Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Recent Insights on Synthetic Methods and Pharmacological Potential in Relation with Structure of Benzothiazoles

Author(s): Ranjeet Kumar Yadav, Rajnish Kumar*, Himanshu Singh, Avijit Mazumdar, Salahuddin, Bharti Chauhan and Mohd. Mustaqeem Abdullah

Volume 19, Issue 4, 2023

Published on: 13 October, 2022

Page: [325 - 360] Pages: 36

DOI: 10.2174/1573406418666220820110551

Price: $65

conference banner
Abstract

Benzothiazole is a bicyclic heterocyclic compound that contains benzene fused with 1, 3- thiazole ring. Several researches established the potential of benzothiazoles as important moiety in various adverse pharmacological conditions. Benzothiazole and its derivatives have been in use and marketed as anti-microbial, anti-inflammatory, anti-diabetic, anti-oxidant, anti-convulsant, antitumor, etc. The variations in pharmacological potentials of benzothiazole and its derivatives have been rational with their chemical structure. Nowadays, hybridization of two or more pharmacophores to synthesize a single molecule with potent pharmacological action is used. This helps to synergize pharmacological properties, make interaction possible with many targets, or minimize the adverse effects associated with them. Several synthetic approaches have been reported for benzothiazole and its derivatives. In this present review article, we focused on recently adopted synthetic approaches for the synthesis of the benzothiazole nucleus and its derivatives. The structure-activity relationship in relation to different pharmacological activities has also been highlighted to provide a good understanding to the researchers for future research on benzothiazoles.

Keywords: Benzothiazole, Pharmacological potential, Chemical structure, Synthesis, Synthetic approach, Structure-activity relationship

[1]
Skrzypczak, N.; Przybylski, P. Structural diversity and biological relevance of benzenoid and atypical ansamycins and their congeners. Nat. Prod. Rep., 2022, 39(9), 1678-1704. Online ahead of print
[http://dx.doi.org/10.1039/D2NP00004K] [PMID: 35262153]
[2]
Rouf, A.; Tanyeli, C. Bioactive thiazole and benzothiazole derivatives. Eur. J. Med. Chem., 2015, 97(97), 911-927.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.058] [PMID: 25455640]
[3]
Kamal, A.; Syed, M.A.H.; Mohammed, S.M. Therapeutic potential of benzothiazoles: A patent review (2010 – 2014). Expert Opin. Ther. Pat., 2015, 25(3), 335-349.
[http://dx.doi.org/10.1517/13543776.2014.999764] [PMID: 25579497]
[4]
Bhoge, N.D.; Mohite, P.B.; Deshmukh, V.K.; Magare, B.K. A comprehensive review on synthetic strategy of benzothiazole lead and pharmacological importance. Ind. J. Pharm. Drug Studies, 2021, 2(2), 15-19.
[5]
Patel, N.B.; Shaikh, F.M. New 4-thiazolidinones of nicotinic acid with 2-Amino-6-methylbenzothiazole and their biological activity. Sci. Pharm., 2010, 78(4), 753-765.
[http://dx.doi.org/10.3797/scipharm.1009-15] [PMID: 21179315]
[6]
Shaista, A.; Amrita, P. Benzothiazole-A magic molecule. Int. J. Pharm. Sci. Res., 2017, 8(12), 4909-4929.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.8(12).4909-29]
[7]
Bhutra, R.; Sharma, R.; Sharma, A.K.; Biotechnol, S.A. Fungicidal activities of Cu (II) soaps derived from various oils treated at high temperature for biomedical use. SAJ Biotechnol, 2018, 5(103), 1-6.
[8]
Satyadev, S.A.; Prasad, Y.R.; Avupati, V.R.; Aparna, K.; Rudru, M.J. A review on benzothiazole – a versatile scaffold in the field of pharmaceutical chemistry. Int. J. Pharm., 2016, 6(2), 150-158.
[9]
Mathur, N.; Bargotya, S. DNA–Binding and cleavage studies of macrocyclic metal complexes containing heteroatomic ligands. Chem. Sci. Trans., 2016, 5(1), 117-124.
[http://dx.doi.org/10.7598/cst2016.1161]
[10]
Henary, M.; Paranjpe, S.; Owens, E.A. Synthesis and applications of benzothiazole containing cyanine dyes. hc, 2013, 19(1), 1-11.
[http://dx.doi.org/10.1515/hc-2013-0012]
[11]
Robbins, K.J.; Liu, G.; Lin, G.; Lazo, N.D. Detection of strongly bound thioflavin T species in amyloid fibrils by ligand-detected 1H NMR. J. Phys. Chem. Lett., 2011, 2(7), 735-740.
[http://dx.doi.org/10.1021/jz200066b]
[12]
Serdons, K.; Verduyckt, T.; Vanderghinste, D.; Cleynhens, J.; Borghgraef, P.; Vermaelen, P.; Terwinghe, C.; Leuven, F.V.; Laere, K.V.; Kung, H.; Bormans, G.; Verbruggen, A. Synthesis of 18F-labelled 2-(4′-fluorophenyl)-1,3-benzothiazole and evaluation as amyloid imaging agent in comparison with [11C]PIB. Bioorg. Med. Chem. Lett., 2009, 19(3), 602-605.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.069] [PMID: 19147351]
[13]
Singh, C.; Kumar, R.; Mazumder, A. Salahuddin; Kumar, A.; Sahu, R.; Mishra, S.; Abdullah, M.M. Benzothiazole: Synthetic strategies, biological potential, and interactions with targets. Mini Rev. Org. Chem., 2022, 19(2), 242-256.
[http://dx.doi.org/10.2174/1570193X18666210308145703]
[14]
Galochkina, A.V.; Bollikanda, R.K.; Zarubaev, V.V.; Tentler, D.G.; Lavrenteva, I.N.; Slita, A.V.; Chirra, N.; Kantevari, S. Synthesis of novel derivatives of 7,8-dihydro-6 H -imidazo[2,1- b][1,3]benzothiazol-5-one and their virus-inhibiting activity against influenza A virus. Arch. Pharm. (Weinheim), 2019, 352(2), 1800225.
[http://dx.doi.org/10.1002/ardp.201800225] [PMID: 30520524]
[15]
Montalvão, S.; Leino, T.O.; Kiuru, P.S.; Lillsunde, K.E.; Yli-Kauhaluoma, J.; Tammela, P. Synthesis and biological evaluation of 2‐aminobenzothiazole and benzimidazole analogs based on the clathrodin structure. Arch. Pharm. (Weinheim), 2016, 349(2), 137-149.
[http://dx.doi.org/10.1002/ardp.201500365] [PMID: 26709468]
[16]
Takamatsu, Y.; Aoki, M.; Bulut, H.; Das, D.; Amano, M.; Sheri, V.R.; Kovari, L.C.; Hayashi, H.; Delino, N.S.; Ghosh, A.K.; Mitsuya, H. Novel protease inhibitors containing C-5-modified bis- tetrahydrofuranylurethane and aminobenzothiazole as P2 and P2′ ligands that exert potent antiviral activity against highly multidrug- resistant HIV-1 with a high genetic barrier against the emergence of drug resistance. Antimicrob. Agents Chemother., 2019, 63(8), e00372-19.
[http://dx.doi.org/10.1128/AAC.00372-19] [PMID: 31085520]
[17]
Wu, H.; Bock, S.; Snitko, M.; Berger, T.; Weidner, T.; Holloway, S.; Kanitz, M.; Diederich, W.E.; Steuber, H.; Walter, C.; Hofmann, D.; Weißbrich, B.; Spannaus, R.; Acosta, E.G.; Bartenschlager, R.; Engels, B.; Schirmeister, T.; Bodem, J. Novel dengue virus NS2B/NS3 protease inhibitors. Antimicrob. Agents Chemother., 2015, 59(2), 1100-1109.
[http://dx.doi.org/10.1128/AAC.03543-14] [PMID: 25487800]
[18]
Yurttaş L.; Özkay, Y.; Duran, M.; Turan-Zitouni, G.; Özdemir, A.; Cantürk, Z.; Küçükoğlu, K.; Kaplancıklı Z.A. Synthesis and antimicrobial activity evaluation of new dithiocarbamate derivatives bearing thiazole/benzothiazole rings. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(8), 1166-1173.
[http://dx.doi.org/10.1080/10426507.2016.1150277]
[19]
Amnerkar, N.D.; Bhongade, B.A.; Bhusari, K.P. Synthesis and biological evaluation of some 4-(6-substituted-1,3-benzothiazol-2-yl)amino-1,3-thiazole-2-amines and their Schiff bases. Arab. J. Chem., 2015, 8(4), 545-552.
[http://dx.doi.org/10.1016/j.arabjc.2014.11.034]
[20]
Borazjani, N.; Jarrahpour, A.; Rad, J.A.; Mohkam, M.; Behzadi, M.; Ghasemi, Y.; Mirzaeinia, S.; Karbalaei-Heidari, H.R.; Ghanbari, M.M.; Batta, G.; Turos, E. Design, synthesis and biological evaluation of some novel diastereoselective β-lactams bearing 2-mercaptobenzothiazole and benzoquinoline. Med. Chem. Res., 2019, 28(3), 329-339.
[http://dx.doi.org/10.1007/s00044-018-02287-0]
[21]
Bala, R.; Kumari, P.; Sood, S.; Kumar, V.; Singh, N.; Singh, K. Phthaloyl dichloride–DMF mediated synthesis of benzothiazole‐ based 4‐formylpyrazole derivatives: Studies on their antimicrobial and antioxidant activities. J. Heterocycl. Chem., 2018, 55(11), 2507-2515.
[http://dx.doi.org/10.1002/jhet.3282]
[22]
Tariq, S.; Alam, O.; Amir, M. Synthesis, p38α MAP kinase inhibition, anti-inflammatory activity, and molecular docking studies of 1,2,4-triazole-based benzothiazole-2-amines. Arch. Pharm. (Weinheim), 2018, 351(3-4), e1700304.
[http://dx.doi.org/10.1002/ardp.201700304]
[23]
Kumar, V.; Sharma, S.; Husain, A. Synthesis and in vivo Anti-inflammatory and Analgesic activities of Oxadiazoles clubbed with Benzothiazole nucleus. Int. Curr. Pharm. J., 2015, 4(12), 457-461.
[http://dx.doi.org/10.3329/icpj.v4i12.25597]
[24]
Ugwu, D.I.; Okoro, U.C.; Ukoha, P.O.; Gupta, A.; Okafor, S.N. Novel anti-inflammatory and analgesic agents: Synthesis, molecular docking and in vivo studies. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 405-415.
[http://dx.doi.org/10.1080/14756366.2018.1426573] [PMID: 29372659]
[25]
Demir Özkay, Ü.; Kaya, C.; Acar Çevik, U.; Can, Ö. Synthesis and antidepressant activity profile of some novel benzothiazole de- rivatives. Molecules, 2017, 22(9), 1490.
[http://dx.doi.org/10.3390/molecules22091490] [PMID: 28880242]
[26]
Liu, D.C.; Zhang, H.J.; Jin, C.M.; Quan, Z.S. Synthesis and biolog- ical evaluation of novel benzothiazole derivatives as potential anti- convulsant agents. Molecules, 2016, 21(3), 164.
[http://dx.doi.org/10.3390/molecules21030164] [PMID: 26938519]
[27]
Harrouche, K.; Renard, J.F.; Bouider, N.; de Tullio, P.; Goffin, E.; Lebrun, P.; Faury, G.; Pirotte, B.; Khelili, S. Synthesis, characterization and biological evaluation of benzothiazoles and tetrahydrobenzothiazoles bearing urea or thiourea moieties as vasorelaxants and inhibitors of the insulin releasing process. Eur. J. Med. Chem., 2016, 115(115), 352-360.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.028] [PMID: 27031211]
[28]
Ibrahim, D.A.; Lasheen, D.S.; Zaky, M.Y.; Ibrahim, A.W.; Vullo, D.; Ceruso, M.; Supuran, C.T.; Abou El Ella, D.A.; Ella, D.A. Design and synthesis of benzothiazole-6-sulfonamides acting as highly potent inhibitors of carbonic anhydrase isoforms I, II, IX and XII. Bioorg. Med. Chem., 2015, 23(15), 4989-4999.
[http://dx.doi.org/10.1016/j.bmc.2015.05.019] [PMID: 26048024]
[29]
Hassan, A.Y.; Sarg, M.T.; Hussein, E.M. Design, synthesis, and anticancer activity of novel benzothiazole analogues. J. Heterocycl. Chem., 2019, 56(4), 1437-1457.
[http://dx.doi.org/10.1002/jhet.3524]
[30]
Khan, K.M.; Mesaik, M.A.; Abdalla, O.M.; Rahim, F.; Soomro, S.; Halim, S.A.; Mustafa, G.; Ambreen, N.; Khalid, A.S.; Taha, M.; Perveen, S.; Alam, M.T.; Hameed, A.; Ul-Haq, Z.; Ullah, H.; Rehman, Z.U.; Siddiqui, R.A.; Voelter, W. The immunomodulation potential of the synthetic derivatives of benzothiazoles: Implications in immune system disorders through in vitro and in silico studies. Bioorg. Chem., 2016, 64(64), 21-28.
[http://dx.doi.org/10.1016/j.bioorg.2015.11.004] [PMID: 26637945]
[31]
Sarkar, S.; Siddiqui, A.A.; Saha, S.J.; De, R.; Mazumder, S.; Banerjee, C.; Iqbal, M.S.; Nag, S.; Adhikari, S.; Bandyopadhyay, U. Antimalarial activity of small-molecule benzothiazole hydra- zones. Antimicrob. Agents Chemother., 2016, 60(7), 4217-4228.
[http://dx.doi.org/10.1128/AAC.01575-15] [PMID: 27139466]
[32]
Sever, B. Altıntop, M.D.; Özdemir, A.; Tabanca, N.; Estep, A.S.; Becnel, J.J.; Bloomquist, J.R. Biological evaluation of a series of benzothiazole derivatives as mosquitocidal agents. Open Chem., 2019, 17(1), 288-294.
[http://dx.doi.org/10.1515/chem-2019-0027]
[33]
Mao, M.Z.; Wang, H.Y.; Wang, W.; Ning, B.K.; Li, Y.X.; Xiong, L.X.; Li, Z.M. Synthesis and biological evaluation of novel N -pyridylpyrazolecarboxamides containing benzothiazole. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(1), 42-46.
[http://dx.doi.org/10.1080/10426507.2016.1224876]
[34]
Che, J.Y.; Meng, X.S.; Xu, X.Y.; Jiang, S.; Gu, Y.C.; Shi, D.Q. Synthesis and herbicidal evaluation of novel uracil derivatives con- taining benzothiazol‐2‐yl moiety. J. Heterocycl. Chem., 2016, 53(5), 1494-1498.
[http://dx.doi.org/10.1002/jhet.2453]
[35]
Hebishy, A.M.S.; Abdelfattah, M.S.; Elmorsy, A.; Elwahy, A.H.M. Synthesis of novel bis‐ and poly(benzimidazoles) as well as bis‐ and poly(benzothiazoles) as anticancer agents. J. Heterocycl. Chem., 2020, 57(5), 2256-2270.
[http://dx.doi.org/10.1002/jhet.3947]
[36]
Alanine, A.; Flohr, A.; Miller, A.K.; Norcross, R.D.; Riemer, C. Benzothiazole derivatives. W.O. Patent 2001097786 2001.
[37]
Cusack, K.P.; Scott, B.; Arnold, D.; Ericsson, A.M. Benzothiazole derivatives. U.S. Patent 01535468, 2003.
[38]
Gaillard, V.P.; Gotteland, P.A.; Pierre, J. Benzothiazole derivatives for the treatment of diabetes. A.U. Patent 20040271740, 2004.
[39]
Van, J.; Klank, U.; Matis, C. Benzothiazole derivatives pharmaceutical composition exhibiting property to bind amyloid and method for detecting amyloid deposits in mammal. R.U. Patent 2440995, 2012.
[40]
Flohr, A.; Riemer, C. Benzothiazole derivatives. W.O. Patent 2006008041 2006.
[41]
Lund, P. Novel use of benzothiazole derivatives. E.P. Patent 1539723 2006.
[42]
Theodoridis, G.; Barron, E.J.; Zhang, Y.L.; Ding, P.; Lyga, J.W.; Whiteside, M.P. Pesticidal (dihalopropenyl) phenylalkyl substituted benzoxazole and benzothiazole derivatives. U.S. Patent 7208450, 2007.
[43]
Schumacher, R.; Ma, J.; Herbert, B.; Danca, M.D.; Xie, W. 1Hindazoles benzothiazoles 12- benzoisoxazoles 12-benzoisothiazoles and chromones and prepara- tion and uses thereof. U.S. Patent 20070135417 2007.
[44]
Cowart, M.D.; Sun, M.; Zhao, C.; Zheng, G.Z. Benzothiazole cyclobutyl amine derivatives. U.S. Patent 7576110, 2009.
[45]
Watson, K.G.; Lessene, G.L.; Baell, J.B.; Huang, D.C.S.; Street, I.P.; Adam, J.M.; Colman, P.M.; Sleebs, B.E.; Smith, B.J. Benzothiazole compounds. U.P. Patent 20100197711 2010.
[46]
Albert, E.; Bacque, E.; Nemecek, C.; Ugolini, A.; Wentzler, S. 6-Triazolopyridazine sulfanyl benzothiazole derivatives as MET inhibitors. U.S. Patent 9321777 2016.
[47]
Izumi, Y.; Sawada, H.; Yamamoto, N.; Kume, T.; Katsuki, H.; Shimohama, S.; Akaike, A. Novel neuroprotective mechanisms of pramipexole, an anti-Parkinson drug, against endogenous dopamine-mediated excitotoxicity. Eur. J. Pharmacol., 2007, 557(2-3), 132-140.
[http://dx.doi.org/10.1016/j.ejphar.2006.11.011] [PMID: 17161393]
[48]
Traynor, B.J.; Alexander, M.; Corr, B.; Frost, E.; Hardiman, O. An outcome study of riluzole in amyotrophic lateral sclerosis. J. Neurol., 2003, 250(4), 473-479.
[http://dx.doi.org/10.1007/s00415-003-1026-z] [PMID: 12700914]
[49]
Kumbhare, R.M.; Dadmal, T.; Kosurkar, U.; Sridhar, V.; Rao, J.V. Synthesis and cytotoxic evaluation of thiourea and N-bis-benzothiazole derivatives: A novel class of cytotoxic agents. Bioorg. Med. Chem. Lett., 2012, 22(1), 453-455.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.106] [PMID: 22115593]
[50]
Modak, J.K.; Tikhomirova, A.; Gorrell, R.J.; Rahman, M.M.; Ko-tsanas, D.; Korman, T.M.; Garcia-Bustos, J.; Kwok, T.; Ferrero, R.L.; Supuran, C.T.; Roujeinikova, A. Anti-Helicobacter pylori ac- tivity of ethoxzolamide. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1660-1667.
[http://dx.doi.org/10.1080/14756366.2019.1663416] [PMID: 31530039]
[51]
Farhangkhoee, H.; Khan, Z.A.; Kaur, H.; Xin, X.; Chen, S.; Chakrabarti, S. Vascular endothelial dysfunction in diabetic cardiomyopathy: Pathogenesis and potential treatment targets. Pharmacol. Ther., 2006, 111(2), 384-399.
[http://dx.doi.org/10.1016/j.pharmthera.2005.10.008] [PMID: 16343639]
[52]
Xue, C.; Lin, T.Y.; Chang, D.; Guo, Z. Thioflavin T as an amyloid dye: Fibril quantification, optimal concentration and effect on aggregation. R. Soc. Open Sci., 2017, 4(1), 160696.
[http://dx.doi.org/10.1098/rsos.160696] [PMID: 28280572]
[53]
Mignani, S.; Majoral, J.P.; Desaphy, J.F.; Lentini, G. From riluzole to dexpramipexole via substituted-benzothiazole derivatives for amyotrophic lateral sclerosis disease treatment: Case studies. Molecules, 2020, 25(15), 3320.
[http://dx.doi.org/10.3390/molecules25153320] [PMID: 32707914]
[54]
Fawcett, J.; Rush, A.J.; Vukelich, J.; Diaz, S.H.; Dunklee, L.; Romo, P.; Yarns, B.C.; Escalona, R. Clinical experience with high- dosage pramipexole in patients with treatment-resistant depressive episodes in unipolar and bipolar depression. Am. J. Psychiatry, 2016, 173(2), 107-111.
[http://dx.doi.org/10.1176/appi.ajp.2015.15060788] [PMID: 26844792]
[55]
Shefner, J.M.; Liu, D.; Leitner, M.L.; Schoenfeld, D.; Johns, D.R.; Ferguson, T.; Cudkowicz, M. Quantitative strength testing in ALS clinical trials. Neurology, 2016, 87(6), 10.1212/WNL. 0000000000002941..
[http://dx.doi.org/10.1212/WNL.0000000000002941] [PMID: 27385750]
[56]
Gao, X.; Liu, J.; Zuo, X.; Feng, X.; Gao, Y. Recent advances in synthesis of benzothiazole compounds related to green chemistry. Molecules, 2020, 25(7), 1675.
[http://dx.doi.org/10.3390/molecules25071675] [PMID: 32260500]
[57]
Riadi, Y.; Mamouni, R.; Azzalou, R.; Haddad, M.E.; Routier, S.; Guillaumet, G.; Lazar, S. An efficient and reusable heterogeneous catalyst Animal Bone Meal for facile synthesis of benzimidazoles, benzoxazoles, and benzothiazoles. Tetrahedron Lett., 2011, 52(27), 3492-3495.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.121]
[58]
Sun, Y.; Jiang, H.; Wu, W.; Zeng, W.; Wu, X. Copper-catalyzed synthesis of substituted benzothiazoles via condensation of 2-aminobenzenethiols with nitriles. Org. Lett., 2013, 15(7), 1598-1601.
[http://dx.doi.org/10.1021/ol400379z] [PMID: 23496117]
[59]
Guo, H.Y.; Li, J.C.; Shang, Y.L. A simple and efficient synthesis of 2-substituted benzothiazoles catalyzed by H2O2/HCl. Chin. Chem. Lett., 2009, 20(12), 1408-1410.
[http://dx.doi.org/10.1016/j.cclet.2009.06.037]
[60]
Kumar, A.; Maurya, R.A.; Ahmad, P. Diversity oriented synthesis of benzimidazole and benzoxa/(thia)zole libraries through polymer-supported hypervalent iodine reagent. J. Comb. Chem., 2009, 11(2), 198-201.
[http://dx.doi.org/10.1021/cc8001876] [PMID: 19152269]
[61]
Maleki, B.; Salehabadi, H. Ammonium chloride; as a mild and efficient catalyst for the synthesis of some 2-arylbenzothiazoles and bisbenzothiazole derivatives. Eur. J. Chem., 2010, 1(4), 377-380.
[http://dx.doi.org/10.5155/eurjchem.1.4.377-380.165]
[62]
Praveen, C.; Nandakumar, A.; Dheenkumar, P.; Muralidharan, D.; Perumal, P.T. Microwave-assisted one-pot synthesis of benzothiazole and benzoxazole libraries as analgesic agents. J. Chem. Sci., 2012, 124(3), 609-624.
[http://dx.doi.org/10.1007/s12039-012-0251-3]
[63]
Ye, L.; Chen, J.; Mao, P.; Mao, Z.; Zhang, X.; Yan, M. Visible-light-promoted synthesis of benzothiazoles from 2-amino-thiophenols and aldehydes. Tetrahedron Lett., 2017, 58(9), 874-876.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.053]
[64]
Song, Q.; Feng, Q.; Zhou, M. Copper-catalyzed oxidative decarboxylative arylation of benzothiazoles with phenylacetic acids and α-hydroxyphenylacetic acids with O2 as the sole oxidant. Org. Lett., 2013, 15(23), 5990-5993.
[http://dx.doi.org/10.1021/ol402871f] [PMID: 24251373]
[65]
Ghosh, A.; Gattu, R.; Khan, A.T. Synthesis of benzothiazoles via condensation reaction of 2-aminothiophenols and β-oxodithioesters using a combination of PTSA and CuI as catalyst. ChemistrySelect, 2018, 3(48), 13773-13776.
[http://dx.doi.org/10.1002/slct.201803403]
[66]
Li, G.; Xie, H.; Chen, J.; Guo, Y.; Deng, G.J. Three-component synthesis of 2-heteroaryl-benzothiazoles under metal-free conditions. Green Chem., 2017, 19(17), 4043-4047.
[http://dx.doi.org/10.1039/C7GC01932G]
[67]
Luo, P.; Gan, F.; Lin, J.; Ding, Q. Recent advances in the synthesis and applications of 2-arylbenzothiazoles. Synthesis, 2020, 52(23), 3530-3548.
[http://dx.doi.org/10.1055/s-0040-1707208]
[68]
Zhao, D.Y.; Guo, X.K.; Li, J.H.; Tang, R.Y. Iodine-mediated intramolecular oxidative cyclization of 2-(styrylthio) anilines: Synthesis of 2-substituted benzothiazoles. Synthesis, 2012, 44(06), 927-933.
[http://dx.doi.org/10.1055/s-0031-1289692]
[69]
Luo, K.; Yang, W.C.; Wei, K.; Liu, Y.; Wang, J.K.; Wu, L. Di-tert- butyl peroxide-mediated radical C (sp2/sp3)–S bond cleavage and group-transfer cyclization. Org. Lett., 2019, 21(19), 7851-7856.
[http://dx.doi.org/10.1021/acs.orglett.9b02837] [PMID: 31524412]
[70]
Bouchet, L.M.; Heredia, A.A.; Argüello, J.E.; Schmidt, L.C. Ribo- flavin as photoredox catalyst in the cyclization of thiobenzanilides: Synthesis of 2-substituted benzothiazoles. Org. Lett., 2020, 22(2), 610-614.
[http://dx.doi.org/10.1021/acs.orglett.9b04384] [PMID: 31887062]
[71]
Pattarawarapan, M.; Duangkamol, C.; Phakhodee, W. Potassium periodate mediated oxidative cyclodesulfurization toward ben- zofused nitrogen heterocycles. Synthesis, 2020, 52(13), 1981-1990.
[http://dx.doi.org/10.1055/s-0039-1690855]
[72]
Rey, V.; Soria-Castro, S.M.; Argüello, J.E.; Peñéñory, A.B. Photochemical cyclization of thioformanilides by chloranil: An approach to 2-substituted benzothiazoles. Tetrahedron Lett., 2009, 50(33), 4720-4723.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.020]
[73]
Cheng, Y.; Yang, J.; Qu, Y.; Li, P. Aerobic visible-light photoredox radical C-H functionalization: Catalytic synthesis of 2-substituted benzothiazoles. Org. Lett., 2012, 14(1), 98-101.
[http://dx.doi.org/10.1021/ol2028866] [PMID: 22146071]
[74]
Xu, Z.M.; Li, H.X.; Young, D.J.; Zhu, D.L.; Li, H.Y.; Lang, J.P. Exogenous photosensitizer-, metal-, and base-free visible-light- promoted C–H thiolation via reverse hydrogen atom transfer. Org. Lett., 2019, 21(1), 237-241.
[http://dx.doi.org/10.1021/acs.orglett.8b03679] [PMID: 30575402]
[75]
Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J.X.; Wu, L.Z.; Lei, A. External oxidant-free oxidative cross-coupling: A photoredox cobalt-catalyzed aromatic C–H thiolation for construct- ing C–S bonds. J. Am. Chem. Soc., 2015, 137(29), 9273-9280.
[http://dx.doi.org/10.1021/jacs.5b05665] [PMID: 26158688]
[76]
Gao, X.; Yu, B.; Yang, Z.; Zhao, Y.; Zhang, H.; Hao, L.; Han, B.; Liu, Z. Ionic liquid-catalyzed C–S bond construction using CO2 as a C1 building block under mild conditions: A metal-free route to synthesis of benzothiazoles. ACS Catal., 2015, 5(11), 6648-6652.
[http://dx.doi.org/10.1021/acscatal.5b01874]
[77]
Huang, Y.; Zhou, P.; Wu, W.; Jiang, H. Selective construction of 2- substituted benzothiazoles from O-iodoaniline derivatives S8 and N-tosylhydrazones. J. Org. Chem., 2018, 83(4), 2460-2466.
[http://dx.doi.org/10.1021/acs.joc.7b03118] [PMID: 29337553]
[78]
Guntreddi, T.; Vanjari, R.; Singh, K.N. Elemental sulfur mediated decarboxylative redox cyclization reaction of o-chloronitroarenes and arylacetic acids. Org. Lett., 2015, 17(4), 976-978.
[http://dx.doi.org/10.1021/acs.orglett.5b00079] [PMID: 25634311]
[79]
Nguyen, T.B.; Pasturaud, K.; Ermolenko, L.; Al-Mourabit, A. Concise access to 2-aroylbenzothiazoles by redox condensation re- action between O-halonitrobenzenes, acetophenones, and elemental sulfur. Org. Lett., 2015, 17(10), 2562-2565.
[http://dx.doi.org/10.1021/acs.orglett.5b01182] [PMID: 25929738]
[80]
Akhilesh, G.; Swati, R. Synthesis and cyclization of benzothiazole. J. Curr. Pharm. Res., 2010, 3(1), 13-23. [Review
[81]
Samanta, S.; Khilari, S.; Srivastava, R. Stimulating the visible-light catalytic activity of Bi2MoO6 nanoplates by embedding carbon dots for the efficient oxidation, cascade reaction, and photoelectro- chemical O2 evolution. ACS Appl. Nano Mater., 2018, 1(1), 426-441.
[http://dx.doi.org/10.1021/acsanm.7b00282]
[82]
Ding, Q.; Huang, X.G.; Wu, J. Facile synthesis of benzothiazoles via cascade reactions of 2-iodoanilines, acid chlorides and Lawesson’s reagent. J. Comb. Chem., 2009, 11(6), 1047-1049.
[http://dx.doi.org/10.1021/cc900085p] [PMID: 19824656]
[83]
Wan, J.P.; Zhou, Y.; Liu, Y.; Sheng, S. Metal-free oxidative carbonylation on enaminone CC bond for the cascade synthesis of benzothiazole-containing vicinal diketones. Green Chem., 2016, 18(2), 402-405.
[http://dx.doi.org/10.1039/C5GC01821H]
[84]
Tan, Z.; Shi, J.C.; Liu, J.; Gui, Q.; Yang, Z.; Guo, R. Synthesis of 2-substituted benzothiazoles from 1-iodo-2-nitrobenzenes by a copper-catalyzed one-pot three-component reaction. Synthesis, 2013, 45(7), 943-951.
[http://dx.doi.org/10.1055/s-0032-1318304]
[85]
Xing, Q.; Ma, Y.; Xie, H.; Xiao, F.; Zhang, F.; Deng, G.J. Iron- promoted three-component 2-substituted benzothiazole formation via nitroarenes ortho-C–H sulfuration with Elemental Sulfur. J. Org. Chem., 2019, 84(3), 1238-1246.
[http://dx.doi.org/10.1021/acs.joc.8b02619] [PMID: 30606012]
[86]
Xu, Y.; Li, B.; Zhang, X.; Fan, X. Metal-free synthesis of 2- aminobenzothiazoles via iodine-catalyzed and oxygen-promoted cascade reactions of isothiocyanatobenzenes with amines. J. Org. Chem., 2017, 82(18), 9637-9646.
[http://dx.doi.org/10.1021/acs.joc.7b01683] [PMID: 28812346]
[87]
Ghafuri, H.; Esmaili, E.; Talebi, M. Fe3O4@SiO2/collagen: An efficient magnetic nanocatalyst for the synthesis of benzimidazole and benzothiazole derivatives. C. R. Chim., 2016, 19(8), 942-950.
[http://dx.doi.org/10.1016/j.crci.2016.05.003]
[88]
Bahadorikhalili, S.; Sardarian, A.R. KF-Al2O3 as a base heteroge- neous catalyst for the synthesis of 2-substituted benzoxazoles and benzothiazoles under mild reaction conditions at room temperature. Polycycl. Aromat. Compd., 2020, 40(4), 990-997.
[http://dx.doi.org/10.1080/10406638.2018.1517808]
[89]
Dong, Z.B.; Xu, W.; Zeng, M.T.; Liu, M.; Liu, S.S.; Li, Y.S. Palla-dium-catalyzed synthesis of 2-aminobenzothiazoles through tan- dem reaction. Synthesis, 2017, 49(14), 3084-3090.
[http://dx.doi.org/10.1055/s-0036-1588835]
[90]
Evindar, G.; Batey, R.A. Parallel synthesis of a library of benzoxazoles and benzothiazoles using ligand-accelerated copper-catalyzed cyclizations of ortho-halobenzanilides. J. Org. Chem., 2006, 71(5), 1802-1808.
[http://dx.doi.org/10.1021/jo051927q] [PMID: 16496964]
[91]
Wang, R.; Yang, W.; Yue, L.; Pan, W.; Zeng, H. DDQ-promoted C–S bond formation: Synthesis of 2-aminobenzothiazole derivatives under transition-metal-, ligand-, and base-free condi- tions. Synlett, 2012, 23(11), 1643-1648.
[http://dx.doi.org/10.1055/s-0031-1291159]
[92]
Liu, B.; Zhu, N.; Hong, H.; Han, L. Novel synthesis of benzothiazole by self-redox tandem reaction of disulfide with aldehyde. Tetrahedron, 2015, 71(49), 9287-9292.
[http://dx.doi.org/10.1016/j.tet.2015.10.029]
[93]
Zhao, J.; Huang, H.; Wu, W.; Chen, H.; Jiang, H. Metal-free synthesis of 2-aminobenzothiazoles via aerobic oxidative cyclization/ dehydrogenation of cyclohexanones and thioureas. Org. Lett., 2013, 15(11), 2604-2607.
[http://dx.doi.org/10.1021/ol400773k]
[94]
Wang, J.; Zong, Y.; Zhang, X.; Gao, Y.; Li, Z.; Yue, G.; Quan, Z.; Wang, X. Synthesis of N-benzothiazol-2-yl-amides by an iron- catalyzed oxidative C (sp2)–H functionalization. Synth Lett, 2014, 25(15), 2143-2148.
[http://dx.doi.org/10.1055/s-0033-1338659]
[95]
Chen, Y.X.; Qian, L.F.; Zhang, W.; Han, B. Efficient aerobic oxidative synthesis of 2-substituted benzoxazoles, benzothiazoles, and benzimidazoles catalyzed by 4-methoxy-TEMPO. Angew. Chem. Int. Ed., 2008, 47(48), 9330-9333.
[http://dx.doi.org/10.1002/anie.200803381] [PMID: 18972469]
[96]
Deshidi, R.; Devari, S.; Shah, B.A. Iodine‐promoted oxidative amidation of terminal alkenes–synthesis of α‐ketoamides, benzo- thiazoles, and quinazolines. Eur. J. Org. Chem., 2015, 2015(7), 1428-1432.
[http://dx.doi.org/10.1002/ejoc.201403547]
[97]
Zhu, Y.P.; Jia, F.C.; Liu, M.C.; Wu, A.X. A multipathway coupled domino strategy: Metal-free oxidative cyclization for one-pot synthesis of 2-acylbenzothiazoles from multiform substrates Org. Lett., 2012, 14(17), 4414-4417.
[http://dx.doi.org/10.1021/ol301921t]
[98]
Sharma, S.; Pathare, R.S.; Maurya, A.K.; Gopal, K.; Roy, T.K.; Sawant, D.M.; Pardasani, R.T. Ruthenium catalyzed intramolecular C–S coupling reactions: Synthetic scope and mechanistic insight. Org. Lett., 2016, 18(3), 356-359.
[http://dx.doi.org/10.1021/acs.orglett.5b03185] [PMID: 26761401]
[99]
Itoh, T.; Mase, T. A novel practical synthesis of benzothiazoles via Pd-catalyzed thiol cross-coupling. Org. Lett., 2007, 9(18), 3687-3689.
[http://dx.doi.org/10.1021/ol7015737] [PMID: 17685625]
[100]
Shen, C.; Xia, H.; Yan, H.; Chen, X.; Ranjit, S.; Xie, X.; Tan, D.; Lee, R.; Yang, Y.; Xing, B.; Huang, K.W. A concise, efficient synthesis of sugar-based benzothiazoles through chemoselective intramolecular C–S coupling. Chem. Sci. (Camb.), 2012, 3(7), 2388-2393.
[http://dx.doi.org/10.1039/c2sc20248d]
[101]
Gopalaiah, K.; Chandrudu, S.N. Iron (ii) bromide-catalyzed oxidative coupling of benzylamines with ortho-substituted anilines: Synthesis of 1, 3-benzazoles. RSC Adv., 2015, 5(7), 5015-5023.
[http://dx.doi.org/10.1039/C4RA12490A]
[102]
Bakthadoss, M.; Selvakumar, R. One-pot synthesis of benzothia- zole-tethered chromanones/coumarins via claisen rearrangement using the solid state melt reaction. J. Org. Chem., 2016, 81(8), 3391-3399.
[http://dx.doi.org/10.1021/acs.joc.5b02920] [PMID: 26991666]
[103]
Findik, E. Synthesis of the novel benzothiazole compounds from 7- benzylidenebicyclo [3.2. 0] hept-2-en-6-ones and 2-amino-benzenethiol. Turk. J. Chem., 2012, 36(1), 93-100.
[104]
Telvekar, V.; Bachhav, H.; Bairwa, V. A novel system for the synthesis of 2-aminobenzthiazoles using sodium dichloroiodate. Synlett, 2012, 23(15), 2219-2222.
[http://dx.doi.org/10.1055/s-0032-1317080]
[105]
Xue, W.J.; Guo, Y.Q.; Gao, F.F.; Li, H.Z.; Wu, A.X. A novel self-sequence reaction network involving a set of six reactions in one pot: The synthesis of substituted benzothiazoles from aromatic ketones and anilines. Org. Lett., 2013, 15(4), 890-893.
[http://dx.doi.org/10.1021/ol400029t] [PMID: 23368771]
[106]
Lindgren, E.B.; de Brito, M.A.; Vasconcelos, T.R.A.; de Moraes, M.O.; Montenegro, R.C.; Yoneda, J.D.; Leal, K.Z. Synthesis and anticancer activity of (E)-2-benzothiazole hydrazones. Eur. J. Med. Chem., 2014, 86(86), 12-16.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.039] [PMID: 25147145]
[107]
Kumar, G.J.; Kumar, S.N.; Thummuri, D.; Adari, L.B.S.; Naidu, V.G.M.; Srinivas, K.; Rao, V.J. Synthesis and characterization of new s-triazine bearing benzimidazole and benzothiazole derivatives as anticancer agents. Med. Chem. Res., 2015, 24(12), 3991-4001.
[http://dx.doi.org/10.1007/s00044-015-1430-9]
[108]
Kamal, A.; Reddy, K.S.; Khan, M.N.A.; Shetti, R.V.C.R.N.C.; Ramaiah, M.J.; Pushpavalli, S.N.C.V.L.; Srinivas, C.; Pal-Bhadra, M.; Chourasia, M.; Sastry, G.N.; Juvekar, A.; Zingde, S.; Barkume, M. Synthesis, DNA-binding ability and anticancer activity of benzothiazole/benzoxazole–pyrrolo[2,1-c][1,4]benzodiazepine conjugates. Bioorg. Med. Chem., 2010, 18(13), 4747-4761.
[http://dx.doi.org/10.1016/j.bmc.2010.05.007] [PMID: 20627593]
[109]
Caputo, R.; Calabrò, M.L.; Micale, N.; Schimmer, A.D.; Ali, M.; Zappalà, M.; Grasso, S. Synthesis of benzothiazole derivatives and their biological evaluation as anticancer agents. Med. Chem. Res., 2012, 21(9), 2644-2651.
[http://dx.doi.org/10.1007/s00044-011-9789-8]
[110]
Song, W.Q.; Liu, M.L.; Li, S.Y.; Xiao, Z.P. Recent efforts in the discovery of urease inhibitor identifications. Curr. Top. Med. Chem., 2022, 22(2), 95-107.
[http://dx.doi.org/10.2174/1568026621666211129095441] [PMID: 34844543]
[111]
Ni, W.W.; Fang, H.L.; Ye, Y.X.; Li, W.Y.; Yuan, C.P.; Li, D.D.; Mao, S.J.; Li, S.E.; Zhu, Q.H.; Ouyang, H.; Xiao, Z.P.; Zhu, H.L. N-monosubstituted thiosemicarbazide as novel Ure inhibitors: Synthesis, biological evaluation and molecular docking. Future Med. Chem., 2020, 12(18), 1633-1645.
[http://dx.doi.org/10.4155/fmc-2020-0048]
[112]
Kumbhare, R.M.; Dadmal, T.L.; Pamanji, R.; Kosurkar, U.B.; Velatooru, L.R.; Appalanaidu, K.; Khageswara Rao, Y.; Venkateswara Rao, J. Synthesis of novel fluoro 1,2,3-triazole tagged amino bis(benzothiazole) derivatives, their antimicrobial and anticancer activity. Med. Chem. Res., 2014, 23(10), 4404-4413.
[http://dx.doi.org/10.1007/s00044-014-1006-0]
[113]
Pathak, N.; Rathi, E.; Kumar, N.; Kini, S.G.; Rao, C.M. A review on anticancer potentials of benzothiazole derivatives. Mini Rev. Med. Chem., 2020, 20(1), 12-23.
[http://dx.doi.org/10.2174/1389557519666190617153213] [PMID: 31288719]
[114]
Reddy, V.G.; Reddy, T.S.; Jadala, C.; Reddy, M.S.; Sultana, F.; Akunuri, R.; Bhargava, S.K.; Wlodkowic, D.; Srihari, P.; Kamal, A. Pyrazolo-benzothiazole hybrids: Synthesis, anticancer properties and evaluation of antiangiogenic activity using in vitro VEGFR-2 kinase and in vivo transgenic zebrafish model. Eur. J. Med. Chem., 2019, 182(182), 111609.
[http://dx.doi.org/10.1016/j.ejmech.2019.111609] [PMID: 31445229]
[115]
Sekar, V.; Perumal, P.; Gandhimathi, A.S. Screening of anticancer activity in newly synthesized benzothiazole derivatives. J. Pharm. Sci. Res, 2011, 3(10), 1520.
[116]
Diao, P.C.; Lin, W.Y.; Jian, X.E.; Li, Y.H.; You, W.W.; Zhao, P.L. Discovery of novel pyrimidine-based benzothiazole derivatives as potent cyclin-dependent kinase 2 inhibitors with anticancer activity. Eur. J. Med. Chem., 2019, 179(179), 196-207.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.055] [PMID: 31254921]
[117]
Singh, M.; Kumar Singh, S.; Gangwar, M.; Sellamuthu, S.; Nath, G.; Singh, K.; Design, S. synthesis and mode of action of some new 2-(4′-aminophenyl) benzothiazole derivatives as potent antimicrobial agents. Lett. Drug Des. Discov., 2016, 13(5), 429-437.
[http://dx.doi.org/10.2174/1570180812666150821003220]
[118]
Morsy, M.A.; Ali, E.M.; Kandeel, M.; Venugopala, K.N.; Nair, A.B.; Greish, K.; El-Daly, M. Screening and molecular docking of novel benzothiazole derivatives as potential antimicrobial agents. Antibiotics (Basel), 2020, 9(5), 221.
[http://dx.doi.org/10.3390/antibiotics9050221] [PMID: 32365587]
[119]
Soni, B.; Ranawat, M.S.; Sharma, R.; Bhandari, A.; Sharma, S. Synthesis and evaluation of some new benzothiazole derivatives as potential antimicrobial agents. Eur. J. Med. Chem., 2010, 45(7), 2938-2942.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.019] [PMID: 20413186]
[120]
Patel, N.B.; Agravat, S.N.; Shaikh, F.M. Synthesis and antimicrobial activity of new pyridine derivatives-I. Med. Chem. Res., 2011, 20(7), 1033-1041.
[http://dx.doi.org/10.1007/s00044-010-9440-0]
[121]
Sahu, P.K.; Sahu, P.K.; Lal, J.; Thavaselvam, D.; Agarwal, D.D. A facile green synthesis and in vitro antimicrobial activity 4H-pyrimido[2,1-b][1,3]benzothiazole derivatives using aluminum trichloride under solvent free conditions. Med. Chem. Res., 2012, 21(11), 3826-3834.
[http://dx.doi.org/10.1007/s00044-011-9908-6]
[122]
El-Gohary, N.S.; Shaaban, M.I. Antimicrobial and antiquorum-sensing studies. Part 2: Synthesis, antimicrobial, antiquorum-sensing and cytotoxic activities of new series of fused [1,3,4]thiadiazole and [1,3]benzothiazole derivatives. Med. Chem. Res., 2014, 23(1), 287-299.
[http://dx.doi.org/10.1007/s00044-013-0637-x]
[123]
Chugunova, E.; Boga, C.; Sazykin, I.; Cino, S.; Micheletti, G.; Mazzanti, A.; Sazykina, M.; Burilov, A.; Khmelevtsova, L.; Kostina, N. Synthesis and antimicrobial activity of novel structural hybrids of benzofuroxan and benzothiazole derivatives. Eur. J. Med. Chem., 2015, 93(93), 349-359.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.023] [PMID: 25707015]
[124]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Qureshi, S.I.; Chaudhari, H.K.; Sekar, N. Design, synthesis, antimicrobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives. Comput. Biol. Chem., 2019, 78(78), 330-337.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.003] [PMID: 30639681]
[125]
Gilani, S.J.; Khan, S.A.; Siddiqui, N.; Verma, S.P.; Mullick, P.; Alam, O. Synthesis and in vitro antimicrobial activity of novel N -(6-chlorobenzo[ d]thiazol-2-yl) hydrazine carboxamide derivatives of benzothiazole class. J. Enzyme Inhib. Med. Chem., 2011, 26(3), 332-340.
[http://dx.doi.org/10.3109/14756366.2010.508441] [PMID: 20807086]
[126]
Mir, F.; Shafi, S.; Zaman, M.S.; Kalia, N.P.; Rajput, V.S. Mulaka- yala, C.; Mulakayala, N.; Khan, I.A.; Alam, M.S. Sulfur rich 2- mercaptobenzothiazole and 1,2,3-triazole conjugates as novel an- titubercular agents. Eur. J. Med. Chem., 2014, 76(76), 274-283.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.017] [PMID: 24589483]
[127]
Shaikh, F.M.; Patel, N.B.; Sanna, G.; Busonera, B.; La Colla, P.; Rajani, D.P. Synthesis of some new 2-amino-6-thiocyanato benzothiazole derivatives bearing 2,4-thiazolidinediones and screening of their in vitro antimicrobial, antitubercular and antiviral activities. Med. Chem. Res., 2015, 24(8), 3129-3142.
[http://dx.doi.org/10.1007/s00044-015-1358-0]
[128]
Chikhale, R.; Menghani, S.; Babu, R.; Bansode, R.; Bhargavi, G.; Karodia, N.; Rajasekharan, M.V.; Paradkar, A.; Khedekar, P. Development of selective DprE1 inhibitors: Design, synthesis, crystal structure and antitubercular activity of benzothiazolylpyrimidine-5-carboxamides. Eur. J. Med. Chem., 2015, 96(96), 30-46.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.011] [PMID: 25874329]
[129]
Suresh, A.J.; Bharathi, K.; Surya, P.R. Design, synthesis, characterization and biological evaluation of some novel benzothiazole deriva- tives as anti tubercular agents targeting glutamine synthetase-I. J. Pharm. Chem. Bio. Sci, 2018, 5(4), 312-319.
[130]
Sarkar, S. Design, synthesis, and evaluation of antitubercular activity of a novel benzothiazole-containing an azetidinone ring. Istanbul J. Pharmacy, 2019, 48(2), 28-31.
[http://dx.doi.org/10.5152/IstanbulJPharm.2018.320135]
[131]
Amnerkar, N.D.; Bhusari, K.P. Synthesis, anticonvulsant activity and 3D-QSAR study of some prop-2-eneamido and 1-acetyl-pyrazolin derivatives of aminobenzothiazole. Eur. J. Med. Chem., 2010, 45(1), 149-159.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.037] [PMID: 19853976]
[132]
Amir, M.; Asif, S.; Ali, I.; Hassan, M.Z. Synthesis of benzothiazole derivatives having acetamido and carbothioamido pharmacophore as anticonvulsant agents. Med. Chem. Res., 2012, 21(9), 2661-2670.
[http://dx.doi.org/10.1007/s00044-011-9791-1]
[133]
Khedekar, P.; Bahekar, R.; Chopadec, R.; Umathec, S.; Rao, A.; Bhusaria, K. Synthesis and Anti-inflammatory Activity of Alkyl/Arylidene-2-aminobenzothiazoles and 1-Benzothiazol-2-yl-3-chloro-4-substituted-azetidin-2-ones. Arzneimittelforschung, 2011, 53(9), 640-647.
[http://dx.doi.org/10.1055/s-0031-1299806] [PMID: 14558438]
[134]
Singh, R.; Sharma, S.; Banarasi, B. Synthesis, characterization and evaluation of 2-imino benzothiazole derivatives as anticonvulsant agents. Int. J. Pharm. Sci. Res., 2014, (5), 213-217.
[135]
Partap, S.; Akhtar, M.J.; Yar, M.S.; Hassan, M.Z.; Siddiqui, A.A. Pyridazinone hybrids: Design, synthesis and evaluation as potential anticonvulsant agents. Bioorg. Chem., 2018, 77(77), 74-83.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.001] [PMID: 29334622]
[136]
Khokra, S.L.; Arora, K.; Khan, S.A.; Kaushik, P.; Saini, R.; Husain, A. Hu- sain, A. Synthesis, computational studies and anticonvulsant activity of novel benzothiazole coupled sulfonamide derivatives. Iran. J. Pharm. Res., 2019, 18(1), 1-15.
[PMID: 31089339]
[137]
Gilani, S.J.; Khan, S.A. Synthesis and pharmacological evaluation of N-(6-chlorobenzo[d]thiazol-2-yl)hydrazine carboxamide derivatives of benzothiazole. Med. Chem. Res., 2013, 22(7), 3316-3328.
[http://dx.doi.org/10.1007/s00044-012-0329-y]
[138]
Azam, M.A.; Dharanya, L.; Mehta, C.C.; Sachdeva, S. Synthesis and biological evaluation of some novel pyrazolopyrimidines incorporating a benzothiazole ring system. Acta Pharm., 2013, 63(1), 19-30.
[http://dx.doi.org/10.2478/acph-2013-0001] [PMID: 23482310]
[139]
Hamdy, N.A.; Abdel-Aziz, H.A.; Kamel, G.M.; Fakhr, I.M. Convenient synthesis, anti-inflammatory, analgesic and ulcerogenic activites of some new bis-hydrazones and pyrazole derivatives. Acta Pol. Pharm., 2013, 70(3), 469-480.
[PMID: 23757938]
[140]
Verma, A.K.; Martin, A.; Singh, A.K. Synthesis, Characterization and evaluation of Anti-inflammatory and Analgesic activity of Benzothiazole derivatives. Indian J. Pharm. Biol. Res., 2014, 2(3), 84-89.
[http://dx.doi.org/10.30750/ijpbr.2.3.14]
[141]
Srivastava, P.; Vyas, V.K.; Variya, B.; Patel, P.; Qureshi, G.; Ghate, M. Synthesis, anti-inflammatory, analgesic, 5-lipoxygenase (5-LOX) inhibition activities, and molecular docking study of 7-substituted coumarin derivatives. Bioorg. Chem., 2016, 67(67), 130-138.
[http://dx.doi.org/10.1016/j.bioorg.2016.06.004] [PMID: 27376460]
[142]
Tariq, S.; Kamboj, P.; Alam, O.; Amir, M. 1,2,4-Triazole-based benzothiazole/benzoxazole derivatives: Design, synthesis, p38α MAP kinase inhibition, anti-inflammatory activity and molecular docking studies. Bioorg. Chem., 2018, 81(81), 630-641.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.015] [PMID: 30253336]
[143]
Kumar, G.; Singh, N.P. Synthesis, anti-inflammatory and analgesic evaluation of thiazole/oxazole substituted benzothiazole derivatives. Bioorg. Chem., 2021, 107(107), 104608.
[http://dx.doi.org/10.1016/j.bioorg.2020.104608] [PMID: 33465668]
[144]
Patil, V.S.; Nandre, K.P.; Ghosh, S.; Rao, V.J.; Chopade, B.A.; Sridhar, B.; Bhosale, S.V.; Bhosale, S.V. Synthesis, crystal structure and antidiabetic activity of substituted (E)-3-(Benzo [d]thiazol-2-ylamino) phenylprop-2-en-1-one. Eur. J. Med. Chem., 2013, 59(59), 304-309.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.020] [PMID: 23262035]
[145]
Ahmadi, A.; Khalili, M.; Ghaderi, P.; Rastegar, G.; Nahri-Niknafs, B. Synthesis and blood glucose and lipid-lowering effects of benzothiazole-substituted benzenesulfonylurea derivatives. Monatsh. Chem., 2015, 146(12), 2059-2065.
[http://dx.doi.org/10.1007/s00706-015-1471-2]
[146]
Gollapalli, M.; Taha, M.; Javid, M.T.; Almandil, N.B.; Rahim, F.; Wadood, A.; Mosaddik, A.; Ibrahim, M.; Alqahtani, M.A.; Bamarouf, Y.A. Synthesis of benzothiazole derivatives as a potent α-glucosidase inhibitor. Bioorg. Chem., 2019, 85(85), 33-48.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.021] [PMID: 30599411]
[147]
Mor, S.; Sindhu, S.; Khatri, M.; Singh, N.; Vasudeva, N.; Panihar, N. Synthesis, type II diabetes inhibitory activity, and antimicrobial tests of benzothiazole derivatives bridged with indenedione by methylenehydrazone. Russ. J. Gen. Chem., 2019, 89(9), 1867-1873.
[http://dx.doi.org/10.1134/S1070363219090226]
[148]
Bhagdev, K.; Sarkar, S. Benzothiazole: As an antidiabetic agent. Ann. Rom. Soc. Cell Biol., 2021, (10), 20269-20285.
[149]
Sulthana, S.; Pandian, P. A review on Indole and Benzothiazole derivatives its importance. J. Drug Deliv. Ther., 2019, 9(1-s), 505-509.
[http://dx.doi.org/10.22270/jddt.v9i1-s.2358]
[150]
Thakkar, S.S.; Thakor, P.; Ray, A.; Doshi, H.; Thakkar, V.R. Benzothiazole analogues: Synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities. Bioorg. Med. Chem., 2017, 25(20), 5396-5406.
[http://dx.doi.org/10.1016/j.bmc.2017.07.057] [PMID: 28789907]
[151]
Aggarwal, S.; Paliwal, D.; Kaushik, D.; Gupta, G.K.; Kumar, A. Pyrazole Schiff base hybrids as anti-malarial agents: Synthesis, in vitro screening and computational study. Comb. Chem. High Throughput Screen., 2018, 21(3), 194-203.
[http://dx.doi.org/10.2174/1386207321666180213092911] [PMID: 29436997]
[152]
Sharma, M.; Prasher, P. An epigrammatic status of the ‘ azole ’-based antimalarial drugs. RSC Med. Chem., 2020, 11(2), 184-211.
[http://dx.doi.org/10.1039/C9MD00479C] [PMID: 33479627]
[153]
Ke, S.; Wei, Y.; Yang, Z.; Wang, K.; Liang, Y.; Shi, L. Novel cycloalkylthiophene–imine derivatives bearing benzothiazole scaffold: Synthesis, characterization and antiviral activity evaluation. Bioorg. Med. Chem. Lett., 2013, 23(18), 5131-5134.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.023] [PMID: 23920438]
[154]
Tang, X.; Wang, Z.; Zhong, X.; Wang, X.; Chen, L.; He, M.; Xue, W. Synthesis and biological activities of benzothiazole derivatives bearing a 1,3,4-thiadiazole moiety. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(3), 241-248.
[http://dx.doi.org/10.1080/10426507.2018.1539992]
[155]
Azzam, R.A.; Elboshi, H.A.; Elgemeie, G.H. Novel synthesis and antiviral evaluation of new benzothiazole-bearing N-sulfonamide 2-pyridone derivatives as USP7 enzyme inhibitors. ACS Omega, 2020, 5(46), 30023-30036.
[http://dx.doi.org/10.1021/acsomega.0c04424] [PMID: 33251438]
[156]
Bhagdev, K.; Sarkar, S. Benzothiazole: As an antiviral agent. Med. Sci. Forum, 2021, 1, pp. 1-7.
[157]
Yadav, A.G.; Patil, V.N.; Asrondkar, A.L.; Naik, A.A.; Ansulkar, P.V.; Bobade, A.S.; Chowdhary, A.S. Anti-oxidant and anti- microbial activities of pyrazolyl-benzothiazole derivatives using Vilsmeier-Haack Reaction. Rayazan J. Chem., 2012, 5, 117-120.
[158]
Bhat, M.; Belagali, S.L. Guanidinyl benzothiazole derivatives: Synthesis and structure activity relationship studies of a novel series of potential antimicrobial and antioxidants. Res. Chem. Intermed., 2016, 42(7), 6195-6208.
[http://dx.doi.org/10.1007/s11164-016-2454-6]
[159]
Sahu, P.K.; Sahu, P.K.; Sahu, P.L.; Agarwal, D.D. Structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives. Bioorg. Med. Chem. Lett., 2016, 26(4), 1342-1347.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.013] [PMID: 26810315]
[160]
Kumari, B.; Chauhan, K.; Trivedi, J.; Jaiswal, V.; Kanwar, S.S.; Pokharel, Y.R. Benzothiazole‐based‐bioconjugates with improved antimicrobial, anticancer and antioxidant potential. ChemistrySelect, 2018, 3(40), 11326-11332.
[http://dx.doi.org/10.1002/slct.201801936]
[161]
Shadap, L.; Tyagi, J.L.; Poluri, K.M.; Novikov, S.; Lo, C.W.T.; Mozharivskyj, Y.; Kollipara, M.R. Synthesis and biological evaluation of some new class of benzothiazole–pyrazole ligands containing arene ruthenium, rhodium and iridium complexes. Trans. Met. Chem. (Weinh.), 2021, 46(3), 231-240.
[http://dx.doi.org/10.1007/s11243-020-00439-z]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy