates the proliferation and migration of vascular smooth muscle cells. Med. Sci. Monit., 2016, 22, 4054-4061.
[http://dx.doi.org/10.12659/MSM.897832] [PMID: 27792688]
[18]
Graham, K.L.; Zhang, J.V.; Lewén, S.; Burke, T.M.; Dang, T.; Zoudilova, M.; Sobel, R.A.; Butcher, E.C.; Zabel, B.A. A novel CMKLR1 small molecule antagonist suppresses CNS autoimmune inflammatory disease. PLoS One, 2014, 9(12), e112925.
[http://dx.doi.org/10.1371/journal.pone.0112925] [PMID: 25437209]
[19]
Huang, Q.; Wang, Q.; Zhang, S.; Jiang, S.; Zhao, L.; Yu, L.; Hultström, M.; Patzak, A.; Li, L.; Wilcox, C.S.; Lai, E.Y. Increased hydrogen peroxide impairs angiotensin II contractions of afferent arterioles in mice after renal ischaemia-reperfusion injury. Acta Physiol. (Oxf.), 2016, 218(2), 136-145.
[http://dx.doi.org/10.1111/apha.12745] [PMID: 27362287]
[20]
Mehrotra, P.; Collett, J.A.; McKinney, S.D.; Stevens, J.; Ivancic, C.M.; Basile, D.P. IL-17 mediates neutrophil infiltration and renal fibrosis following recovery from ischemia reperfusion: Compen-satory role of natural killer cells in athymic rats. Am. J. Physiol. Renal Physiol., 2017, 312(3), F385-F397.
[http://dx.doi.org/10.1152/ajprenal.00462.2016] [PMID: 27852609]
[21]
Aleksandrov, A.A.; Dmitrieva, E.S.; Volnova, A.B.; Knyazeva, V.M.; Polyakova, N.V.; Ptukha, M.A.; Gainetdinov, R.R. Effect of alpha-NETA on auditory event related potentials in sensory gating study paradigm in mice. Neurosci. Lett., 2019, 712, 134470.
[http://dx.doi.org/10.1016/j.neulet.2019.134470] [PMID: 31476355]
[22]
Aleksandrov, A.A.; Knyazeva, V.M.; Volnova, A.B.; Dmitrieva, E.S.; Polyakova, N.V. Putative TAAR5 agonist alpha-NETA affects event-related potentials in oddball paradigm in awake mice. Brain Res. Bull., 2020, 158, 116-121.
[http://dx.doi.org/10.1016/j.brainresbull.2020.03.005] [PMID: 32151716]
[23]
Zhou, S.; Jiang, S.; Guo, J.; Xu, N.; Wang, Q.; Zhang, G.; Zhao, L.; Zhou, Q.; Fu, X.; Li, L.; Patzak, A.; Hultström, M.; Lai, E.Y. ADAMTS13 protects mice against renal ischemia-reperfusion injury by reducing inflammation and improving endothelial function. Am. J. Physiol. Renal Physiol., 2019, 316(1), F134-F145.
[http://dx.doi.org/10.1152/ajprenal.00405.2018] [PMID: 30461292]
[24]
Shi, W.; Dong, J.; Liang, Y.; Liu, K.; Peng, Y. NR4A1 silencing protects against renal ischemia-reperfusion injury through activation of the β-catenin signaling pathway in old mice. Exp. Mol. Pathol., 2019, 111, 104303.
[http://dx.doi.org/10.1016/j.yexmp.2019.104303] [PMID: 31465766]
[25]
Havasi, A.; Borkan, S.C. Apoptosis and acute kidney injury. Kidney Int., 2011, 80(1), 29-40.
[http://dx.doi.org/10.1038/ki.2011.120] [PMID: 21562469]
[26]
Bonventre, J.V.; Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest., 2011, 121(11), 4210-4221.
[http://dx.doi.org/10.1172/JCI45161] [PMID: 22045571]
[27]
de Vries, B.; Köhl, J.; Leclercq, W.K.G.; Wolfs, T.G.A.M.; van Bijnen, A.A.J.H.M.; Heeringa, P.; Buurman, W.A. Complement factor C5a mediates renal ischemia-reperfusion injury independent from neutrophils. J. Immunol., 2003, 170(7), 3883-3889.
[http://dx.doi.org/10.4049/jimmunol.170.7.3883] [PMID: 12646657]
[28]
Pratt, J.R.; Jones, M.E.; Dong, J.; Zhou, W.; Chowdhury, P.; Smith, R.A.G.; Sacks, S.H. Nontransgenic hyperexpression of a complement regulator in donor kidney modulates transplant ischemia/reperfusion damage, acute rejection, and chronic nephropathy. Am. J. Pathol., 2003, 163(4), 1457-1465.
[http://dx.doi.org/10.1016/S0002-9440(10)63503-1] [PMID: 14507653]
[29]
Thurman, J.M.; Royer, P.A.; Ljubanovic, D.; Dursun, B.; Lenderink, A.M.; Edelstein, C.L.; Holers, V.M. Treatment with an inhibitory monoclonal antibody to mouse factor B protects mice from induction of apoptosis and renal ischemia/reperfusion injury. J. Am. Soc. Nephrol., 2006, 17(3), 707-715.
[http://dx.doi.org/10.1681/ASN.2005070698] [PMID: 16467447]
[30]
Zhou, W.; Farrar, C.A.; Abe, K.; Pratt, J.R.; Marsh, J.E.; Wang, Y.; Stahl, G.L.; Sacks, S.H. Predominant role for C5b-9 in renal ischemia/reperfusion injury. J. Clin. Invest., 2000, 105(10), 1363-1371.
[http://dx.doi.org/10.1172/JCI8621] [PMID: 10811844]
[31]
Miura, M.; Fu, X.; Zhang, Q.W.; Remick, D.G.; Fairchild, R.L. Neutralization of Gro alpha and macrophage inflammatory protein-2 attenuates renal ischemia/reperfusion injury. Am. J. Pathol., 2001, 159(6), 2137-2145.
[http://dx.doi.org/10.1016/S0002-9440(10)63065-9] [PMID: 11733364]
[32]
Takada, M.; Nadeau, K.C.; Shaw, G.D.; Marquette, K.A.; Tilney, N.L. The cytokine-adhesion molecule cascade in ischemia/reperfusion injury of the rat kidney. Inhibition by a soluble P-selectin ligand. J. Clin. Invest., 1997, 99(11), 2682-2690.
[http://dx.doi.org/10.1172/JCI119457] [PMID: 9169498]
[33]
Xie, Y.; Huang, Y.; Ling, X.; Qin, H.; Wang, M.; Luo, B. Chemerin/CMKLR1 axis promotes inflammation and pyroptosis by activating NLRP3 inflammasome in diabetic cardiomyopathy rat. Front. Physiol., 2020, 11, 381.
[http://dx.doi.org/10.3389/fphys.2020.00381] [PMID: 32390873]
[34]
Helfer, G.; Wu, Q.F. Chemerin: A multifaceted adipokine involved in metabolic disorders. J. Endocrinol., 2018, 238(2), R79-R94.
[http://dx.doi.org/10.1530/JOE-18-0174] [PMID: 29848608]
[35]
Zhang, Y.; Xu, N.; Ding, Y.; Zhang, Y.; Li, Q.; Flores, J.; Haghighiabyaneh, M.; Doycheva, D.; Tang, J.; Zhang, J.H. Chemerin suppresses neuroinflammation and improves neurological recovery via CaMKK2/AMPK/Nrf2 pathway after germinal matrix hemorrhage in neonatal rats. Brain Behav. Immun., 2018, 70, 179-193.
[http://dx.doi.org/10.1016/j.bbi.2018.02.015] [PMID: 29499303]
[36]
Aleksandrov, A.A.; Knyazeva, V.M.; Volnova, A.B.; Dmitrieva, E.S.; Korenkova, O.; Espinoza, S.; Gerasimov, A.; Gainetdinov, R.R. Identification of TAAR5 agonist activity of Alpha-NETA and its effect on mismatch negativity amplitude in awake rats. Neurotox. Res., 2018, 34(3), 442-451.
[http://dx.doi.org/10.1007/s12640-018-9902-6] [PMID: 29713997]
[37]
Sastry, B.V.; Jaiswal, N.; Owens, L.K.; Janson, V.E.; Moore, R.D. 2-(alpha-Naphthoyl)ethyltrimethylammonium iodide and its beta-isomer: New selective, stable and fluorescent inhibitors of choline acetyltransferase. J. Pharmacol. Exp. Ther., 1988, 245(1), 72-80.
[PMID: 3361452]
[38]
Devarajan, P. Update on mechanisms of ischemic acute kidney injury. J. Am. Soc. Nephrol., 2006, 17(6), 1503-1520.
[http://dx.doi.org/10.1681/ASN.2006010017] [PMID: 16707563]
[39]
Lameire, N.; Vanbiesen, W.; Vanholder, R. Acute renal failure. Lancet, 2005, 365(9457), 417-430.
[http://dx.doi.org/10.1016/S0140-6736(05)70238-5] [PMID: 15680458]
[40]
Ortiz, A.; Justo, P.; Sanz, A.; Lorz, C.; Egido, J. Targeting apoptosis in acute tubular injury. Biochem. Pharmacol., 2003, 66(8), 1589-1594.
[http://dx.doi.org/10.1016/S0006-2952(03)00515-X] [PMID: 14555238]
[41]
Pieters, T.T.; Falke, L.L.; Nguyen, T.Q.; Verhaar, M.C.; Florquin, S.; Bemelman, F.J.; Kers, J.; Vanhove, T.; Kuypers, D.; Goldschmeding, R.; Rookmaaker, M.B. Histological characteristics of Acute Tubular Injury during Delayed Graft Function predict renal function after renal transplantation. Physiol. Rep., 2019, 7(5), e14000.
[http://dx.doi.org/10.14814/phy2.14000] [PMID: 30821122]
[42]
Kumar, V.; LaJevic, M.; Pandrala, M.; Jacobo, S.A.; Malhotra, S.V.; Zabel, B.A. Novel CMKLR1 inhibitors for application in demyelinating disease. Sci. Rep., 2019, 9(1), 7178.
[http://dx.doi.org/10.1038/s41598-019-43428-8] [PMID: 31073181]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy