Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Mini-Review Article

Recent Modifications of Anti-dementia Agents Focusing on Tacrine and/or Donepezil Analogs

Author(s): Lamia W. Mohamed, Khaled O. Mohamed, Hadeer S. Sayed and Zeinab Mahmoud*

Volume 19, Issue 4, 2023

Published on: 04 October, 2022

Page: [311 - 324] Pages: 14

DOI: 10.2174/1573406418666220827155615

Price: $65

Abstract

Alzheimer’s Disease (AD) is a multifactorial incurable neurodegenerative disorder. It is characterized by a decline of cholinergic function in parallel with β-amyloid fibril deposition. Such an imbalance causes severe loss in memory and cognition, leading to behavioral disturbances, depression, and ultimately death. During the last decades, only a few approved drugs were launched onto the market with indications for treating initial and moderate stages of AD. To date, cholinesterase inhibitors (ChEI) are the mainstay line of treatment to ameliorate AD symptoms. Tacrine and Donepezil are the most commonly prescribed anti-dementia drugs, given their potent inhibitory effects. Therefore, many trials have focused on both drugs' structures to synthesize new anti-dementia agents. This paper discusses recent trends of new AD-treating anti-dementia agents focusing on Tacrine and Donepezil analogs and multifunctional hybrid ligands.

Keywords: Alzheimer’s disease, acetylcholinesterase inhibitors, β-amyloid, tacrine, donepezil, hybrids, heterocyclic compounds, 1-benzothiophene.

Next »
Graphical Abstract

[1]
Fan, D.Y.; Wang, Y.J. Early intervention in Alzheimer’s disease: How early is early enough? Neurosci. Bull., 2020, 36(2), 195-197.
[http://dx.doi.org/10.1007/s12264-019-00429-x] [PMID: 31494835]
[2]
Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E. Alzheimer’s disease. The Lancet, 2021, 397, 1577-1590.
[3]
Alzheimer's Association. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement., 2019, 15(3), 321-387.
[http://dx.doi.org/10.1016/j.jalz.2019.01.010]
[4]
Ibrahim, M.M.; Gabr, M.T. Multitarget therapeutic strategies for Alzheimer’s disease. Neural Regen. Res., 2019, 14(3), 437-440.
[5]
Atri, A. Current and future treatments in Alzheimer’s disease. Semin. Neurol., 2019, 39(2), 227-240.
[http://dx.doi.org/10.1055/s-0039-1678581] [PMID: 30925615]
[6]
Gong, CX.; Liu, F.; Iqbal, K. Multifactorial hypothesis and multi-targets for Alzheimer’s disease. J. Alzheimers Dis., 2018, 64(Suppl. 1), S107-S117.
[http://dx.doi.org/10.3233/JAD-179921]
[7]
Scarpini, E.; Scheltens, P.; Feldman, H. Treatment of Alzheimer’s disease: Current status and new perspectives. Lancet Neurol., 2003, 2(9), 539-547.
[8]
Jbilo, O.; L’hermite, Y.; Talesa, V.; Toutant, J-P.; Chatonnet, A. Acetylcholinesterase and butyrylcholinesterase expression in adult rabbit tissues and during development. Eur. J. Biochem., 1994, 225(1), 115-124.
[http://dx.doi.org/10.1111/j.1432-1033.1994.00115.x]
[9]
Zhao, T.; Ding, K.M.; Zhang, L.; Cheng, X.M.; Wang, C.H.; Wang, Z.T. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of β-carboline and quinoline alkaloids derivatives from the plants of genus peganum. J. Chem., 2013, 2013, 717232.
[10]
Chen, X.; Fang, L.; Liu, J.; Zhan, C.G. Reaction pathway and free energy profiles for butyrylcholinesterase-catalyzed hydrolysis of acetylthiocholine. Biochemistry, 2012, 51(6), 1297-1305.
[http://dx.doi.org/10.1021/bi201786s] [PMID: 22304234]
[11]
Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact., 2010, 187(1-3), 10-22.
[http://dx.doi.org/10.1016/j.cbi.2010.01.042] [PMID: 20138030]
[12]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24179466
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[13]
Hebert, L.E.; Scherr, P.A.; Bienias, J.L.; Bennett, D.A.; Evans, D.A. Alzheimer disease in the US population: Prevalence estimates using the 2000 census. Arch. Neurol., 2003, 60(8), 1119-1122.
[http://dx.doi.org/10.1001/archneur.60.8.1119] [PMID: 12925369]
[14]
Doody, R.S.; Stevens, J.C.; Beck, C.; Dubinsky, R.M.; Kaye, J.A.; Gwyther, L.; Mohs, R.C.; Thal, L.J.; Whitehouse, P.J.; DeKosky, S.T.; Cummings, J.L. Practice parameter: Management of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 2001, 56(9), 1154-1166.
[http://dx.doi.org/10.1212/WNL.56.9.1154] [PMID: 11342679]
[15]
Francis, P.T.; Nordberg, A.; Arnold, S.E. A preclinical view of cholinesterase inhibitors in neuroprotection: Do they provide more than symptomatic benefits in Alzheimer’s disease? Trends Pharmacol. Sci., 2005, 26(2), 104-111.
[http://dx.doi.org/10.1016/j.tips.2004.12.010] [PMID: 15681028]
[16]
Luo, Z.; Sheng, J.; Sun, Y.; Lu, C.; Yan, J.; Liu, A.; Luo, H.; Huang, L.; Li, X. Synthesis and evaluation of multi-target-directed ligands against Alzheimer’s disease based on the fusion of donepezil and ebselen. J. Med. Chem., 2013, 56(22), 9089-9099.
[http://dx.doi.org/10.1021/jm401047q] [PMID: 24160297]
[17]
Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[18]
Dekosky, S.T.; Scheff, S.W. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann. Neurol., 1990, 27(5), 457-464.
[19]
Terry, R.D.; Masliah, E.; Salmon, D.P.; Butters, N.; Deteresa, R.; Hill, R. Physical basis of cognitive alterations in Alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Ann. Neurol., 1991, 30(4), 572-580.
[20]
Davies, C.A.; Mann, D.M.A.; Sumpter, P.Q.; Yates, P.O. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J. Neurol. Sci., 1987, 78(2), 151-164.
[http://dx.doi.org/10.1016/0022-510X(87)90057-8] [PMID: 3572454]
[21]
Selkoe, D.J. The genetics and molecular pathology of Alzheimer’s disease: Roles of amyloid and the presenilins. Neurol. Clin., 2000, 18(4), 903-921.
[http://dx.doi.org/10.1016/S0733-8619(05)70232-2] [PMID: 11072267]
[22]
Kayed, R.; Head, E.; Thompson, J.; McIntire, T.; Milton, S.C.; Cotman, C. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 2003, 300, 486-489.
[http://dx.doi.org/10.1126/science.1079469]
[23]
Chen, G.; Chen, K.S.; Knox, J.; Inglis, J.; Bernard, A.; Martin, S.J.; Justice, A.; McConlogue, L.; Games, D.; Freedman, S.B.; Morris, R.G.M. A learning deficit related to age and β-amyloid plaques in a mouse model of Alzheimer’s disease. Nature, 2000, 408(6815), 975-979.
[http://dx.doi.org/10.1038/35050103] [PMID: 11140684]
[24]
Bandyopadhyay, S.; Goldstein, L.; Lahiri, D.; Rogers, J. Role of the APP non-amyloidogenic signaling pathway and targeting alpha-secretase as an alternative drug target for treatment of Alzheimer’s disease. Curr. Med. Chem., 2007, 14(27), 2848-2864.
[http://dx.doi.org/10.2174/092986707782360060] [PMID: 18045131]
[25]
Takahashi, R.H.; Nagao, T.; Gouras, G.K. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease. Pathol. Int., 2017, 67, 185-193.
[26]
Zheng, W.; Tsai, M.Y.; Wolynes, P.G. Comparing the aggregation free energy landscapes of amyloid beta(1-42) and amyloid Beta(1-40). J. Am. Chem. Soc., 2017, 139(46), 16666-16676.
[http://dx.doi.org/10.1021/jacs.7b08089] [PMID: 29057654]
[27]
Harkany, T. Ábrahám, I.; Timmerman, W.; Laskay, G.; Tóth, B.; Sasvári, M.; Kónya, C.; Sebens, J.B.; Korf, J.; Nyakas, C.; Zarándi, M.; Soós, K.; Penke, B.; Luiten, P.G.M. β-Amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur. J. Neurosci., 2000, 12(8), 2735-2745.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00164.x] [PMID: 10971616]
[28]
Rogers, J.; Webster, S. Inflammation and Alzheimer’s disease pathogenesis. Neurobiol. Aging, 1996, 17(5), 681-686.
[29]
Savelieff, M.G.; Lee, S.; Liu, Y.; Lim, M.H. Untangling amyloid-β tau, and metals in Alzheimer’s disease. ACS Chem. Biol., 2013, 8, 856-865.
[30]
Butler, M.; Shelanski, M.L. Microheterogeneity of micro tubule-associated τ proteins is due to differences in phosphorylation. J. Neurochem., 1986, 47(5), 1517-1522.
[31]
Kuret, J.; Congdon, E.E.; Li, G.; Yin, H.; Yu, X.; Zhong, Q. Evaluating triggers and enhancers of tau fibrillization. Microsc. Res. Tech., 2005, 67(3-4), 141-155.
[http://dx.doi.org/10.1002/jemt.20187] [PMID: 16103995]
[32]
Köpke, E.; Tung, Y.C.; Shaikh, S.; Alonso, A.C.; Iqbal, K.; Grundke-Iqbal, I. Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J. Biol. Chem., 1993, 268(32), 24374-24384.
[http://dx.doi.org/10.1016/S0021-9258(20)80536-5] [PMID: 8226987]
[33]
Roy, S.; Zhang, B.; Lee, V.M.Y.; Trojanowski, J.Q. Axonal transport defects: A common theme in neurodegenerative diseases. Acta Neuropathol., 2005, 109(1), 5-13.
[http://dx.doi.org/10.1007/s00401-004-0952-x] [PMID: 15645263]
[34]
Ferrer, I.; Gomez-Isla, T.; Puig, B.; Freixes, M.; Ribé, E.; Dalfó, E.; Avila, J. Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr. Alzheimer Res., 2005, 2(1), 3-18.
[http://dx.doi.org/10.2174/1567205052772713] [PMID: 15977985]
[35]
Barage, S.H.; Sonawane, K.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides, 2015, 52, 1-18.
[http://dx.doi.org/10.1016/j.npep.2015.06.008] [PMID: 26149638]
[36]
Cassidy, L.; Fernandez, F.; Johnson, J.B.; Naiker, M.; Owoola, A.G.; Broszczak, D.A. Oxidative stress in Alzheimer’s disease: A review on emergent natural polyphenolic therapeutics. Complement. Ther. Med., 2020, 49, 102294.
[37]
Bradley-Whitman, M.A.; Lovell, M.A. Biomarkers of lipid peroxidation in Alzheimer disease (AD): An update. Arch. Toxicol., 2015, 89, 1035-1044.
[38]
Jomova, K.; Vondrakova, D.; Lawson, M.; Valko, M. Metals, oxidative stress and neurodegenerative disorders. Mol. Cell. Biochem., 2010, 345(1-2), 91-104.
[http://dx.doi.org/10.1007/s11010-010-0563-x] [PMID: 20730621]
[39]
Hawking, Z.L. Alzheimer’s disease: The role of mitochondrial dysfunction and potential new therapies. Biosci. Horiz., 2016, 9, 9.
[http://dx.doi.org/10.1093/biohorizons/hzw014]
[40]
Feng, Y.; Wang, X. Antioxidant therapies for Alzheimer’s disease. Oxid. Med. Cell. Longev., 2012, 2012, 1-17.
[http://dx.doi.org/10.1155/2012/472932] [PMID: 22888398]
[41]
Sung, S.; Yao, Y.; Uryu, K.; Yang, H.; Lee, V.M.Y.; Trojanowski, J.Q.; Praticò, D. Early Vitamin E supplementation in young but not aged mice reduces A β levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J., 2004, 18(2), 323-325.
[http://dx.doi.org/10.1096/fj.03-0961fje] [PMID: 14656990]
[42]
Conte, V.; Uryu, K.; Fujimoto, S.; Yao, Y.; Rokach, J.; Longhi, L.; Trojanowski, J.Q.; Lee, V.M.Y.; McIntosh, T.K.; Praticò, D. Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury. J. Neurochem., 2004, 90(3), 758-764.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02560.x] [PMID: 15255955]
[43]
Bush, A.I.; Tanzi, R.E. Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics, 2008, 5, 421-432.
[http://dx.doi.org/10.1016/j.nurt.2008.05.001]
[44]
Stoltenberg, M.; Bush, A.I.; Bach, G.; Smidt, K.; Larsen, A.; Rungby, J.; Lund, S.; Doering, P.; Danscher, G. Amyloid plaques arise from zinc-enriched cortical layers in APP/PS1 transgenic mice and are paradoxically enlarged with dietary zinc deficiency. Neuroscience, 2007, 150(2), 357-369.
[http://dx.doi.org/10.1016/j.neuroscience.2007.09.025] [PMID: 17949919]
[45]
Lovell, M.A.; Robertson, J.D. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci., 1998, 158, 47-52.
[http://dx.doi.org/10.1016/S0022-510X(98)00092-6]
[46]
Friedlich, A.L.; Lee, J.Y.; van Groen, T.; Cherny, R.A.; Volitakis, I.; Cole, T.B.; Palmiter, R.D.; Koh, J.Y.; Bush, A.I. Neuronal zinc exchange with the blood vessel wall promotes cerebral amyloid angiopathy in an animal model of Alzheimer’s disease. J. Neurosci., 2004, 24(13), 3453-3459.
[http://dx.doi.org/10.1523/JNEUROSCI.0297-04.2004] [PMID: 15056725]
[47]
Grundke-Iqbal, I.; Fleming, J.; Tung, Y-C.; Lassmann, H.; Iqbal, K.; Joshi, J.G. Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta Neuropathol., 1990, 81(2), 105-110.
[http://dx.doi.org/10.1007/BF00334497]
[48]
Bouras, C.; Giannakopoulos, P.; Good, P.F.; Hsu, A.; Hof, P.R.; Perl, D.P. A laser microprobe mass analysis of brain aluminum and iron in dementia pugilistica: Comparison with Alzheimer’s disease. Eur. Neurol., 1997, 38(1), 53-58.
[http://dx.doi.org/10.1159/000112903] [PMID: 9252800]
[49]
Liang, S.H.; Southon, A.G.; Fraser, B.H.; Krause-Heuer, A.M.; Zhang, B.; Shoup, T.M.; Lewis, R.; Volitakis, I.; Han, Y.; Greguric, I.; Bush, A.I.; Vasdev, N. Novel fluorinated 8-hydroxyquinoline based metal ionophores for exploring the metal hypothesis of Alzheimer’s disease. ACS Med. Chem. Lett., 2015, 6(9), 1025-1029.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00281] [PMID: 26396692]
[50]
Tabner, B.J.; Mayes, J.; Allsop, D. Hypothesis: Soluble a β oligomers in association with redox-active metal ions are the optimal generators of reactive oxygen species in Alzheimer’s disease. Int. J. Alzheimers Dis., 2011, 2011, 546380.
[51]
Cho, H.J.; Huynh, T.T.; Rogers, B.E.; Mirica, L.M.; Valentine, J.S. Design of a multivalent bifunctional chelator for diagnostic 64Cu PET imaging in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2020, 117(49), 30928-30933.
[52]
Savelieff, M.G.; Nam, G.; Kang, J.; Lee, H.J.; Lee, M.; Lim, M.H. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem. Rev., 2019, 119, 1221-1322.
[53]
Wang, Y.; Huynh, T.T.; Cho, H.J.; Wang, Y.C.; Rogers, B.E.; Mirica, L.M. Amyloid β-binding bifunctional chelators with favorable lipophilicity for 64Cu PET imaging in Alzheimer’s disease. Inorg. Chem., 2021, 60(16), 12610-12620.
[54]
Sharma, A.K.; Schultz, J.W.; Prior, J.T.; Rath, N.P.; Mirica, L.M. Coordination chemistry of bifunctional chemical agents designed for applications in 64Cu PET imaging for Alzheimer’s disease. Inorg. Chem., 2017, 56(22), 13801-13814.
[http://dx.doi.org/10.1021/acs.inorgchem.7b01883] [PMID: 29112419]
[55]
Huang, Y.; Cho, H.J.; Bandara, N.; Sun, L.; Tran, D.; Rogers, B.E. Metal-chelating benzothiazole multifunctional compounds for the modulation and 64Cu PET imaging of A β aggregation. Chem. Sci., 2020, 11(30), 7789-7799.
[56]
Makhaeva, G.F.; Kovaleva, N.V.; Boltneva, N.P.; Lushchekina, S.V.; Rudakova, E.V.; Stupina, T.S.; Terentiev, A.A.; Serkov, I.V.; Proshin, A.N.; Radchenko, E.V.; Palyulin, V.A.; Bachurin, S.O.; Richardson, R.J. Conjugates of tacrine and 1,2,4-thiadiazole derivatives as new potential multifunctional agents for Alzheimer’s disease treatment: Synthesis, quantum-chemical characterization, molecular docking, and biological evaluation. Bioorg. Chem., 2020, 94, 103387.
[http://dx.doi.org/10.1016/j.bioorg.2019.103387]
[57]
Truong, B.; Quiroz, J.; Priefer, R. Acetylcholinesterase inhibitors for Alzheimer’s disease: Past, present, and potential future. Med. Res. Arch., 2020, 8(12), 1-27.
[http://dx.doi.org/10.18103/mra.v8i12.2271]
[58]
Francis, P.T.; Palmer, A.M.; Snape, M.; Wilcock, G.K.; Neurol, J. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J. Neurol. Neurosurg. Psychiatry, 1999, 66(2), 137-147.
[http://dx.doi.org/10.1136/jnnp.66.2.137]
[59]
Silva, D.; Chioua, M.; Samadi, A.; Carmo Carreiras, M.; Jimeno, M.L.; Mendes, E.; Ríos, C.; Romero, A.; Villarroya, M.; López, M.G.; Marco-Contelles, J. Synthesis and pharmacological assessment of diversely substituted pyrazolo[3,4-b]quinoline, and benzo[b]pyrazolo[4,3-g][1,8]naphthyridine derivatives. Eur. J. Med. Chem., 2011, 46(9), 4676-4681.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.068] [PMID: 21715067]
[60]
Keri, R.S.; Quintanova, C.; Marques, S.M.; Esteves, A.R.; Cardoso, S.M.; Santos, M.A. Design, synthesis and neuroprotective evaluation of novel tacrine–benzothiazole hybrids as multi-targeted compounds against Alzheimer’s disease. Bioorg. Med. Chem., 2013, 21(15), 4559-4569.
[http://dx.doi.org/10.1016/j.bmc.2013.05.028] [PMID: 23768661]
[61]
Roldán-Peña, J.M.; Romero-Real, V.; Hicke, J.; Maya, I.; Franconetti, A.; Lagunes, I.; Padrón, J.M.; Petralla, S.; Poeta, E.; Naldi, M.; Bartolini, M.; Monti, B.; Bolognesi, M.L.; López, Ó.; Fernández-Bolaños, J.G. Tacrine-O-protected phenolics heterodimers as multitarget-directed ligands against Alzheimer’s disease: Selective subnanomolar BuChE inhibitors. Eur. J. Med. Chem., 2019, 181, 111550-111566.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.053] [PMID: 31376562]
[62]
Svobodova, B.; Mezeiova, E.; Hepnarova, V.; Hrabinova, M.; Muckova, L.; Kobrlova, T.; Jun, D.; Soukup, O.; Jimeno, M.L.; Marco-Contelles, J.; Korabecny, J. Exploring structure-activity relationship in tacrine-squaramide derivatives as potent cholinesterase inhibitors. Biomolecules, 2019, 9(8), 379.
[http://dx.doi.org/10.3390/biom9080379] [PMID: 31430943]
[63]
Osseni, R.A.; Debbasch, C.; Christen, M.O.; Rat, P.; Warnet, J.M. Tacrine-induced reactive oxygen species in a human liver cell line: The role of anethole dithiolethione as a scavenger. Toxicol. Invitro, 1999, 13(4-5), 683-688.
[64]
Watkins, P.B.; Zimmerman, H.J.; Knapp, M.J.; Gracon, S.I.; Lewis, K.W. Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA, 1994, 271(13), 992-998.
[65]
Brewster, J.T.; Dell’Acqua, S.; Thach, D.Q.; Sessler, J.L. Classics in chemical neuroscience: Donepezil. s. ACS Chem. Neurosci., 2019, 10, 155-167.
[66]
Li, Q.; He, S.; Chen, Y.; Feng, F.; Qu, W.; Sun, H. Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 158, 463-477.
[67]
Stepankova, S.; Komers, K. Cholinesterases and cholinesterase inhibitors. Curr. Enzym. Inhib., 2008, 4(4), 160-171.
[http://dx.doi.org/10.2174/157340808786733631]
[68]
Ele Bentué-Ferrer, D.; Tribut, O.; Polard, E.; Allain, H. Clinically significant drug interactions with cholinesterase inhibitors A guide for neurologists. CNS Drugs, 2003, 17(13), 947-963.
[69]
Sadowsky, C.; Perez, J.A.D.; Bouchard, R.W.; Goodman, I.; Tekin, S. Switching from oral cholinesterase inhibitors to the rivastigmine transdermal patch. CNS Neurosci. Ther., 2010, 16(1), 51-60.
[http://dx.doi.org/10.1111/j.1755-5949.2009.00119.x] [PMID: 20070789]
[70]
Exelon (rivastigmine transdermal patch) package insert. Novartis Pharmaceuticals Corporation. Available at: https://www.pharma.us.novartis.com/sites/www.pharma.us.novartis.com/files/exelonpatch.pdf
[71]
Lin, M.W.; Chen, Y.H.; Yang, H.B.; Lin, C.C.; Hung, S.Y. Galantamine inhibits A β1–42-induced neurotoxicity by enhancing α7nAChR expression as a cargo carrier for LC3 binding and A β1–42 engulfment during autophagic degradation. Neurotherapeutics, 2020, 17(2), 676-689.
[http://dx.doi.org/10.1007/s13311-019-00803-7] [PMID: 31823156]
[72]
Raskind, M.A.; Peskind, E.R.; Wessel, T.; Yuan, W. Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 Study Group. Neurology, 2000, 54(12), 2261-2268.
[73]
Razadyne. Razadyne ER (galantamine) package insert; Janssen Pharmaceuticals, Inc.: Titusville, NJ, 2015. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/021615s021lbl.pdf
[74]
Danysz, W.; Parsons, C.G. Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine - Searching for the connections. Br. J. Pharmacol., 2012, 167, 324-352.
[75]
José, L.; Molinuevo, M.P.; Albert Lladó, M.L.R. Memantine: Targeting glutamate excitotoxity in Alzheimer disease and other demntias. Am. J. Alzheimers Dis. Other Demen., 2005, 20(2), 77-85.
[http://dx.doi.org/10.1177/153331750502000206] [PMID: 15844753]
[76]
Robinson, D.M.; Keating, G.M.; Schmitt, F.A.; Van Dyck, C.H.; Wenk, G.L.; Wimo, A. Related papers Adis Drug Evaluation memantine a review of its use in Alzheimer’s disease. Drugs, 2006, 66(11), 1515-1534.
[77]
Ghatak, S.; Dolatabadi, N.; Gao, R.; Wu, Y.; Scott, H.; Trudler, D.; Sultan, A.; Ambasudhan, R.; Nakamura, T.; Masliah, E.; Talantova, M.; Voytek, B.; Lipton, S.A. NitroSynapsin ameliorates hypersynchronous neural network activity in Alzheimer hiPSC models. Mol. Psychiatry, 2021, 26(10), 5751-5765.
[http://dx.doi.org/10.1038/s41380-020-0776-7] [PMID: 32467645]
[78]
Wang, Y.; Eu, J.; Washburn, M.; Gong, T.; Vincent Chen, H-S.; Larrick James, W.; Lipton, S.; Stamler, J.; Went, G.; Porter, S. The pharmacology of aminoadamantane nitrates. Curr. Alzheimer Res., 2006, 3(3), 201-204.
[http://dx.doi.org/10.2174/156720506777632808] [PMID: 16842096]
[79]
Greig, S.L. Memantine ER/Donepezil: A review in Alzheimer’s disease. CNS Drugs, 2015, 29(11), 963-970.
[http://dx.doi.org/10.1007/s40263-015-0287-2] [PMID: 26519339]
[80]
Guo, J.; Wang, Z.; Liu, R.; Huang, Y.; Zhang, N.; Zhang, R. Memantine, donepezil, or combination therapy-what is the best therapy for Alzheimer’s disease? A network meta-analysis. Brain Behav., 2020, 10(11), e01831.
[81]
Sun, B.L.; Chen, Y.; Fan, D.Y.; Zhu, C.; Zeng, F.; Wang, Y.J. Critical thinking on amyloid-beta-targeted therapy: Challenges and perspectives. Sci. China Life Sci., 2021, 64, 926-937.
[82]
Nisticò, R.; Borg, J.J. Aducanumab for Alzheimer’s disease: A regulatory perspective. Pharmacol. Res., 2021, 171, 105754.
[http://dx.doi.org/10.1016/j.phrs.2021.105754] [PMID: 34217830]
[83]
Shahidi, S.; Ghahremanitamadon, F.; Soleimani, A.S.; Komaki, A.; Afshar, S.; Hashemi-Firouzi, N. Electrophysiological, behavioral and molecular study of vitamin E and ginkgo biloba in a rat model of Alzheimer’s disease. Res. J. Pharmacogn., 2021, 8(1), 39-51.
[84]
Mclachlan, D.R.C.; Dalton, A.J.; Kruck, T.P.A.; Bell, M.; Smith, W.L.; Kalow, W.; Andrews, D.F. Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet, 1991, 337(8753), 1304-1308.
[85]
Elipenahli, C.; Stack, C.; Jainuddin, S.; Gerges, M.; Yang, L.; Starkov, A.; Beal, M.F.; Dumont, M. Behavioral improvement after chronic administration of coenzyme Q10 in P301S transgenic mice. J. Alzheimers Dis., 2012, 28(1), 173-182.
[http://dx.doi.org/10.3233/JAD-2011-111190] [PMID: 21971408]
[86]
Mahdavi, M.; Hariri, R.; Mirfazli, S.S.; Lotfian, H.; Rastergari, A.; Firuzi, O.; Edraki, N.; Larijani, B.; Akbarzadeh, T.; Saeedi, M. Synthesis and biological activity of some benzochromenoquinolinones: Tacrine analogs as potent anti-Alzheimer’s agents. Chem. Biodivers., 2019, 16(4), e1800488.
[http://dx.doi.org/10.1002/cbdv.201800488] [PMID: 30720917]
[87]
Babaee, S.; Chehardoli, G.; Akbarzadeh, T.; Zolfigol, M.A.; Mahdavi, M.; Rastegari, A.; Homayouni, M.F.; Najafi, Z. Design, synthesis, and molecular docking of some novel tacrine based cyclopentapyranopyridine- and tetrahydropyranoquinoline-kojic acid derivatives as anti-acetylcholinesterase agents. Chem. Biodivers., 2021, 18(6), e2000924.
[http://dx.doi.org/10.1002/cbdv.202000924] [PMID: 33861892]
[88]
Ceschi, M.A.; da Costa, J.S.; Lopes, J.P.B.; Câmara, V.S.; Campo, L.F.; Borges, A.C.A.; Gonçalves, C.A.S.; de Souza, D.F.; Konrath, E.L.; Karl, A.L.M.; Guedes, I.A.; Dardenne, L.E. Novel series of tacrine-tianeptine hybrids: Synthesis, cholinesterase inhibitory activity, S100B secretion and a molecular modeling approach. Eur. J. Med. Chem., 2016, 121, 758-772.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.025] [PMID: 27392529]
[89]
Soukup, O.; Jun, D.; Zdarova-Karasova, J.; Patocka, J.; Musilek, K.; Korabecny, J.; Krusek, J.; Kaniakova, M.; Sepsova, V.; Mandikova, J.; Trejtnar, F.; Pohanka, M.; Drtinova, L.; Pavlik, M.; Tobin, G.; Kuca, K. A resurrection of 7-MEOTA: A comparison with tacrine. Curr. Alzheimer Res., 2013, 10(8), 893-906.
[http://dx.doi.org/10.2174/1567205011310080011] [PMID: 24093535]
[90]
Recanatini, M.; Cavalli, A.; Belluti, F.; Piazzi, L.; Rampa, A.; Bisi, A.; Gobbi, S.; Valenti, P.; Andrisano, V.; Bartolini, M.; Cavrini, V. SAR of 9-amino-1,2,3,4-tetrahydroacridine-based acetylcholinesterase inhibitors: Synthesis, enzyme inhibitory activity, QSAR, and structure-based CoMFA of tacrine analogues. J. Med. Chem., 2000, 43(10), 2007-2018.
[http://dx.doi.org/10.1021/jm990971t] [PMID: 10821713]
[91]
Proctor, G.R.; Harvey, A.L. Synthesis of tacrine analogues and their structure-activity relationships. Curr. Med. Chem., 2000, 7(3), 295-302.
[http://dx.doi.org/10.2174/0929867003375218] [PMID: 10637366]
[92]
Marco, JL. Cristo bal de los Rõ, A;  Carreiras, M.C; BanÄ, JE; Badõ, A.A; Vivas, N.M. Synthesis and acetylcholinesterase/butyrylcholinesterase inhibition activity of new tacrine-like analogues. Bioorg. Med. Chem., 2001, 9(3), 727-732.
[93]
de los Ríos, C.; Egea, J.; Marco-Contelles, J.; León, R.; Samadi, A.; Iriepa, I.; Moraleda, I.; Gálvez, E.; García, A.G.; López, M.G.; Villarroya, M.; Romero, A. Synthesis, inhibitory activity of cholinesterases, and neuroprotective profile of novel 1,8-naphthyridine derivatives. J. Med. Chem., 2010, 53(14), 5129-5143.
[http://dx.doi.org/10.1021/jm901902w] [PMID: 20575555]
[94]
Khoobi, M.; Ghanoni, F.; Nadri, H.; Moradi, A.; Pirali Hamedani, M.; Homayouni Moghadam, F.; Emami, S.; Vosooghi, M.; Zadmard, R.; Foroumadi, A.; Shafiee, A. New tetracyclic tacrine analogs containing pyrano[2,3-c]pyrazole: Efficient synthesis, biological assessment and docking simulation study. Eur. J. Med. Chem., 2015, 89, 296-303.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.049] [PMID: 25462245]
[95]
Alshareef, H.F.; Mohamed, H.A.E.H.; Salaheldin, A.M.; Salaheldin, A.M. Synthesis and biological evaluation of new tacrine analogues under microwave irradiation. Chem. Pharm. Bull., 2017, 65(8), 732-738.
[http://dx.doi.org/10.1248/cpb.c17-00113] [PMID: 28768927]
[96]
Dgachi, Y.; Martin, H.; Malek, R.; Jun, D.; Janockova, J.; Sepsova, V.; Soukup, O.; Iriepa, I.; Moraleda, I.; Maalej, E.; Carreiras, M.C.; Refouvelet, B.; Chabchoub, F.; Marco-Contelles, J.; Ismaili, L. Synthesis and biological assessment of KojoTacrines as new agents for Alzheimer’s disease therapy. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 163-170.
[http://dx.doi.org/10.1080/14756366.2018.1538136] [PMID: 30482062]
[97]
Ramos, E.; Palomino-Antolín, A.; Bartolini, M.; Iriepa, I.; Moraleda, I.; Diez-Iriepa, D.; Samadi, A.; Cortina, C.V.; Chioua, M.; Egea, J.; Romero, A.; Marco-Contelles, J. Quinoxalinetacrine QT78, a cholinesterase inhibitor as a potential ligand for Alzheimer’s disease therapy. Molecules, 2019, 24(8), 1503.
[http://dx.doi.org/10.3390/molecules24081503] [PMID: 30999586]
[98]
Derabli, C.; Boulebd, H.; Abdelwahab, A.B.; Boucheraine, C.; Zerrouki, S.; Bensouici, C.; Kirsch, G.; Boulcina, R.; Debache, A. Synthesis, biological evaluation and molecular docking studies of novel 2-alkylthiopyrimidino-tacrines as anticholinesterase agents and their DFT calculations. J. Mol. Struct., 2020, 1209, 127902.
[http://dx.doi.org/10.1016/j.molstruc.2020.127902]
[99]
Wan, L.X.; Zhen, Y.Q.; He, Z.X.; Zhang, Y.; Zhang, L.; Li, X.; Gao, F.; Zhou, X.L. Late-stage modification of medicine: Pd-catalyzed direct synthesis and biological evaluation of N -aryltacrine derivatives. ACS Omega, 2021, 6(14), 9960-9972.
[http://dx.doi.org/10.1021/acsomega.1c01404] [PMID: 33869976]
[100]
Cecília, R.S.M.; Pereira, D.V.F.; Soares, M.M.; de Freitas, S.M.; Máximo, R.M. Mattos da R.P. Castelli, M.R.; dos Santos, M.H.; Soares, M.G.; Viegas Jr, C. Donepezil: an important prototype to the design of new drug candidates for Alzheimer’s disease. Mini Rev. Med. Chem., 2014, 14(1), 2-19.
[101]
Mohammadi-Farani, A.; Ahmadi, A.; Nadri, H.; Aliabadi, A. Synthesis, docking and acetylcholinesterase inhibitory assessment of 2-(2-(4-Benzylpiperazin-1-yl)ethyl)isoindoline-1,3-dione derivatives with potential anti-Alzheimer effects. Daru, 2013, 21(1), 47.
[http://dx.doi.org/10.1186/2008-2231-21-47] [PMID: 23758724]
[102]
Pudlo, M.; Luzet, V.; Ismaïli, L.; Tomassoli, I.; Iutzeler, A.; Refouvelet, B. Quinolone-benzylpiperidine derivatives as novel acetylcholinesterase inhibitor and antioxidant hybrids for Alzheimer Disease. Bioorg. Med. Chem., 2014, 22(8), 2496-2507.
[http://dx.doi.org/10.1016/j.bmc.2014.02.046] [PMID: 24657052]
[103]
Vila, N.; Besada, P.; Viña, D.; Sturlese, M.; Moro, S.; Terán, C. Synthesis, biological evaluation and molecular modeling studies of phthalazin-1(2H)-one derivatives as novel cholinesterase inhibitors. RSC Advances, 2016, 6(52), 46170-46185.
[http://dx.doi.org/10.1039/C6RA03841G]
[104]
Costanzo, P.; Cariati, L.; Desiderio, D.; Sgammato, R.; Lamberti, A.; Arcone, R.; Salerno, R.; Nardi, M.; Masullo, M.; Oliverio, M. Design, synthesis, and evaluation of donepezil-like compounds as AChE and BACE-1 inhibitors. ACS Med. Chem. Lett., 2016, 7(5), 470-475.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00483] [PMID: 27190595]
[105]
Yan, J.; Hu, J.; Liu, A.; He, L.; Li, X.; Wei, H. Design, synthesis, and evaluation of multitarget-directed ligands against Alzheimer’s disease based on the fusion of donepezil and curcumin. Bioorg. Med. Chem., 2017, 25(12), 2946-2955.
[http://dx.doi.org/10.1016/j.bmc.2017.02.048] [PMID: 28454848]
[106]
El-Sayed, N.A.E.; Farag, A.E.S.; Ezzat, M.A.F.; Akincioglu, H. Gülçin, İ ; Abou-Seri, S.M. Design, synthesis, in vitro and in vivo evaluation of novel pyrrolizine-based compounds with potential activity as cholinesterase inhibitors and anti-Alzheimer’s agents. Bioorg. Chem., 2019, 93(July), 103312.
[http://dx.doi.org/10.1016/j.bioorg.2019.103312] [PMID: 31586715]
[107]
Chaves, S.; Resta, S.; Rinaldo, F.; Costa, M.; Josselin, R.; Gwizdala, K.; Piemontese, L.; Capriati, V.; Pereira-Santos, A.R.; Cardoso, S.M.; Santos, M.A. Design, synthesis, and in vitro evaluation of hydroxybenzimidazole-donepezil analogues as multitarget-directed ligands for the treatment of Alzheimer’s disease. Molecules, 2020, 25(4), 985.
[http://dx.doi.org/10.3390/molecules25040985] [PMID: 32098407]
[108]
Perone, R.; Albertini, C.; Uliassi, E.; Di Pietri, F.; Sena Murteira, P.P.; Petralla, S.; Rizzardi, N.; Fato, R.; Pulkrabkova, L.; Soukup, O.; Tramarin, A.; Bartolini, M.; Bolognesi, M.L. Turning donepezil into a multi-target-directed ligand through a merging strategy. ChemMedChem, 2021, 16(1), 187-198.
[http://dx.doi.org/10.1002/cmdc.202000484] [PMID: 32716144]
[109]
Kozurkova, M.; Hamulakova, S.; Gazova, Z.; Paulikova, H.; Kristian, P. Neuroactive multifunctional tacrine congeners with cholinesterase, anti-amyloid aggregation and neuroprotective properties. Pharmaceuticals, 2011, 4(2), 382-418. Available from: http://www.mdpi.com/1424-8247/4/2/382 [Internet].
[http://dx.doi.org/10.3390/ph4020382]
[110]
Shao, D.; Zou, C.; Luo, C.; Tang, X.; Li, Y. Synthesis and evaluation of tacrine-E2020 hybrids as acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2004, 14(18), 4639-4642.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.005] [PMID: 15324879]
[111]
Alonso, D.; Dorronsoro, I.; Rubio, L.; Muñoz, P.; García-Palomero, E.; Del Monte, M.; Bidon-Chanal, A.; Orozco, M.; Luque, F.J.; Castro, A.; Medina, M.; Martínez, A. Donepezil–tacrine hybrid related derivatives as new dual binding site inhibitors of AChE. Bioorg. Med. Chem., 2005, 13(24), 6588-6597.
[http://dx.doi.org/10.1016/j.bmc.2005.09.029] [PMID: 16230018]
[112]
Camps, P.; Formosa, X.; Galdeano, C.; Gómez, T.; Muñoz-Torrero, D.; Scarpellini, M.; Viayna, E.; Badia, A.; Clos, M.V.; Camins, A.; Pallàs, M.; Bartolini, M.; Mancini, F.; Andrisano, V.; Estelrich, J.; Lizondo, M.; Bidon-Chanal, A.; Luque, F.J. Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation. J. Med. Chem., 2008, 51(12), 3588-3598.
[http://dx.doi.org/10.1021/jm8001313] [PMID: 18517184]
[113]
Korabecny, J.; Dolezal, R.; Cabelova, P.; Horova, A.; Hruba, E.; Ricny, J.; Sedlacek, L.; Nepovimova, E.; Spilovska, K.; Andrs, M.; Musilek, K.; Opletalova, V.; Sepsova, V.; Ripova, D.; Kuca, K. 7-MEOTA–donepezil like compounds as cholinesterase inhibitors: Synthesis, pharmacological evaluation, molecular modeling and QSAR studies. Eur. J. Med. Chem., 2014, 82, 426-438.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.066] [PMID: 24929293]
[114]
Misik, J.; Korabecny, J.; Nepovimova, E.; Cabelova, P.; Kassa, J. The effects of novel 7-MEOTA-donepezil like hybrids and N-alkylated tacrine analogues in the treatment of quinuclidinyl benzilate-induced behavioural deficits in rats performing the multiple T-maze test. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2015, 159(4), 547-553.
[http://dx.doi.org/10.5507/bp.2015.006] [PMID: 25690521]
[115]
Bosin, T.R.; Campaigne, E. Biologically active benzo[b]thiophene derivatives II. Adv. Drug Res., 1977, 11, 191-232.
[116]
Keri, RS.; Chand, K.; Budagumpi, S.; Balappa Somappa, S.; Patil, SA.; Nagaraja, BM. An overview of benzo[b]thiophene-based medicinal chemistry. Eur. J. Med. Chem., 2017, 138, 1002-1033.
[117]
Fakhr, I.M.I.; Radwan, M.A.A.; El-Batran, S.; Abd El-Salam, O.M.E.; El-Shenawy, S.M. Synthesis and pharmacological evaluation of 2-substituted benzo[b]thiophenes as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2009, 44(4), 1718-1725.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.034] [PMID: 18433939]
[118]
Jagtap, V.A.; Agasimundin, Y.S. Synthesis and preliminary evaluation of some 2-amino-n’-[substituted]-4,5,6,7-tetrahydro-1-benzothiophene-3-carbohydrazide as antimicrobial agents. J. Pharm. Res., 2015, 9, 10-14.
[119]
Berrade, L.; Aisa, B.; Ramirez, M.J.; Galiano, S.; Guccione, S.; Moltzau, L.R.; Levy, F.O.; Nicoletti, F.; Battaglia, G.; Molinaro, G.; Aldana, I.; Monge, A.; Perez-Silanes, S. Novel benzo[b]thiophene derivatives as new potential antidepressants with rapid onset of action. J. Med. Chem., 2011, 54(8), 3086-3090.
[http://dx.doi.org/10.1021/jm2000773] [PMID: 21469694]
[120]
Banerjee, T.; Kapoor, N.; Surolia, N.; Surolia, A. Benzothiophene carboxamide derivatives as novel antimalarials. IUBMB Life, 2011, 63(12), 1111-1115.
[http://dx.doi.org/10.1002/iub.543] [PMID: 22038932]
[121]
Martorana, A.; Gentile, C.; Perricone, U.; Piccionello, A.P.; Bartolotta, R.; Terenzi, A.; Pace, A.; Mingoia, F.; Almerico, A.M.; Lauria, A. Synthesis, antiproliferative activity, and in silico insights of new 3-benzoylamino-benzo[b]thiophene derivatives. Eur. J. Med. Chem., 2015, 90, 537-546.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.002] [PMID: 25486425]
[122]
Malamas, M.S.; Sredy, J.; Moxham, C.; Katz, A.; Xu, W.; McDevitt, R.; Adebayo, F.O.; Sawicki, D.R.; Seestaller, L.; Sullivan, D.; Taylor, J.R. Novel benzofuran and benzothiophene biphenyls as inhibitors of protein tyrosine phosphatase 1B with antihyperglycemic properties. J. Med. Chem., 2000, 43(7), 1293-1310.
[http://dx.doi.org/10.1021/jm990560c] [PMID: 10753467]
[123]
Jordan, V.C. Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 1. Receptor interactions. J. Med. Chem., 2003, 46(6), 883-908.
[http://dx.doi.org/10.1021/jm020449y] [PMID: 12620065]
[124]
Lu, P.; Schrag, M.L.; Slaughter, D.E.; Raab, C.E.; Shou, M.; Rodrigues, A.D. Mechanism-based inhibition of human liver microsomal cytochrome P450 1A2 by zileuton, a 5-lipoxygenase inhibitor. Drug Metab. Dispos., 2003, 31(11), 1352-1360.
[125]
Carrillo-Muñoz, A.J.; Giusiano, G.; Ezkurra, P.A.; Quindós, G. Sertaconazole: Updated review of a topical antifungal agent. Expert Rev. Anti Infect. Ther., 2005, 3(3), 333-342.
[http://dx.doi.org/10.1586/14787210.3.3.333] [PMID: 15954850]
[126]
Chang, Y.S.; Jeong, J.M.; Lee, Y.S.; Kim, H.W.; Ganesha, R.B.; Kim, Y.J.; Lee, D.S.; Chung, J.K.; Lee, M.C. Synthesis and evaluation of benzothiophene derivatives as ligands for imaging β-amyloid plaques in Alzheimer’s disease. Nucl. Med. Biol., 2006, 33(6), 811-820.
[http://dx.doi.org/10.1016/j.nucmedbio.2006.06.006] [PMID: 16934700]
[127]
Ismail, M.M.; Kamel, M.M.; Mohamed, L.W.; Faggal, S.I.; Galal, M.A. Synthesis and biological evaluation of thiophene derivatives as acetylcholinesterase inhibitors. Molecules, 2012, 17(6), 7217-7231.
[http://dx.doi.org/10.3390/molecules17067217] [PMID: 22692245]
[128]
Jeyachandran, V.; Kumar, R.R.; Ali, M.A.; Choon, T.S. A one-pot domino synthesis and discovery of highly functionalized dihydrobenzo[b]thiophenes as AChE inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(7), 2101-2105.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.122] [PMID: 23434223]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy