Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

An Insight into COVID-19 and Traditional Herbs: Bangladesh Perspective

Author(s): Md. Mominur Rahman, Sheikh Shohag, Md. Rezaul Islam, Shomaya Akhter, Sadia Afsana Mim, Rohit Sharma and Abdur Rauf*

Volume 19, Issue 4, 2023

Published on: 03 October, 2022

Page: [361 - 383] Pages: 23

DOI: 10.2174/1573406418666220829144746

Price: $65

conference banner
Abstract

SARS-CoV-2 was first discovered in Wuhan in late 2019 and has since spread over the world, resulting in the present epidemic. Because targeted therapeutics are unavailable, scientists have the opportunity to discover new drugs or vaccines to counter COVID-19, and therefore a number of synthetic bioactive compounds are now being tested in clinical studies. Due to its broad therapeutic spectrum and low adverse effects, medicinal herbs have been used as traditional healing medication in those countries for ages. Due to a lack of synthetic bioactive antiviral medications, pharmaceutical and alternative therapies have been developed using a variety of herbal compositions. Due to the widespread availability of herbal and dietary products worldwide, people frequently use them. Notably, the majority of Bangladeshi people continue to use a variety of natural plants and herbs to treat various types of diseases. This review article discusses how previous research has shown that some herbs in Bangladesh have immunomodulatory and antiviral effects and how their active ingredients have been gathered. Even though FDA-approved medications and vaccines are available for the treatment of COVID-19, the purpose is to encourage the use of herbal medicine as immunomodulators and vaccine adjuvants for the treatment of COVID-19 prevention.

Keywords: SARS-CoV-2, COVID-19, herbal treatment, transmission, antiviral, medicinal plants.

[1]
Rahman, M.M.; Ahmed, M.; Islam, M.T.; Khan, M.R.; Sultana, S.; Maeesa, S.K.; Hasan, S.; Hossain, M.A.; Ferdous, K.S.; Mathew, B.; Rauf, A.; Uddin, M.S. Nanotechnology-based approaches and investigational therapeutics against COVID-19. Curr. Pharm. Des., 2022, 28(12), 948-968.
[PMID: 34218774]
[2]
Hui, D.S. I Azhar, E.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchugh, T.D.; Memish, Z.A.; Drosten, C.; Zumla, A.; Petersen, E. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis., 2020, 91, 264-266.
[http://dx.doi.org/10.1016/j.ijid.2020.01.009] [PMID: 31953166]
[3]
Sutton, T.C.; Subbarao, K. Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus. Virology, 2015, 479-480, 247-258.
[http://dx.doi.org/10.1016/j.virol.2015.02.030] [PMID: 25791336]
[4]
Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, 24(6), 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[5]
Perlman, S.; Netland, J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol., 2009, 7(6), 439-450.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[6]
Sharma, V.; Rai, H.; Gautam, D.N.S.; Prajapati, P.K.; Sharma, R. Emerging evidence on Omicron (B.1.1.529) SARS‐CoV‐2 variant. J. Med. Virol., 2022, 94(5), 1876-1885.
[http://dx.doi.org/10.1002/jmv.27626] [PMID: 35083761]
[7]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[8]
Khaerunnisa, S.; Kurniawan, H.; Awaluddin, R. Potential inhibitor of COVID-19 main protease (M pro) from several medicinal plant compounds by molecular docking study. Preprints, 2020.
[http://dx.doi.org/10.20944/preprints202003.0226.v1]
[9]
Tripathi, M.K.; Singh, P.; Sharma, S.; Singh, T.P.; Ethayathulla, A.S.; Kaur, P. Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor. J. Biomol. Struct. Dyn., 2021, 39(15), 5668-5681.
[http://dx.doi.org/10.1080/07391102.2020.1790425] [PMID: 32643552]
[10]
Rahman, M.M.; Islam, M.R.; Shohag, S. The multifunctional role of herbal products in the management of diabetes and obesity: A comprehensive review. Molecules, 2022, 27(5), 1713.
[http://dx.doi.org/10.3390/molecules27051713]
[11]
Rahman, M.M.; Ferdous, K.S.; Ahmed, M.; Islam, M.T.; Khan, M.R.; Perveen, A.; Ashraf, G.M.; Uddin, M.S. Hutchinson-Gilford progeria syndrome: An overview of the molecular mechanism, pathophysiology and therapeutic approach. Curr. Gene Ther., 2021, 21(3), 216-229.
[http://dx.doi.org/10.2174/1566523221666210303100805] [PMID: 33655857]
[12]
Mominur Rahman, M.; Islam, F.; Saidur Rahaman, M. Studies on the prevalence of HIV/AIDS in Bangladesh including other developing countries. Adv. Tradit. Med; Springer, 2021, pp. 1-12.
[13]
Rahman, M.M.; Islam, F.; Parvez, A.; Azad, M.A.K.; Ashraf, G.M.; Ullah, M.F.; Ahmed, M. Citrus limon L. (lemon) seed extract shows neuro-modulatory activity in an in vivo thiopentalsodium sleep model by reducing the sleep onset and enhancing the sleep duration. J. Integr. Neurosci., 2022, 21(1), 042.
[http://dx.doi.org/10.31083/j.jin2101042] [PMID: 35164478]
[14]
Rahman, M.M.; Rahaman, M.S.; Islam, M.R. Multifunctional therapeutic potential of phytocomplexes and natural extracts for antimicrobial properties. Antibiot., 2021, 10(9), 1076.
[http://dx.doi.org/10.3390/antibiotics10091076]
[15]
Bhattacharya, T.; Soares, G.A.B.E.; Chopra, H. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Mater, 2022, 15(3), 804.
[http://dx.doi.org/10.3390/ma15030804]
[16]
Rauf, A.; Abu-Izneid, T.; Khalil, A.A. Berberine as a potential anticancer agent: A comprehensive review. Mol., 2021, 26(23), 7368.
[http://dx.doi.org/10.3390/molecules26237368]
[17]
Islam, F.; Bibi, S.; Meem, A.K. Natural bioactive molecules: An alternative approach to the treatment and control of COVID-19. Int. J. Mol. Sci., 2021, 22(23), 12638.
[18]
Dutta, M.; Nezam, M.; Chowdhury, S. Appraisals of the Bangladeshi medicinal plant Calotropis gigantea used by folk medicine practitioners in the management of COVID-19: A biochemical and computational approach. Front. Mol. Biosci., Frontiers Media, 2021, 8, 481.
[19]
Dhama, K.; Khan, S.; Tiwari, R.; Sircar, S.; Bhat, S.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Coronavirus disease 2019-COVID-19. Clin. Microbiol. Rev., 2020, 33(4), e00028-e20.
[http://dx.doi.org/10.1128/CMR.00028-20] [PMID: 32580969]
[20]
Banik, R.; Rahman, M.; Sikder, T.; Gozal, D. COVID-19 in Bangladesh: Public awareness and insufficient health facilities remain key challenges. Public Health, 2020, 183, 50-51.
[http://dx.doi.org/10.1016/j.puhe.2020.04.037] [PMID: 32428773]
[21]
Anwar, S.; Nasrullah, M.; Hosen, M.J. COVID-19 and Bangladesh: Challenges and how to address them. Front. Public Health, 2020, 8, 154.
[http://dx.doi.org/10.3389/fpubh.2020.00154]
[22]
Rafiqul Islam, A.T.M.; Ferdousi, J.; Shahinozzaman, M. Previously published ethno-pharmacological reports reveal the potentiality of plants and plant-derived products used as traditional home remedies by Bangladeshi COVID-19 patients to combat SARS-CoV-2. Saudi J. Biol. Sci., 2021, 28(11), 6653-6673.
[http://dx.doi.org/10.1016/j.sjbs.2021.07.036] [PMID: 34305428]
[23]
Cockcroft, A.; Andersson, N.; Milne, D. What did the public think of health services reform in Bangladesh? Three national community-based surveys 1999-2003. Heal Res. Policy Syst. Health Res. Policy Syst., 2007, 5, 1.
[24]
Kadir, M.F.; Bin Sayeed, M.S.; Mia, M.M.K. Ethnopharmacological survey of medicinal plants used by indigenous and tribal people in Rangamati, Bangladesh. J. Ethnopharmacol., 2012, 144(3), 627-637.
[http://dx.doi.org/10.1016/j.jep.2012.10.003] [PMID: 23064284]
[25]
Rahmatullah, M.; Chakma, P.; Paul, A.K. A survey of preventive medicinal plants used by the Chakma residents of Hatimara (south) village of Rangamati district, Bangladesh. Am.-Eurasian J. Sustain. Agric. American-Eurasian Network for Scientific Information, 2011, 5(1), 92-96.
[26]
El-Aziz, NMA.; Khalifa, I.; Darwish, AMG. Docking analysis of some bioactive compounds from traditional plants against SARS-CoV-2 target proteins. Mol., 2022, 27(9), 2662.
[27]
Sarkar, P.K.; Das Mukhopadhyay, C. Mechanistic insights from the review and evaluation of ayurvedic herbal medicines for the prevention and management of COVID-19 patients. J. Herb. Med., 2022, 32, 100554.
[http://dx.doi.org/10.1016/j.hermed.2022.100554] [PMID: 35251909]
[28]
Panyod, S.; Ho, C.T.; Sheen, L.Y. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. J. Tradit. Complement. Med., 2020, 10(4), 420-427.
[http://dx.doi.org/10.1016/j.jtcme.2020.05.004] [PMID: 32691006]
[29]
Nilashi, M.; Samad, S.; Yusuf, S.Y.M.; Akbari, E. Can complementary and alternative medicines be beneficial in the treatment of COVID-19 through improving immune system function? J. Infect. Public Health, 2020, 13(6), 893-896.
[http://dx.doi.org/10.1016/j.jiph.2020.05.009] [PMID: 32451258]
[30]
Jayawardena, R.; Sooriyaarachchi, P.; Chourdakis, M.; Jeewandara, C.; Ranasinghe, P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab. Syndr., 2020, 14(4), 367-382.
[http://dx.doi.org/10.1016/j.dsx.2020.04.015] [PMID: 32334392]
[31]
Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[32]
Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92(4), 418-423.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[33]
Masters, P.S. The molecular biology of coronaviruses. Adv. Virus Res., 2006, 66(06), 193-292.
[http://dx.doi.org/10.1016/S0065-3527(06)66005-3] [PMID: 16877062]
[34]
Alanagreh, L.; Alzoughool, F.; Atoum, M. The human coronavirus disease COVID-19: Its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens, 2020, 9(5), 331.
[http://dx.doi.org/10.3390/pathogens9050331] [PMID: 32365466]
[35]
Bombardini, T.; Picano, E. Angiotensin-converting enzyme 2 as the molecular bridge between epidemiologic and clinical features of COVID-19. Can. J. Cardiol., 2020, 36(5), 784.e1-784.e2.
[http://dx.doi.org/10.1016/j.cjca.2020.03.026] [PMID: 32299780]
[36]
Mirastschijski, U.; Dembinski, R.; Maedler, K. Lung surfactant for pulmonary barrier restoration in patients with COVID-19 pneumonia. Front. Med. (Lausanne), 2020, 7(May), 254.
[http://dx.doi.org/10.3389/fmed.2020.00254] [PMID: 32574339]
[37]
Ros-Lucas, J.A.; Pascual-Figal, D.A.; Noguera-Velasco, J.A. CA 15-3 prognostic biomarker in SARS-CoV-2 pneumonia. Sci. Rep., 2022, 12(1), 1-8.
[38]
Wang, H.; Yang, P.; Liu, K.; Guo, F.; Zhang, Y.; Zhang, G.; Jiang, C. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res., 2008, 18(2), 290-301.
[http://dx.doi.org/10.1038/cr.2008.15] [PMID: 18227861]
[39]
Nakagawa, K.; Lokugamage, K.G.; Makino, S. Viral and Cellular mRNA Translation in Coronavirus-Infected Cells, Advances in Virus Research 2016, 1st Ed; Elsevier Inc., 2016.
[40]
Kumar, V.; Doshi, K.U.; Khan, W.H.; Rathore, A.S. COVID‐19 pandemic: Mechanism, diagnosis, and treatment. J. Chem. Technol. Biotechnol., 2021, 96(2), 299-308.
[http://dx.doi.org/10.1002/jctb.6641]
[41]
Abiri, R.; Abdul-Hamid, H.; Sytar, O.; Abiri, R.; de Almeida, E.B., Jr; Sharma, S.K.; Bulgakov, V.P.; Arroo, R.R.J.; Malik, S. A brief overview of potential treatments for viral diseases using natural plant compounds: The case of SARS-CoV. Molecules, 2021, 26(13), 3868.
[42]
Anam, E.; Swachho, R.B.; Jannat, K.; Rahmatullah, M. Home remedies for COVID-19 treatment in Gazipur district, Bangladesh. J. Med. Plants Stud., 2021, 9(1), 25-28.
[http://dx.doi.org/10.22271/plants.2021.v9.i1a.1244]
[43]
Ahmed, I.; Hasan, M.; Akter, R. Behavioral preventive measures and the use of medicines and herbal products among the public in response to COVID-19 in Bangladesh: A cross-sectional study. PLoS One, 2020, 15(12), 1-12.
[44]
Nassiri Asl, N.; Hosseinzadeh, H. Review of antiviral effects of Glycyrrhiza glabra L. and its active component, glycyrrhizin. J. Med. Plants., 2007, 6(22), 1-12. Faslnamah-i Giyahan-i Daruyi, 2007. [Online]
[45]
Giroglou, T.; Cinatl, J., Jr; Rabenau, H.; Drosten, C.; Schwalbe, H.; Doerr, H.W.; von Laer, D. Retroviral vectors pseudotyped with severe acute respiratory syndrome coronavirus S protein. J. Virol., 2004, 78(17), 9007-9015.
[http://dx.doi.org/10.1128/JVI.78.17.9007-9015.2004] [PMID: 15308697]
[46]
Cinatl, J.; Morgenstern, B.; Bauer, G.; Chandra, P.; Rabenau, H.; Doerr, H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 2003, 361(9374), 2045-2046.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[47]
Chen, F.; Chan, K.H.; Jiang, Y.; Kao, R.Y.T.; Lu, H.T.; Fan, K.W.; Cheng, V.C.C.; Tsui, W.H.W.; Hung, I.F.N.; Lee, T.S.W.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J. Clin. Virol., 2004, 31(1), 69-75.
[http://dx.doi.org/10.1016/j.jcv.2004.03.003] [PMID: 15288617]
[48]
Ryu, Y.B.; Park, S.J.; Kim, Y.M.; Lee, J.Y.; Seo, W.D.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg. Med. Chem. Lett., 2010, 20(6), 1873-1876.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.152] [PMID: 20167482]
[49]
Park, J.Y.; Kim, J.H.; Kim, Y.M.; Jeong, H.J.; Kim, D.W.; Park, K.H.; Kwon, H.J.; Park, S.J.; Lee, W.S.; Ryu, Y.B. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg. Med. Chem., 2012, 20(19), 5928-5935.
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[50]
Chang, F.R.; Yen, C.T. EI-Shazly, M.; Lin, W.H.; Yen, M.H.; Lin, K.H.; Wu, Y.C. Anti-human coronavirus (anti-HCoV) triterpenoids from the leaves of Euphorbia neriifolia. Nat. Prod. Commun., 2012, 7(11), 1934578X1200701.
[http://dx.doi.org/10.1177/1934578X1200701103] [PMID: 23285797]
[51]
Boozari, M.; Hosseinzadeh, H. Natural products for COVID‐19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother. Res., 2021, 35(2), 864-876.
[http://dx.doi.org/10.1002/ptr.6873] [PMID: 32985017]
[52]
Nassiri-Asl, M.; Hosseinzadeh, H. Review of the pharmacological effects of Vitis vinifera (Grape) and its bioactive compounds. Phytother. Res., 2009, 23(9), 1197-1204.
[http://dx.doi.org/10.1002/ptr.2761] [PMID: 19140172]
[53]
Lin, S.C.; Ho, C.T.; Chuo, W.H. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis., 2017, 17(1), 144.
[54]
Yi, L.; Li, Z.; Yuan, K.; Qu, X.; Chen, J.; Wang, G.; Zhang, H.; Luo, H.; Zhu, L.; Jiang, P.; Chen, L.; Shen, Y.; Luo, M.; Zuo, G.; Hu, J.; Duan, D.; Nie, Y.; Shi, X.; Wang, W.; Han, Y.; Li, T.; Liu, Y.; Ding, M.; Deng, H.; Xu, X. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol., 2004, 78(20), 11334-11339.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[55]
Chen, L.; Li, J.; Luo, C.; Liu, H.; Xu, W.; Chen, G.; Liew, O.W.; Zhu, W.; Puah, C.M.; Shen, X.; Jiang, H. Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CLpro: Structure–activity relationship studies reveal salient pharmacophore features. Bioorg. Med. Chem., 2006, 14(24), 8295-8306.
[http://dx.doi.org/10.1016/j.bmc.2006.09.014] [PMID: 17046271]
[56]
Cho, J.K.; Curtis-Long, M.J.; Lee, K.H.; Kim, D.W.; Ryu, H.W.; Yuk, H.J.; Park, K.H. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg. Med. Chem., 2013, 21(11), 3051-3057.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[57]
Park, J.Y.; Ko, J.A.; Kim, D.W.; Kim, Y.M.; Kwon, H.J.; Jeong, H.J.; Kim, C.Y.; Park, K.H.; Lee, W.S.; Ryu, Y.B. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 23-30.
[http://dx.doi.org/10.3109/14756366.2014.1003215] [PMID: 25683083]
[58]
Park, J.Y.; Jae Jeong, H.; Hoon Kim, J.; Min Kim, Y.; Park, S.J.; Kim, D.; Hun Park, K. Song Lee, W.; Bae Ryu, Y. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol. Pharm. Bull., 2012, 35(11), 2036-2042.
[http://dx.doi.org/10.1248/bpb.b12-00623] [PMID: 22971649]
[59]
Soleimani, V.; Sahebkar, A.; Hosseinzadeh, H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother. Res., 2018, 32(6), 985-995.
[http://dx.doi.org/10.1002/ptr.6054] [PMID: 29480523]
[60]
Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D.L. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[61]
Shen, L.; Niu, J.; Wang, C.; Huang, B.; Wang, W.; Zhu, N.; Deng, Y.; Wang, H.; Ye, F.; Cen, S.; Tan, W. High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. J. Virol., 2019, 93(12), e00023-e19.
[http://dx.doi.org/10.1128/JVI.00023-19] [PMID: 30918074]
[62]
Yang, C.W.; Lee, Y.Z.; Kang, I.J.; Barnard, D.L.; Jan, J.T.; Lin, D.; Huang, C.W.; Yeh, T.K.; Chao, Y.S.; Lee, S.J. Identification of phenanthroindolizines and phenanthroquinolizidines as novel potent anti-coronaviral agents for porcine enteropathogenic coronavirus transmissible gastroenteritis virus and human severe acute respiratory syndrome coronavirus. Antiviral Res., 2010, 88(2), 160-168.
[http://dx.doi.org/10.1016/j.antiviral.2010.08.009] [PMID: 20727913]
[63]
Yang, C.W.; Lee, Y.Z.; Hsu, H.Y. Targeting coronaviral replication and cellular JAK2 mediated dominant NF-κB activation for comprehensive and ultimate inhibition of coronaviral activity. Sci. Rep., 2017, 7(1), 4105.
[64]
Weber, C.; Opatz, T. Bisbenzylisoquinoline alkaloids. Alkaloids Chem. Biol., 2019, 81, 1-114.
[http://dx.doi.org/10.1016/bs.alkal.2018.07.001] [PMID: 30685048]
[65]
Rahman, M.; Islam, M.; Islam, M.; Harun-Or-Rashid, M.; Islam, M.; Abdullah, S.; Uddin, M.; Das, S.; Rahaman, M.; Ahmed, M.; Alhumaydhi, F.; Emran, T.; Mohamed, A.; Faruque, M.; Khandaker, M.; Mostafa-Hedeab, G. Stem cell transplantation therapy and neurological disorders: Current status and future perspectives. Biology (Basel), 2022, 11(1), 147.
[http://dx.doi.org/10.3390/biology11010147] [PMID: 35053145]
[66]
Kim, D.E.; Min, J.S.; Jang, M.S. Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus oc43 infection of mrc-5 human lung cells. Biomolecules, 2019, 9(11), 696.
[http://dx.doi.org/10.3390/biom9110696]
[67]
Cao, J.; Forrest, J.C.; Zhang, X. A screen of the NIH clinical collection small molecule library identifies potential anti-coronavirus drugs. Antiviral Res., 2015, 114, 1-10.
[http://dx.doi.org/10.1016/j.antiviral.2014.11.010] [PMID: 25451075]
[68]
Khan, F.A.; Maalik, A. Advances in pharmacology of isatin and its derivatives: A review. Trop. J. Pharm. Res., 2015, 14(10), 1937-1942.
[http://dx.doi.org/10.4314/tjpr.v14i10.28]
[69]
Webber, S.E.; Tikhe, J.; Worland, S.T.; Fuhrman, S.A.; Hendrickson, T.F.; Matthews, D.A.; Love, R.A.; Patick, A.K.; Meador, J.W.; Ferre, R.A.; Brown, E.L.; DeLisle, D.M.; Ford, C.E.; Binford, S.L. Design, synthesis, and evaluation of nonpeptidic inhibitors of human rhinovirus 3C protease. J. Med. Chem., 1996, 39(26), 5072-5082.
[http://dx.doi.org/10.1021/jm960603e] [PMID: 8978838]
[70]
Chen, L.R.; Wang, Y.C.; Lin, Y.W.; Chou, S.Y.; Chen, S.F.; Liu, L.T.; Wu, Y.T.; Kuo, C.J.; Chen, T.S.S.; Juang, S.H. Synthesis and evaluation of isatin derivatives as effective SARS coronavirus 3CL protease inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(12), 3058-3062.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.027] [PMID: 15896959]
[71]
Liu, W.; Zhu, H.M.; Niu, G.J.; Shi, E.Z.; Chen, J.; Sun, B.; Chen, W.Q.; Zhou, H.G.; Yang, C. Synthesis, modification and docking studies of 5-sulfonyl isatin derivatives as SARS-CoV 3C-like protease inhibitors. Bioorg. Med. Chem., 2014, 22(1), 292-302.
[http://dx.doi.org/10.1016/j.bmc.2013.11.028] [PMID: 24316352]
[72]
Cheng, Y.Q. Deciphering the biosynthetic codes for the potent anti-SARS-CoV cyclodepsipeptide valinomycin in Streptomyces tsusimaensis ATCC 15141. ChemBioChem, 2006, 7(3), 471-477.
[http://dx.doi.org/10.1002/cbic.200500425] [PMID: 16511823]
[73]
Wu, C.Y.; Jan, J.T.; Ma, S.H.; Kuo, C.J.; Juan, H.F.; Cheng, Y.S.E.; Hsu, H.H.; Huang, H.C.; Wu, D.; Brik, A.; Liang, F.S.; Liu, R.S.; Fang, J.M.; Chen, S.T.; Liang, P.H.; Wong, C.H. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci. USA, 2004, 101(27), 10012-10017.
[http://dx.doi.org/10.1073/pnas.0403596101] [PMID: 15226499]
[74]
Mast, M.; Clouser, C. Processing options for improving the nutritional value of poultry meat and egg products. In: Designing Foods: Animal Product Options in the Marketplace,; , 1988. Available from : https://www.ncbi.nlm.nih.gov/books/NBK218177/
[75]
Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Evaluation of green tea polyphenols as novel corona virus (SARS-CoV-2) main protease (Mpro) inhibitors – an in silico docking and molecular dynamics simulation study. J. Biomol. Struct. Dyn., 2021, 39(12), 4362-4374.
[http://dx.doi.org/10.1080/07391102.2020.1779818] [PMID: 32568613]
[76]
Mhatre, S.; Srivastava, T.; Naik, S.; Patravale, V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine, 2021, 85(July), 153286.
[http://dx.doi.org/10.1016/j.phymed.2020.153286] [PMID: 32741697]
[77]
Haridas, M.; Sasidhar, V.; Nath, P. Compounds of Citrus medica and Zingiber officinale for COVID-19 inhibition: In silico evidence for cues from Ayurveda. Futur J. Pharm. Sci., 2021, 7(1), 13.
[78]
Zayapragassarazan, Z.; Chacko, T.V. Comparison of body image perception and the actual BMI and correlation with self-esteem and mental health: A cross-sectional study among adolescents Sudhir. Int. J. Health Allied Sci., 2018, 7(3), 145-150.
[79]
Srivastava, A.K.; Chaurasia, J.P.; Khan, R.; Dhand, C.; Verma, S. Role of medicinal plants of traditional use in recuperating devastating role of medicinal plants of traditional use in recuperating devastating COVID-19 situation. Med. Aromat. Plants, 2020, 9(5), 1-16.
[80]
Kim, D.W.; Seo, K.H.; Curtis-Long, M.J.; Oh, K.Y.; Oh, J.W.; Cho, J.K.; Lee, K.H.; Park, K.H. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[81]
Vicidomini, C.; Roviello, V.; Roviello, G.N. Molecular basis of the therapeutical potential of clove (Syzygium aromaticum L.) and clues to its anti-COVID-19 utility. Molecules, 2021, 26(7), 1880.
[http://dx.doi.org/10.3390/molecules26071880] [PMID: 33810416]
[82]
Bag, A.; Bag, A. Justicia adhatoda leaves extract is a strong remedy for COVID-19 - Case report analysis and docking based study. Biol. Med. Chem., 2021, 7(9), 34-38.
[83]
Ghosh, R.; Chakraborty, A.; Biswas, A. Identification of alkaloids from Justicia adhatoda as potent SARS-CoV-2 main protease inhibitors: An in silico perspective. J. Mol. Struct. Elsevier B.V., 2021, 1229, 129489.
[84]
Srivastava, A.K.; Kumar, A.; Misra, N. On the inhibition of COVID-19 protease by Indian herbal plants: An in silico investigation. arXiv, 2020, 1-14.
[85]
Sengupta, P. Use of Piper betel to combat COVID-19. Prepare@U, 2020, 1(1), 1-10.http://dx.doi.org/10.36375/prepare_u.a92
[86]
Subramanian, S. Nearly 20+ compounds in Neem leaves extract exhibit high binding affinity with some of them as high as -14.3 kcal/mol against COVID-19 main protease (Mpro)  A molecular docking study. IndiaRxiv, 2020.
[http://dx.doi.org/10.35543/osf.io/pyqx4]
[87]
Wachtel-Galor, S.; Yuen, J.; Buswell, J.A. Ganoderma lucidum (lingzhi or reishi): A medicinal mushroom. Herb. Med. Biomol. Clin. Asp., 2011, 175-199.
[88]
Keyaerts, E.; Vijgen, L.; Maes, P.; Neyts, J.; Ranst, M.V. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun., 2004, 323(1), 264-268.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.085] [PMID: 15351731]
[89]
Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; AbuBakar, S. Novel antiviral activity of baicalein against dengue virus. BMC Complement. Altern. Med., 2012, 12(1), 214.
[http://dx.doi.org/10.1186/1472-6882-12-214] [PMID: 23140177]
[90]
Barakat, E.M.F.; El Wakeel, L.M.; Hagag, R.S. Effects of Nigella sativa on outcome of hepatitis C in Egypt. World J. Gastroenterol., 2013, 19(16), 2529-2536.
[http://dx.doi.org/10.3748/wjg.v19.i16.2529] [PMID: 23674855]
[91]
Gupta, S.; Singh, V.; Varadwaj, P.K.; Chakravartty, N.; Katta, A.V.S.K.M.; Lekkala, S.P.; Thomas, G.; Narasimhan, S.; Reddy, A.R.; Reddy Lachagari, V.B. Secondary metabolites from spice and herbs as potential multitarget inhibitors of SARS-CoV-2 proteins. J. Biomol. Struct. Dyn., 2022, 40(5), 2264-2283.
[http://dx.doi.org/10.1080/07391102.2020.1837679] [PMID: 33107812]
[92]
Khan, N.; Sharma, S.; Sultana, S. Nigella sativa (black cumin) ameliorates potassium bromate-induced early events of carcinogenesis: Diminution of oxidative stress. Hum. Exp. Toxicol., 2003, 22(4), 193-203.
[http://dx.doi.org/10.1191/0960327103ht349oa] [PMID: 12755470]
[93]
Oladele, J.O.; Oyeleke, O.M.; Oladele, O.T.; Oladiji, A.T. COVID-19 treatment: Investigation on the phytochemical constituents of Vernonia amygdalina as potential Coronavirus-2 inhibitors. Comput. Toxicol., 2021, 18, 100161.
[http://dx.doi.org/10.1016/j.comtox.2021.100161] [PMID: 33619460]
[94]
Rolta, R.; Salaria, D.; Sharma, P.P. Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua inhibit spike protein of SARS-CoV-2 binding to ACE2 receptor: In silico approach. Curr. Pharmacol. Rep., 2021, 7(4), 135-149.
[95]
Zhang, J.L.; Li, W.X.; Li, Y.; Wong, M.S.; Wang, Y.J.; Zhang, Y. Therapeutic options of TCM for organ injuries associated with COVID-19 and the underlying mechanism. Phytomedicine, 2021, 85, 153297.
[http://dx.doi.org/10.1016/j.phymed.2020.153297] [PMID: 32798019]
[96]
Subramani, S.K.; Gupta, Y.; Prasad, G.B.K.S. Gymnema sylvestre a- potential inhibitor of COVID-19 main protease by MD simulation study. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12333251.v1]
[97]
Das, S.K.; Mahanta, S.; Tanti, B.; Tag, H.; Hui, P.K. Identification of phytocompounds from Houttuynia cordata Thunb. as potential inhibitors for SARS-CoV-2 replication proteins through GC–MS/LC–MS characterization, molecular docking and molecular dynamics simulation. Mol. Divers., 2022, 26(1), 365-388.
[http://dx.doi.org/10.1007/s11030-021-10226-2] [PMID: 33961167]
[98]
Sonju, J.J.; Anwar, M.R.; Azad, M.A.K.; Sultana, U.H.; Niloy, K.K.; Das, S. Antiviral effects of Asian natural products targeting SARS, MERS, and COVID-19. Coronaviruses, 2021, 2(7), e250621190796.
[http://dx.doi.org/10.2174/2666796702666210127111918]
[99]
Jamiu, A.T.; Aruwa, C.E.; Abdulakeem, I.A. Ayokun-nun Ajao, A.; Sabiu, S. Phytotherapeutic evidence against coronaviruses and prospects for COVID-19. Pharmacogn. J., 2020, 12(6), 1252-1267.
[http://dx.doi.org/10.5530/pj.2020.12.174]
[100]
Adeleye, O.A.; Bamiro, O.A.; Bakre, L.G.; Odeleye, F.O.; Adebowale, M.N.; Okunye, O.L.; Sodeinde, M.A.; Adebona, A.C.; Menaa, F. Medicinal plants with potential inhibitory bioactive compounds against coronaviruses. Adv. Pharm. Bull., 2022, 12(1), 7-16.
[http://dx.doi.org/10.34172/apb.2022.003] [PMID: 35517886]
[101]
Mpiana, P.T.; Ngbolua, K.N.; Tshibangu, D.S.T.; Kilembe, J.T.; Gbolo, B.Z.; Mwanangombo, D.T.; Inkoto, C.L.; Lengbiye, E.M.; Mbadiko, C.M.; Matondo, A.; Bongo, G.N.; Tshilanda, D.D. Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study. Chem. Phys. Lett., 2020, 754(June), 137751.
[http://dx.doi.org/10.1016/j.cplett.2020.137751] [PMID: 33518775]
[102]
Shree, P.; Mishra, P.; Selvaraj, C.; Singh, S.K.; Chaube, R.; Garg, N.; Tripathi, Y.B. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants – Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) – a molecular docking study. J. Biomol. Struct. Dyn., 2022, 40(1), 190-203.
[http://dx.doi.org/10.1080/07391102.2020.1810778] [PMID: 32851919]
[103]
Saha, J.K.; Adnan, K.M.M.; Sarker, S.A.; Bunerjee, S. Analysis of growth trends in area, production and yield of tea in Bangladesh. J. Agric. Food Res., 2021, 4, 100136.
[http://dx.doi.org/10.1016/j.jafr.2021.100136]
[104]
World Mapper. Tea production. 2016. Available from: [https://worldmapper.org/maps/tea-production-2016/
[105]
Seran, T.H. In vitro propagation of ginger (Zingiber officinale Rosc.) through direct organogenesis: A review. Pak. J. Biol. Sci., 2013, 16(24), 1826-1835.
[http://dx.doi.org/10.3923/pjbs.2013.1826.1835] [PMID: 24516998]
[106]
Foolchand, A.; Ghazi, T.; Chuturgoon, A.A. Malnutrition and dietary habits alter the immune system which may consequently influence SARS-CoV-2 virulence: A review. Int. J. Mol. Sci., 2022, 23(5), 2654.
[107]
Rahman, M.M.; Islam, M.R.; Shohag, S.; Ahasan, M.T.; Sarkar, N.; Khan, H.; Hasan, A.M.; Cavalu, S.; Rauf, A. Microbiome in cancer: Role in carcinogenesis and impact in therapeutic strategies. Biomed. Pharmacother., 2022, 149, 112898.
[http://dx.doi.org/10.1016/j.biopha.2022.112898] [PMID: 35381448]
[108]
Rahman, M.M.; Bibi, S.; Rahaman, M.S.; Rahman, F.; Islam, F.; Khan, M.S.; Hasan, M.M.; Parvez, A.; Hossain, M.A.; Maeesa, S.K.; Islam, M.R.; Najda, A.; Al-malky, H.S.; Mohamed, H.R.H.; AlGwaiz, H.I.M.; Awaji, A.A.; Germoush, M.O.; Kensara, O.A.; Abdel-Daim, M.M.; Saeed, M.; Kamal, M.A. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology. Biomed. Pharmacother., 2022, 150, 113041.
[http://dx.doi.org/10.1016/j.biopha.2022.113041] [PMID: 35658211]
[109]
Rahman, M.M.; Behl, T.; Islam, M.R.; Alam, M.N.; Islam, M.M.; Albarrati, A.; Albratty, M.; Meraya, A.M.; Bungau, S.G. Emerging management approach for the adverse events of immunotherapy of cancer. Molecules, 2022, 27(12), 3798.
[http://dx.doi.org/10.3390/molecules27123798] [PMID: 35744922]
[110]
Rahman, M.; Islam, R.; Shohag, S. Multifaceted role of natural sources for COVID-19 pandemic as marine drugs. Environ Sci Pollut Res Environ. Sci. Pollut. Res. Int., 2022, 29(31), 46527-46550.
[111]
Rahman, M.M.; Islam, M.R.; Akash, S.; Harun-Or-Rashid, M.; Ray, T.K.; Rahaman, M.S.; Islam, M.; Anika, F.; Hosain, M.K.; Aovi, F.I.; Hemeg, H.A.; Rauf, A.; Wilairatana, P. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance. Biomed. Pharmacother., 2022, 153, 113305.
[http://dx.doi.org/10.1016/j.biopha.2022.113305] [PMID: 35717779]
[112]
Tamboli, F.A.; More, H.N.; Khairmode, S.S. Importance of medicinal plants and herbs as an immunity booster for pandemic COVID-19. Trop. J. Pharm. Life Sci., 2021, 8(1), 1-09. [TJPLS Journal
[113]
Jiang, Y.; Liao, Q.; Li, H.; Zou, Y. Ginger: Response to pathogen-related diseases. Physiol. Mol. Plant Pathol., 2018, 102, 88-94.
[http://dx.doi.org/10.1016/j.pmpp.2017.12.003]
[114]
Batiha, G.E.S.; Beshbishy, A.M.; Wasef, L.G. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutr., 2020, 12(3), 872.
[115]
Alam, F.; Khan, G.N.; Asad, M.H.H.B. Psoralea corylifolia L: Ethnobotanical, biological, and chemical aspects: A review. Phytother. Res., 2018, 32(4), 597-615.
[http://dx.doi.org/10.1002/ptr.6006] [PMID: 29243333]
[116]
Mohammad Nazrul Islam Bhuiyan. Constituents of the essential oil from leaves and buds of clove (Syzigium caryophyllatum (L.) Alston). Afr. J. Pharm. Pharmacol., 2012, 6(16), 451-454.
[117]
Kaur, D.; Chandrul, K.K. Syzygium aromaticum L. (Clove): A vital herbal drug used in periodontal disease. Indian J. Pharm. Biol. Res., 2017, 5(2), 45-51.
[http://dx.doi.org/10.30750/ijpbr.5.2.9]
[118]
Rehman, M.T.; AlAjmi, M.F.; Hussain, A. Natural compounds as inhibitors of SARS-CoV-2 main protease (3CLpro): A molecular docking and simulation approach to combat covid-19. Curr. Pharm. Des., 2021, 27(33), 3577-3589.
[http://dx.doi.org/10.2174/1381612826999201116195851] [PMID: 33200697]
[119]
Dash, C.K.; Alam, S.S.; Sultana, S.S. Karyomorphology of Justicia adhatoda L. by differential staining. Dhaka Univ. J. Biol. Sci., 2018, 27(2), 175-181.
[http://dx.doi.org/10.3329/dujbs.v27i2.46466]
[120]
Rahman, M. Towards inventory and assessment of plant resources of Bangladesh: Challenges and prospects. J. Biodivers. Conserv. Bioresour. Manag. Bangladesh Journals Online, 2020, 6(1), 47-58. [JOL
[121]
Cohen, M. Tulsi - Ocimum sanctum: A herb for all reasons. J. Ayurveda Integr. Med., 2014, 5(4), 251-259.
[http://dx.doi.org/10.4103/0975-9476.146554] [PMID: 25624701]
[122]
Rahman, K.M.; Sattar, M.A.; Rahman, G.M.M. Effect of fertilizer and manures on growth and yield of tulsi and pudina medicinal plant. J. Environ. Sci. Nat. Resour. Bangladesh Journals Online, 2014, 7(2), 13-16. [JOL]
[123]
Reyad-ul-Ferdous, M.; Hossain, S.S.; Hasan, M.N. Potential biological spices available in Bangladesh: A comprehensive review. Pharm. Biosci. J., UK Journal of Pharmaceutical and Biosciences, 2014, 2(1), 12-15.
[http://dx.doi.org/10.20510/ukjpb/2/i1/91128]
[124]
Ghoke, S.S.; Sood, R.; Kumar, N.; Pateriya, A.K.; Bhatia, S.; Mishra, A.; Dixit, R.; Singh, V.K.; Desai, D.N.; Kulkarni, D.D.; Dimri, U.; Singh, V.P. Evaluation of antiviral activity of Ocimum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model. BMC Complement. Altern. Med., 2018, 18(1), 174.
[http://dx.doi.org/10.1186/s12906-018-2238-1] [PMID: 29866088]
[125]
Gundala, S.R.; Aneja, R. Piper betel leaf: A reservoir of potential xenohormetic nutraceuticals with cancer-fighting properties. Cancer Prev. Res. (Phila.), 2014, 7(5), 477-486.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0355] [PMID: 24449055]
[126]
Bhowmik, D.; Chiranjib, J.Y.; Tripathi, K.K. Herbal remedies of Azadirachta indica and its medicinal application. J. Chem. Pharm. Res., 2011, 3(4), 62-72.
[127]
Alzohairy, M.A. Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evid. Based Complement. Altern. Med. Evid. Based Complement. Alternat. Med., 2016, 2016, 7382506.
[128]
Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr., 2010, 64(S3)(Suppl. 3), S112-S120.
[http://dx.doi.org/10.1038/ejcn.2010.221] [PMID: 21045839]
[129]
Baildya, N.; Khan, A.A.; Ghosh, N.N. Screening of potential drug from Azadirachta indica (Neem) extracts for SARS-CoV-2: An insight from molecular docking and MD-simulation studies. J. Mol. Struct. Elsevier B.V, 2021, 1227, 129390.
[130]
Begum, M.E.A.; Miah, M.A.M.; Rashid, M.A.; Islam, M.T.; Hossain, M.I. Economic analysis of turmeric cultivation: Evidence from Khagrachari district. Bangladesh J. Agric. Res., 2019, 44(1), 43-58.
[http://dx.doi.org/10.3329/bjar.v44i1.40902]
[131]
Ventegodt, S. World health organization model list of essential medicines. Ment. Holist. Heal Some Int. Perspect., 2015, 21, 119-134.
[132]
Boelaert, J.R.; Piette, J.; Sperber, K. The potential place of chloroquine in the treatment of HIV-1-infected patients. J. Clin. Virol., 2001, 20(3), 137-140.
[http://dx.doi.org/10.1016/S1386-6532(00)00140-2] [PMID: 11166662]
[133]
Keyaerts, E.; Li, S.; Vijgen, L.; Rysman, E.; Verbeeck, J.; Van Ranst, M.; Maes, P. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob. Agents Chemother., 2009, 53(8), 3416-3421.
[http://dx.doi.org/10.1128/AAC.01509-08] [PMID: 19506054]
[134]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[135]
Halawa, S.; Pullamsetti, S.S.; Bangham, C.R.M. Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: A global perspective. Nat. Rev. Cardiol., 2021, 19(5), 314-331.
[136]
Hu, T.Y.; Frieman, M.; Wolfram, J. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat. Nanotechnol., 2020, 15(4), 247-249.
[http://dx.doi.org/10.1038/s41565-020-0674-9] [PMID: 32203437]
[137]
Martin, W.E.; Gandara, J.A. Alkaloid content of Ecuadoran and other American cinchona barks. Bot. Gaz., 1945, 107(2), 184-199.
[http://dx.doi.org/10.1086/335340]
[138]
Roy, S.; Das, S.; Handique, G. Ecology and management of the black inch worm, Hyposidra talaca Walker (Geometridae: Lepidoptera) infesting Camellia sinensis (Theaceae): A review. J. Integr. Agric. CAAS, 2017, 16(10), 2115-2127.
[139]
Uddin, M.J.; Zidorn, C. Traditional herbal medicines against CNS disorders from Bangladesh. Nat. Prod. Bioprospect., 2020, 10(6), 377-410.
[http://dx.doi.org/10.1007/s13659-020-00269-7] [PMID: 33057963]
[140]
Palash, M.S.; Amin, M.R.; Ali, M.Y.; Sabur, S.A. Medicinal plant business in Bangladesh: Exploring the performance of supply chain actors. J. Agric. Food Res., 2021, 6, 100230.
[http://dx.doi.org/10.1016/j.jafr.2021.100230]
[141]
Yu, M.S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.S.; Jeong, Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[142]
Forouzanfar, F.; Bazzaz, B.S.; Hosseinzadeh, H. Black cumin (Nigella sativa) and its constituent (thymoquinone): A review on antimicrobial effects. Iran. J. Basic Med. Sci., 2014, 17(12), 929-938.
[PMID: 25859296]
[143]
Rahman, M.M.; Islam, F. -Or-Rashid, M.H.; Mamun, A.A.; Rahaman, M.S.; Islam, M.M.; Meem, A.F.K.; Sutradhar, P.R.; Mitra, S.; Mimi, A.A.; Emran, T.B.; Fatimawali; Idroes, R.; Tallei, T.E.; Ahmed, M.; Cavalu, S. The gut microbiota (microbiome) in cardiovascular disease and its therapeutic regulation. Front. Cell. Infect. Microbiol., 2022, 12, 903570.
[http://dx.doi.org/10.3389/fcimb.2022.903570] [PMID: 35795187]
[144]
Rahman, M.M.; Islam, F.; Afsana Mim, S.; Khan, M.S.; Islam, M.R.; Haque, M.A.; Mitra, S.; Emran, T.B.; Rauf, A. Multifunctional therapeutic approach of nanomedicines against inflammation in cancer and aging. J. Nanomater., 2022, 2022, 1-19.
[http://dx.doi.org/10.1155/2022/4217529]
[145]
Rahman, M.M.; Dhar, P.S. Sumaia; Anika, F.; Ahmed, L.; Islam, M.R.; Sultana, N.A.; Cavalu, S.; Pop, O.; Rauf, A. Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. Biomed. Pharmacother., 2022, 152, 113217.
[http://dx.doi.org/10.1016/j.biopha.2022.113217] [PMID: 35679719]
[146]
Ahmad, A.; Rehman, M.U.; Ahmad, P.; Alkharfy, K.M. COVID‐19 and thymoquinone: Connecting the dots. Phytother. Res., 2020, 34(11), 2786-2789.
[http://dx.doi.org/10.1002/ptr.6793] [PMID: 32588453]
[147]
Waliullah, M.; Mokter Hossain, M.; Habibur Rahman, M. Influence of sowing dates and sowing methods on growth and seed yield of black cumin (Nigella sativa L.). J. Trop. Crop Sci., 2021, 8(2), 124-133.
[http://dx.doi.org/10.29244/jtcs.8.02.124-133]
[148]
Salem, M.L.; Hossain, M.S. Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. Int. J. Immunopharmacol., 2000, 22(9), 729-740.
[http://dx.doi.org/10.1016/S0192-0561(00)00036-9] [PMID: 10884593]
[149]
Akter, A.; Rahman, S.; Morshed, M. Evaluation of antihyperglycemic and antinociceptive properties of leaves of. Adv. Nat. Appl. Sci., 2013, 7(2), 143-148.
[150]
Wang, S.C.; Lu, M.C.; Chen, H.L.; Tseng, H.I.; Ke, Y.Y.; Wu, Y.C.; Yang, P.Y. Cytotoxicity of calotropin is through caspase activation and downregulation of anti-apoptotic proteins in K562 cells. Cell Biol. Int., 2009, 33(12), 1230-1236.
[http://dx.doi.org/10.1016/j.cellbi.2009.08.013] [PMID: 19732845]
[151]
You, H.; Lei, M.; Song, W.; Chen, H.; Meng, Y.; Guo, D.; Liu, X.; Hu, L. Cytotoxic cardenolides from the root bark of Calotropis gigantea. Steroids, 2013, 78(10), 1029-1034.
[http://dx.doi.org/10.1016/j.steroids.2013.06.002] [PMID: 23851141]
[152]
Gupta, A.; Chaphalkar, S.R.; Pratishthan, V. Anti-diabetic activity of calotropis gigantea in human whole blood. , 2016. Available from: https://www.ikprress.org/index.php/JODAGH/article/view/1798
[153]
Asl, M.N.; Hosseinzadeh, H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother. Res., 2008, 22(6), 709-724.
[http://dx.doi.org/10.1002/ptr.2362] [PMID: 18446848]
[154]
Liu, J.; Yang, L.; Luan, M.; Wang, Y.; Zhang, C.; Zhang, B.; Shi, J.; Zhao, F.G.; Lan, W.; Luan, S. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. USA, 2015, 112(47), E6571-E6578.
[http://dx.doi.org/10.1073/pnas.1514598112] [PMID: 26554016]
[155]
Hoever, G.; Baltina, L.; Michaelis, M.; Kondratenko, R.; Baltina, L.; Tolstikov, G.A.; Doerr, H.W.; Cinatl, J. Jr Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J. Med. Chem., 2005, 48(4), 1256-1259.
[http://dx.doi.org/10.1021/jm0493008] [PMID: 15715493]
[156]
Hwang, S.S.; Lim, J.; Yu, Z.; Kong, P.; Sefik, E.; Xu, H.; Harman, C.C.D.; Kim, L.K.; Lee, G.R.; Li, H.B.; Flavell, R.A. mRNA destabilization by BTG1 and BTG2 maintains T cell quiescence. Science, 2020, 367(6483), 1255-1260.
[http://dx.doi.org/10.1126/science.aax0194] [PMID: 32165587]
[157]
Zhang, Y.; Xiao, M.; Zhang, S.; Xia, P.; Cao, W.; Jiang, W.; Chen, H.; Ding, X.; Zhao, H.; Zhang, H.; Wang, C.; Zhao, J.; Sun, X.; Tian, R.; Wu, W.; Wu, D.; Ma, J.; Chen, Y.; Zhang, D.; Xie, J.; Yan, X.; Zhou, X.; Liu, Z.; Wang, J.; Du, B.; Qin, Y.; Gao, P.; Qin, X.; Xu, Y.; Zhang, W.; Li, T.; Zhang, F.; Zhao, Y.; Li, Y.; Zhang, S. Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N. Engl. J. Med., 2020, 382(17), e38.
[http://dx.doi.org/10.1056/NEJMc2007575] [PMID: 32268022]
[158]
Kabir, Y.; Akasaka-Hashimoto, Y.; Kubota, K.; Komai, M. Volatile compounds of black cumin (Nigella sativa L.) seeds cultivated in Bangladesh and India. Heliyon, 2020, 6(10), e05343.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05343] [PMID: 33163654]
[159]
Ait Mbarek, L.; Ait Mouse, H.; Elabbadi, N.; Bensalah, M.; Gamouh, A.; Aboufatima, R.; Benharref, A.; Chait, A.; Kamal, M.; Dalal, A.; Zyad, A. Anti-tumor properties of blackseed (Nigella sativa L.) extracts. Braz. J. Med. Biol. Res., 2007, 40(6), 839-847.
[http://dx.doi.org/10.1590/S0100-879X2006005000108] [PMID: 17581684]
[160]
Bakathir, H.A.; Abbas, N.A. Detection of the antibacterial effect of Nigella sativa ground seeds with water. Afr. J. Tradit. Complement. Altern. Med., 2011, 8(2), 159-164.
[http://dx.doi.org/10.4314/ajtcam.v8i2.63203] [PMID: 22238497]
[161]
Ulasli, M.; Gurses, S.A.; Bayraktar, R.; Yumrutas, O.; Oztuzcu, S.; Igci, M.; Igci, Y.Z.; Cakmak, E.A.; Arslan, A. The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Mol. Biol. Rep., 2014, 41(3), 1703-1711.
[http://dx.doi.org/10.1007/s11033-014-3019-7] [PMID: 24413991]
[162]
Offor, C.E. Comparative Chemical Analyses of Vernonia amygdalina and Azadirachta indica Leaves. IOSR J. Pharm. Biol. Sci., 2014, 9(5), 73-77.
[http://dx.doi.org/10.9790/3008-09527377]
[163]
Ijeh, I.I.; Ejike, C.E.C.C. Current perspectives on the medicinal potentials of Vernonia amygdalina Del. J. Med. Plants Res., 2011, 5(7), 1051-1061.
[164]
Rouf, R.; Ghosh, P.; Uzzaman, M.R. Hepatoprotective plants from Bangladesh: A biophytochemical review and future prospect. Evid. Based Complement. Altern. Med. Hindawi Limited, 2021, 2021, 1633231.
[165]
Akter, S.; Das, P.R.; Islam, M.T. A selection of medicinal plants used as blood purifiers by folk medicinal practitioners of Bangladesh. Am. J. Sustain Agric., 2012, 6(3), 188-194.
[166]
Haq, F.U.; Roman, M.; Ahmad, K.; Rahman, S.U.; Shah, S.M.A.; Suleman, N.; Ullah, S.; Ahmad, I.; Ullah, W. Artemisia annua: Trials are needed for COVID-19. Phytother. Res., 2020, 34(10), 2423-2424.
[http://dx.doi.org/10.1002/ptr.6733] [PMID: 32424845]
[167]
Prajapati, R.; Kalariya, M.; Solanki, N. Prophylaxis and treatment aspect of COVID-19 with the use of Indian traditional plant-based medicine: A hypothetical review. J. Indian Syst. Med. Medknow Publications and Media Pvt. Ltd., 2020, 8(2), 71-83.
[168]
Mahbubur Rahman, A.H.M. Taxonomic studies on the family fabaceae (Weeds) at Rajshahi University Campus. Plant, 2015, 3(3), 20-25.
[http://dx.doi.org/10.11648/j.plant.20150303.11]
[169]
Lurie, N.; Saville, M.; Hatchett, R. Developing COVID-19 vaccines at pandemic speed. N. Engl. J. Med. Soc., 2020, 382(21), 1969-1973.
[170]
Law, S.; Lo, C.; Han, J.; Leung, A.W.; Xu, C. Traditional Chinese herb, Astragalus: Possible for treatment and prevention of COVID-19? Herba Pol., 2020, 66(4), 79-84.
[http://dx.doi.org/10.2478/hepo-2020-0023]
[171]
Hossain, M.U.; Khan, M.A.; Rakib-Uz-Zaman, S.M. Treating diabetes mellitus: Pharmacophore based designing of potential drugs from gymnema sylvestre against insulin receptor protein. Biomed Res. Int., 2016, 2016, 3187647.
[172]
Ling, L.; Lu, Y.; Zhang, Y. Flavonoids from Houttuynia cordata attenuate H1N1-induced acute lung injury in mice via inhibition of influenza virus and Toll-like receptor signalling. Phytomedicine, 2020, 67, 153150.
[173]
Laboni, F.R.; Mahmud, S.; Karim, S. Biological investigations of different leaf extracts of Litsea liyuyingi (Family-Lauraceae). IOSR J. Pharm. Biol. Sci., 2017, 12(02), 8-17.
[174]
Wei, G.; Chen, H.; Nie, F. 1, 3, 6-Trihydroxy-7-methyl-9, 10-anthracenedione isolated from genus Lindera with anti-cancer activity. Anticancer. Agents Med. Chem., 2015, 17(11), 1604-1607.
[175]
Xiao, M.; Cao, N.; Fan, J.J.; Shen, Y.; Xu, Q. Studies on flavonoids from the leaves of Lindera aggregata. Zhong Yao Cai, 2011, 34(1), 62-64.
[PMID: 21818968]
[176]
Jung, S.H.; Han, J.H.; Park, H.S. Inhibition of collagen-induced platelet aggregation by the secobutanolide secolincomolide a from Lindera obtusiloba Blume. Front. Pharmacol. Front. Pharmacol., 2017, 8, 560.
[http://dx.doi.org/10.3389/fphar.2017.00560]
[177]
Li, S.; Chen, C.; Zhang, H.; Guo, H.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.; Yu, J.; Xiao, P.; Li, R.S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[178]
Siddiqui, A.J.; Danciu, C.; Ashraf, S.A.; Moin, A.; Singh, R.; Alreshidi, M.; Patel, M.; Jahan, S.; Kumar, S.; Alkhinjar, M.I.M.; Badraoui, R.; Snoussi, M.; Adnan, M. Plants-derived biomolecules as potent antiviral phytomedicines: New insights on ethnobotanical evidences against coronaviruses. Plants, 2020, 9(9), 1244.
[http://dx.doi.org/10.3390/plants9091244] [PMID: 32967179]
[179]
Aglin, A.A. Medicinal effects of Mollugo cerviana - a brief review. Curr. Asp. Pharm. Res. Dev., 2022, 4(9), 45-51.
[180]
Sulakshana, M.; Raju, A.J.S. Pollination ecology of three ecologically valuable carpetweed herbs, Mollugo cerviana, M. nudicaulis and M. pentaphylla (Molluginaceae). J. Threat. Taxa, 2019, 11(3), 13334-13349.
[http://dx.doi.org/10.11609/jott.3999.11.3.13334-13349]
[181]
Malabadi, R.B. Role of herbal medicine for controlling coronavirus (SARS-CoV-2) disease (COVID-19). Int. J. Res. Sci. Innov., 2021, 8(2), 135-165.
[182]
Uddin, K.; Rahman, A.H.M.M.; Islam, A.K.M.R. Taxonomy and traditional medicine practices of polygonaceae (Smartweed) family at Rajshahi, Bangladesh. Int. J. Adv. Res. (Indore), 2014, 2(11), 459-469.
[183]
Bounda, G.A.; Feng, Y. Review of clinical studies of Polygonum multiflorum Thunb. and its isolated bioactive compounds. Pharmacognosy Res., 2015, 7(3), 225-236.
[184]
Akhmadjon, S.; Hong, S.H.; Lee, E.H.; Park, H-J.; Cho, Y-J. Biological activities of extracts from Tongue fern (Pyrrosia lingua). J. Appl. Biol. Chem., 2020, 63(3), 181-188.
[http://dx.doi.org/10.3839/jabc.2020.025]
[185]
Zhang, L.; Lu, N.T.; Zhou, X.M.; Chen, D.K.; Knapp, R.; Zhou, L.; Guo, L.; Luong, T.T.; Sun, H.; Gao, X.F.; Zhang, L.B. A plastid phylogeny of the Old World fern genus Leptochilus (Polypodiaceae): Implications for cryptic speciation and progressive colonization from lower to higher latitudes. Mol. Phylogenet. Evol., 2019, 134, 311-322.
[http://dx.doi.org/10.1016/j.ympev.2019.01.013] [PMID: 30685418]
[186]
Haque, A.K.M.K.; Khan, S.A.; Uddin, S.N.; Rahim, M.A. Taxonomic checklist of the pteridophytes of Rajkandi Reserve Forest, Moulvibazar, Bangladesh. Jahangirnagar Univ. In: J. Biol. Sci; , 2017; 5, pp. (2)27-40.
[http://dx.doi.org/10.3329/jujbs.v5i2.32528]
[187]
Chojnacka, K.; Witek-Krowiak, A.; Skrzypczak, D.; Mikula, K. Młynarz, P. Phytochemicals containing biologically active polyphenols as an effective agent against COVID-19-inducing coronavirus. J. Funct. Foods, 2020, 73(July), 104146.
[http://dx.doi.org/10.1016/j.jff.2020.104146] [PMID: 32834835]
[188]
Jalali, A.; Dabaghian, F.; Akbrialiabad, H.; Foroughinia, F.; Zarshenas, M.M. A pharmacology‐based comprehensive review on medicinal plants and phytoactive constituents possibly effective in the management of COVID‐19. Phytother. Res., 2021, 35(4), 1925-1938.
[http://dx.doi.org/10.1002/ptr.6936] [PMID: 33159391]
[189]
Gui, Y.; Tsao, R.; Li, L.; Liu, C.M.; Wang, J.; Zong, X. Preparative separation of chromones in plant extract of Saposhnikovia divaricata by high-performance counter-current chromatography. J. Sep. Sci., 2011, 34(5), 520-526.
[http://dx.doi.org/10.1002/jssc.201000721] [PMID: 21280212]
[190]
Al-Mamun, M.R.; Amrin, N.; Begum, J. Thrombolytic activity of some spices and plants available in Bangladesh. Thaiphesatchasan, 2012, 36(2), 72-77.
[191]
Ayatollahi, S.A.; Sharifi-Rad, J.; Tsouh Fokou, P.V.; Mahady, G.B.; Ansar Rasul Suleria, H.; Krishna Kapuganti, S.; Gadhave, K.; Giri, R.; Garg, N.; Sharma, R.; Ribeiro, D.; Rodrigues, C.F.; Reiner, Ž.; Taheri, Y.; Cruz-Martins, N. Naturally occurring bioactives as antivirals: Emphasis on coronavirus infection. Front. Pharmacol., 2021, 12(June), 575877.
[http://dx.doi.org/10.3389/fphar.2021.575877] [PMID: 34267652]
[192]
Rahman, M.M.; Khan, M.A. Anti-cancer potential of South Asian plants. Nat. Prod. Bioprospect., 2013, 3(3), 74-88.
[http://dx.doi.org/10.1007/s13659-013-0027-6]
[193]
Kaur, J.; Kaushal, S. Chemical analysis, antimicrobial and antioxidant activities of Harsingar (Nyctanthes arbortristis) essential oil. J. Essent. Oil-Bear. Plants, 2020, 23(2), 1-16.
[http://dx.doi.org/10.1080/0972060X.2020.1759458]
[194]
Giguet-Valard, A.G.; Raguette, K.; Morin, S.; Bellance, R.; Ravin, J.S. Gossypetin derivatives are also putative inhibitors of SARS-COV-2: Results of a computational study. J. Biomed. Res. Environ. Sci., 2020, 1(6), 201-212.
[http://dx.doi.org/10.37871/jbres1144]
[195]
Saiyem, M.A.; Sabur, S.A.; Hossain, M.I.; Khan, M.A.; Begum, M.F. Profitability analysis of Aloe vera (L.) production in selected areas of Bangladesh. Res. Agric. Livest. Fish., 2020, 7(1), 75-81.
[http://dx.doi.org/10.3329/ralf.v7i1.46833]
[196]
Mpiana, P.T.; Ngbolua, K.T.N.; Tshibangu, D.S.T.; Kilembe, J.T.; Gbolo, B.Z.; Mwanangombo, D.T.; Inkoto, C.L.; Lengbiye, E.M.; Mbadiko, C.M.; Matondo, A.; Bongo, G.N.; Tshilanda, D.D. Aloe vera (L.) Burm. F. as a potential anti-COVID-19 plant: A mini-review of its antiviral activity. Eur. J. Med. Plants, 2020, 31(8), 86-93.
[http://dx.doi.org/10.9734/ejmp/2020/v31i830261]
[197]
Surjushe, A.; Vasani, R.; Saple, D. Aloe vera: A short review. Indian J. Dermatol., 2008, 53(4), 163-166.
[http://dx.doi.org/10.4103/0019-5154.44785]
[198]
Spandana, U.; Ali, S.L.; Nirmala, T. A review on Tinospora cordifolia. Int. J. Curr. Pharm. Rev. Res., 2013, 4(2), 61-68.
[199]
Ahmad, N.; Nawab, M. Qamar Uddin. Medicinal properties of Gilo (Tinospora cordifolia) - a review. World J. Pharm. Pharm. Sci., 2019, 8(8), 430-440.
[200]
Birra, D.; Benucci, M.; Landolfi, L.; Merchionda, A.; Loi, G.; Amato, P.; Licata, G.; Quartuccio, L.; Triggiani, M.; Moscato, P. COVID 19: A clue from innate immunity. Immunol. Res., 2020, 68(3), 161-168.
[http://dx.doi.org/10.1007/s12026-020-09137-5] [PMID: 32524333]
[201]
Hilgenfeld, R. From SARS to MERS: Crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J., 2014, 281(18), 4085-4096.
[http://dx.doi.org/10.1111/febs.12936] [PMID: 25039866]
[202]
Kalediene, L.; Baz, M.; Liubaviciute, A.; Biziuleviciene, G.; Grabauskyte, I.; Bieliauskiene, R.; Jovaisas, P.; Jurjonas, N. Antiviral effect of honey extract Camelyn against SARS-CoV-2. J. Adv. Biotechnol. Exp. Ther., 2021, 4(3), 290-297.
[http://dx.doi.org/10.5455/jabet.2021.d129]
[203]
Abedi, F.; Ghasemi, S.; Farkhondeh, T.; Azimi-Nezhad, M.; Shakibaei, M.; Samarghandian, S. Possible potential effects of honey and its main components against COVID-19 infection. Dose Response, 2021, 19(1), 1559325820982423.
[http://dx.doi.org/10.1177/1559325820982423] [PMID: 33867892]
[204]
Hashem, H.E. In silico approach of some selected honey constituents as SARS-CoV-2 main protease (COVID-19). Inhibit. Eurasian J. Med. Oncol., 2020, 4(3), 196-200.
[http://dx.doi.org/10.14744/ejmo.2020.36102]
[205]
Hossain, K.S.; Hossain, M.G.; Moni, A.; Rahman, M.M.; Rahman, U.H.; Alam, M.; Kundu, S.; Rahman, M.M.; Hannan, M.A.; Uddin, M.J. Prospects of honey in fighting against COVID-19: Pharmacological insights and therapeutic promises. Heliyon, 2020, 6(12), e05798.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05798] [PMID: 33363261]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy