Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Carboxyl Terminus of HOATZ is Intrinsically Disordered and Interacts with Heat Shock Protein A Families

Author(s): Keishi Narita* and Takuji Oyama

Volume 29, Issue 11, 2022

Published on: 12 October, 2022

Page: [971 - 978] Pages: 8

DOI: 10.2174/0929866529666220912115544

Price: $65

conference banner
Abstract

Background: Hoatz is a vertebrate-specific gene, the defects of which result in hydrocephalus and oligo-astheno-teratozoospermia in mice. It encodes a 19-kDa protein lacking any domains of known function.

Methods: To understand the protein activity, we purified the carboxyl-terminal fragment that is conserved among different species, and analyzed its structure and potential binding proteins. A soluble 9.9-kDa HOATZ fragment, including a poly-histidine tag (designated HOATZ-C), was purified to homogeneity.

Results: The gel filtration profile and circular dichroism spectra collectively indicated that HOATZ-C was intrinsically disordered. When HOATZ-C was mixed with cleared lysate from Hoatz-null mouse testis, several proteins, including two of ~70 kDa size, were specifically co-purified with HOATZ-C on a nickel column.

Conclusion: Based on the peptide mass fingerprinting of these bands, two members of the heat-shock protein family A were identified. These data may indicate the role of HOATZ in stress regulation in cells characterized by motile cilia and flagella.

Keywords: Motile cilia, flagella, circular dichroism, stress regulation, heat shock protein

Graphical Abstract

[1]
Wallmeier, J.; Nielsen, K.G.; Kuehni, C.E.; Lucas, J.S.; Leigh, M.W.; Zariwala, M.A.; Omran, H. Motile ciliopathies. Nat. Rev. Dis. Primers, 2020, 6(1), 77.
[http://dx.doi.org/10.1038/s41572-020-0209-6] [PMID: 32943623]
[2]
McClintock, T.S.; Glasser, C.E.; Bose, S.C.; Bergman, D.A. Tissue expression patterns identify mouse cilia genes. Physiol. Genomics, 2008, 32(2), 198-206.
[http://dx.doi.org/10.1152/physiolgenomics.00128.2007] [PMID: 17971504]
[3]
Pazour, G.J.; Agrin, N.; Leszyk, J.; Witman, G.B. Proteomic analysis of a eukaryotic cilium. J. Cell Biol., 2005, 170(1), 103-113.
[http://dx.doi.org/10.1083/jcb.200504008] [PMID: 15998802]
[4]
Blackburn, K.; Bustamante-Marin, X.; Yin, W.; Goshe, M.B.; Ostrowski, L.E. Quantitative proteomic analysis of human airway cilia identifies previously uncharacterized proteins of high abundance. J. Proteome Res., 2017, 16(4), 1579-1592.
[http://dx.doi.org/10.1021/acs.jproteome.6b00972] [PMID: 28282151]
[5]
Patir, A.; Fraser, A.M.; Barnett, M.W.; McTeir, L.; Rainger, J.; Davey, M.G.; Freeman, T.C. The transcriptional signature associated with human motile cilia. Sci. Rep., 2020, 10(1), 10814.
[http://dx.doi.org/10.1038/s41598-020-66453-4] [PMID: 32616903]
[6]
Narita, K.; Nagatomo, H.; Kozuka-Hata, H.; Oyama, M.; Takeda, S. Discovery of a vertebrate-specific factor that processes flagellar glycolytic enolase during motile ciliogenesis. iScience, 2020, 23(4), 100992.
[http://dx.doi.org/10.1016/j.isci.2020.100992] [PMID: 32248064]
[7]
Dyson, H.J.; Wright, P.E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol., 2005, 6(3), 197-208.
[http://dx.doi.org/10.1038/nrm1589] [PMID: 15738986]
[8]
Oldfield, C.J.; Dunker, A.K. Intrinsically disordered proteins and intrinsically disordered protein regions. Annu. Rev. Biochem., 2014, 83(1), 553-584.
[http://dx.doi.org/10.1146/annurev-biochem-072711-164947] [PMID: 24606139]
[9]
Uversky, V.N. Intrinsically disordered proteins in overcrowded milieu: Membrane-less organelles, phase separation, and intrinsic disorder. Curr. Opin. Struct. Biol., 2017, 44, 18-30.
[http://dx.doi.org/10.1016/j.sbi.2016.10.015] [PMID: 27838525]
[10]
Hu, G.; Katuwawala, A.; Wang, K.; Wu, Z.; Ghadermarzi, S.; Gao, J.; Kurgan, L. flDPnn: Accurate intrinsic disorder prediction with putative propensities of disorder functions. Nat. Commun., 2021, 12(1), 4438.
[http://dx.doi.org/10.1038/s41467-021-24773-7] [PMID: 34290238]
[11]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[12]
Hite, K.C.; Kalashnikova, A.A.; Hansen, J.C. Coil-to-helix transitions in intrinsically disordered methyl CpG binding protein 2 and its isolated domains. Protein Sci., 2012, 21(4), 531-538.
[http://dx.doi.org/10.1002/pro.2037] [PMID: 22294343]
[13]
Dosnon, M.; Bonetti, D.; Morrone, A.; Erales, J.; di Silvio, E.; Longhi, S.; Gianni, S. Demonstration of a folding after binding mechanism in the recognition between the measles virus NTAIL and X domains. ACS Chem. Biol., 2015, 10(3), 795-802.
[http://dx.doi.org/10.1021/cb5008579] [PMID: 25511246]
[14]
Omran, H.; Kobayashi, D.; Olbrich, H.; Tsukahara, T.; Loges, N.T.; Hagiwara, H.; Zhang, Q.; Leblond, G.; O’Toole, E.; Hara, C.; Mizuno, H.; Kawano, H.; Fliegauf, M.; Yagi, T.; Koshida, S.; Miyawaki, A.; Zentgraf, H.; Seithe, H.; Reinhardt, R.; Watanabe, Y.; Kamiya, R.; Mitchell, D.R.; Takeda, H. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature, 2008, 456(7222), 611-616.
[http://dx.doi.org/10.1038/nature07471] [PMID: 19052621]
[15]
Rauch, J.N.; Tse, E.; Freilich, R.; Mok, S.A.; Makley, L.N.; Southworth, D.R.; Gestwicki, J.E. BAG3 is a modular, scaffolding protein that physically links heat shock protein 70 (Hsp70) to the small heat shock proteins. J. Mol. Biol., 2017, 429(1), 128-141.
[http://dx.doi.org/10.1016/j.jmb.2016.11.013] [PMID: 27884606]
[16]
Panas, M.D.; Ivanov, P.; Anderson, P. Mechanistic insights into mammalian stress granule dynamics. J. Cell Biol., 2016, 215(3), 313-323.
[http://dx.doi.org/10.1083/jcb.201609081] [PMID: 27821493]
[17]
Jain, S.; Wheeler, J.R.; Walters, R.W.; Agrawal, A.; Barsic, A.; Parker, R. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell, 2016, 164(3), 487-498.
[http://dx.doi.org/10.1016/j.cell.2015.12.038] [PMID: 26777405]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy