Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Effect of Myrcene on Th17/Treg Balance and Endocrine Function in Autoimmune Premature Ovarian Insufficiency Mice through the MAPK Signaling Pathway

Author(s): Fengying Hu, Xianwei Zhou*, Yanjiao Jiang, Xinhe Huang, Shaoqin Sheng and Dongsheng Li

Volume 29, Issue 11, 2022

Published on: 07 October, 2022

Page: [954 - 961] Pages: 8

DOI: 10.2174/0929866529666220822100604

Price: $65

Abstract

Background: Premature ovarian insufficiency (POI) is a defect of ovarian functions in women younger than 40 years old. Although a large number of studies have focused on investigating autoimmune POI, its detailed pathogenesis is still largely unknown. Several studies have indicated that Myrcene exerted a part in the biological processes of various diseases. Nonetheless, whether Myrcene could influence the development of autoimmune POI remains to be elucidated.

Methods: POI model was established by injecting zona pellucida glycoprotein 3 (pZP3). Hematoxylin and eosin (H&E) staining was applied to evaluate the pathological features of ovarian tissues. Enzymelinked immunosorbent assay (ELISA) was used for assessing the concentrations of estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-Müllerian hormone (AMH) and interleukin (IL)-17. Flow cytometry analysis was conducted for assessing the balance of Th17/Treg cells.

Results: The results showed that decreased levels of body weight, ovarian weight and ovarian index were reversed by Myrcene in POI model mice. The estrous cycles in mice were extended in pZP3 mice and Myrcene administration restored it to normal. The reduced number of primordial, primary, and secondary follicles as well as the increased number of atretic follicles in POI mice were offset by Myrcene administration. Moreover, Myrcene could modulate the Th17/Treg balance in autoimmune POI. Besides, Myrcene suppressed the MAPK signaling pathway in pZP3 mice.

Conclusion: Myrcene regulated the Th17/Treg balance and endocrine function in autoimmune POI mice through the MAPK signaling pathway, which might provide a reference for improving the treatment of autoimmune POI.

Keywords: Myrcene, Th17/Treg balance, MAPK pathway, autoimmune premature ovarian insufficiency

Graphical Abstract

[1]
McGlacken-Byrne, S.M.; Conway, G.S. Premature ovarian insufficiency. Best Pract. Res. Clin. Obstet. Gynaecol., 2021, 81, 98-110.
[PMID: 34924261]
[2]
Haller-Kikkatalo, K.; Uibo, R.; Kurg, A.; Salumets, A. The prevalence and phenotypic characteristics of spontaneous premature ovarian failure: A general population registry-based study. Hum. Reprod., 2015, 30(5), 1229-1238.
[http://dx.doi.org/10.1093/humrep/dev021] [PMID: 25712230]
[3]
Jagarlamudi, K.; Reddy, P.; Adhikari, D.; Liu, K. Genetically modified mouse models for Premature Ovarian Failure (POF). Mol. Cell. Endocrinol., 2010, 315(1-2), 1-10.
[http://dx.doi.org/10.1016/j.mce.2009.07.016] [PMID: 19643165]
[4]
Upton, C.E.; Daniels, J.P.; Davies, M.C.J.C. Premature ovarian insufficiency: The need for evidence on the effectiveness of hormonal therapy. Climacteric, 2021, 24(5), 453-458.
[5]
Takahashi, A.; Yousif, A.; Hong, L.; Chefetz, I.I. Premature ovarian insufficiency: Pathogenesis and therapeutic potential of mesenchymal stem cell. J. Mol. Med. (Berl.), 2021, 99(5), 637-650.
[http://dx.doi.org/10.1007/s00109-021-02055-5] [PMID: 33641066]
[6]
Pankiewicz, K. Laudański, P.; Issat, T. The role of noncoding RNA in the pathophysiology and treatment of premature ovarian insufficiency. Int. J. Mol. Sci., 2021, 22(17), 9336.
[http://dx.doi.org/10.3390/ijms22179336] [PMID: 34502244]
[7]
Ishizuka, B. Current understanding of the etiology, symptomatology, and treatment options in Premature Ovarian Insufficiency (POI). Front. Endocrinol. (Lausanne), 2021, 12, 626924.
[http://dx.doi.org/10.3389/fendo.2021.626924] [PMID: 33716979]
[8]
Li, D.; Xu, W.; Wang, X.; Dang, Y.; Xu, L.; Lu, G.; Chan, W.Y.; Leung, P.C.K.; Zhao, S.; Qin, Y. lncRNA DDGC participates in premature ovarian insufficiency through regulating RAD51 and WT1. Mol. Ther. Nucleic Acids, 2021, 26, 1092-1106.
[http://dx.doi.org/10.1016/j.omtn.2021.10.015] [PMID: 34786213]
[9]
Yang, X.; Guo, M.; Wang, X.; Huan, W.; Li, M. Biobased epoxies derived from myrcene and plant oil: Design and properties of their cured products. ACS Omega, 2020, 5(45), 28918-28928.
[http://dx.doi.org/10.1021/acsomega.0c02166] [PMID: 33225122]
[10]
Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene-what are the potential health benefits of this flavouring and aroma agent? Front. Nutr., 2021, 8, 699666.
[http://dx.doi.org/10.3389/fnut.2021.699666] [PMID: 34350208]
[11]
Gomes-Carneiro, M.R.; Viana, M.E.S.; Felzenszwalb, I.; Paumgartten, F.J.R. Evaluation of β-myrcene, α-terpinene and (+)- and (−)-α-pinene in the Salmonella/microsome assay. Food Chem. Toxicol., 2005, 43(2), 247-252.
[http://dx.doi.org/10.1016/j.fct.2004.09.011] [PMID: 15621337]
[12]
Tabanca, N.; Nalbantsoy, A.; Kendra, P.E.; Demirci, F.; Demirci, B. Chemical characterization and biological activity of the mastic gum essential oils of Pistacia lentiscus var. Chia from Turkey. Molecules, 2020, 25(9), 2136.
[http://dx.doi.org/10.3390/molecules25092136] [PMID: 32370246]
[13]
Du, Y.; Luan, J.; Jiang, R.P.; Liu, J.; Ma, Y. Myrcene exerts anti-asthmatic activity in neonatal rats via modulating the matrix remodeling. Int. J. Immunopathol. Pharmacol., 2020, 34.
[http://dx.doi.org/10.1177/2058738420954948] [PMID: 32962470]
[14]
Kumar, R.; Kumar, R.; Sharma, N.; Khurana, N. Ameliorative effect of myrcene in mouse model of Alzheimer’s disease. Eur. J. Pharmacol., 2021, 911, 174529.
[http://dx.doi.org/10.1016/j.ejphar.2021.174529] [PMID: 34592305]
[15]
Yang, L.; Liao, M. Influence of myrcene on inflammation, matrix accumulation in the kidney tissues of streptozotocin-induced diabetic rat. Saudi J. Biol. Sci., 2021, 28(10), 5555-5560.
[http://dx.doi.org/10.1016/j.sjbs.2020.11.090] [PMID: 34588865]
[16]
Yin, N.; Zhao, W.; Luo, Q.; Yuan, W.; Luan, X.; Zhang, H. Restoring ovarian function with human placenta-derived mesenchymal stem cells in autoimmune-induced premature ovarian failure mice mediated by treg cells and associated cytokines. Reprod. Sci., 2018, 25(7), 1073-1082.
[http://dx.doi.org/10.1177/1933719117732156] [PMID: 28954601]
[17]
Yin, N.; Wang, Y.; Lu, X.; Liu, R.; Zhang, L.; Zhao, W.; Yuan, W.; Luo, Q.; Wu, H.; Luan, X.; Zhang, H. hPMSC transplantation restoring ovarian function in premature ovarian failure mice is associated with change of Th17/Tc17 and Th17/Treg cell ratios through the PI3K/Akt signal pathway. Stem Cell Res. Ther., 2018, 9(1), 37.
[http://dx.doi.org/10.1186/s13287-018-0772-x] [PMID: 29444704]
[18]
Zhang, H.; Luo, Q.; Lu, X.; Yin, N.; Zhou, D.; Zhang, L.; Zhao, W.; Wang, D.; Du, P.; Hou, Y.; Zhang, Y.; Yuan, W. Effects of hPMSCs on granulosa cell apoptosis and AMH expression and their role in the restoration of ovary function in premature ovarian failure mice. Stem Cell Res. Ther., 2018, 9(1), 20.
[http://dx.doi.org/10.1186/s13287-017-0745-5] [PMID: 29386068]
[19]
Myers, M.; Britt, K.L.; Wreford, N.G.M.; Ebling, F.J.P.; Kerr, J.B. Methods for quantifying follicular numbers within the mouse ovary. Reproduction, 2004, 127(5), 569-580.
[http://dx.doi.org/10.1530/rep.1.00095] [PMID: 15129012]
[20]
Chansel-Debordeaux, L.; Rault, E.; Depuydt, C.; Soula, V.; Hocké, C.; Jimenez, C.; Creux, H.; Papaxanthos-Roche, A. Successful live birth after in vitro maturation treatment in a patient with autoimmune premature ovarian failure: A case report and review of the literature. Gynecol. Endocrinol., 2021, 37(12), 1138-1142.
[http://dx.doi.org/10.1080/09513590.2021.1928065] [PMID: 34008458]
[21]
Chon, S.J.; Umair, Z.; Yoon, M.S. Premature ovarian insufficiency: Past, present, and future. Front. Cell Dev. Biol., 2021, 9, 672890.
[http://dx.doi.org/10.3389/fcell.2021.672890] [PMID: 34041247]
[22]
Dawood, A.S.; El-Sharawy, M.A.; Nada, D.W.; El-Sheikh, M.F. Premature ovarian failure of autoimmune etiology in 46XX patients: Is there a hope? J. Complement. Integr. Med., 2018, 15(4), 20170072.
[http://dx.doi.org/10.1515/jcim-2017-0072] [PMID: 29794258]
[23]
Lu, X.; Cui, J.; Cui, L.; Luo, Q.; Cao, Q.; Yuan, W.; Zhang, H. The effects of human umbilical cord-derived mesenchymal stem cell transplantation on endometrial receptivity are associated with Th1/Th2 balance change and uNK cell expression of uterine in autoimmune premature ovarian failure mice. Stem Cell Res. Ther., 2019, 10(1), 214.
[http://dx.doi.org/10.1186/s13287-019-1313-y] [PMID: 31331391]
[24]
Li, H.; Zhao, W.; Wang, L.; Luo, Q.; Yin, N.; Lu, X.; Hou, Y.; Cui, J.; Zhang, H. Human placenta‐derived mesenchymal stem cells inhibit apoptosis of granulosa cells induced by IRE1α pathway in autoimmune POF mice. Cell Biol. Int., 2019, 43(8), 899-909.
[http://dx.doi.org/10.1002/cbin.11165] [PMID: 31081266]
[25]
Fu, L.; Feng, W.; Li, S.R.; Huang, B.Y. ZP3 peptides administered orally suppress murine experimental autoimmune ovarian disease. J. Reprod. Immunol., 2007, 75(1), 40-47.
[http://dx.doi.org/10.1016/j.jri.2007.02.009] [PMID: 17418903]
[26]
Uyeda, S.; Sharmin, T.; Satho, T.; Irie, K.; Watanabe, M.; Hosokawa, M.; Hiramatsu, Y.; Koga, T.; Nakashima, Y.; Kashige, N.; Toda, A.; Mishima, K.; Miake, F. Enhancement and regulation effect of myrcene on antibody response in immunization with ovalbumin and Ag85B in mice. Asian Pac. J. Allergy Immunol., 2016, 34(4), 314-323.
[PMID: 27543726]
[27]
Li, D.; Jia, Y.; Hou, Y.; Chen, D.; Zheng, C.; Chen, L.; Zhou, L.; Sun, Z. Qilin pill exerts therapeutic effect on resection-induced premature ovarian insufficiency rats by inhibiting the mapk and pi3k-akt signaling pathways. Drug Des. Devel. Ther., 2021, 15, 3331-3345.
[http://dx.doi.org/10.2147/DDDT.S321010] [PMID: 34354343]
[28]
Li, Y.; Zhang, L.; Gong, J. Naringin attenuated acute lung injury in rat model with acute pancreatitis in pregnancy through inactivation of p38 mapk pathway. Signa Vitae, 2020, 16(2), 189-194.
[29]
Liu, T.; Lin, J.; Chen, C.; Nie, X.; Dou, F.; Chen, J.; Wang, Z.; Gong, Z. MicroRNA‐146b‐5p overexpression attenuates premature ovarian failure in mice by inhibiting the Dab2ip/Ask1/p38‐Mapk pathway and γH2A.X phosphorylation. Cell Prolif., 2021, 54(1), e12954.
[http://dx.doi.org/10.1111/cpr.12954] [PMID: 33166004]
[30]
Mantawy, E.M.; Said, R.S.; Abdel-Aziz, A.K. Mechanistic approach of the inhibitory effect of chrysin on inflammatory and apoptotic events implicated in radiation-induced premature ovarian failure: Emphasis on TGF-β/MAPKs signaling pathway. Biomed. Pharmacother., 2019, 109, 293-303.
[http://dx.doi.org/10.1016/j.biopha.2018.10.092] [PMID: 30396087]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy