Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Discovery of STAT3 Inhibitors: Recent Advances and Future Perspectives

Author(s): Jiatao Song, Jiawei Wang, Sheng Tian* and Huanqiu Li*

Volume 30, Issue 16, 2023

Published on: 04 October, 2022

Page: [1824 - 1847] Pages: 24

DOI: 10.2174/0929867329666220819093117

Price: $65

Abstract

Background: STAT3 (signal transducer and activator of transcription 3) is a member of the STAT family of proteins that function as signal transducers and transcription factors. Previous research has demonstrated its importance in cell proliferation, differentiation, apoptosis, and immunological and inflammatory responses. Targeting the STAT3 protein has recently been hailed as a viable cancer therapeutic method. Even though none of these inhibitors have yet been exploited in clinical cancer therapy, a small number have made them into clinical trials, leading researchers to explore more promising inhibitors.

Methods: Based on the mechanism of STAT3 activation, several types of STAT3 inhibitors were described and summarized according to their origins, structures, bioactivity and mechanism of action. Direct inhibition of STAT3 mainly targeted one of the three distinct structural regions of the protein, namely the SH2 domain, the DNA binding domain, and the coiled-coil domain.

Results: The progress in STAT3 inhibitor discovery from 2010 to 2021 is comprehensively summarized in this review. STAT3 inhibitors are mainly classified into small molecule inhibitors, natural product inhibitors, and peptides/peptidomimetics. Moreover, it also covers relevant analogues, as well as their core framework.

Conclusion: Small-molecule inhibitors of STAT3 like BP-1-102 and BTP analogues displayed great potential against various cancers, while natural products, as well as peptide and peptidomimetics, also showed promising application. Therefore, STAT3 has become a promising target with great research value, and the development of STAT3 inhibitors may provide more therapeutic strategies for STAT3-related diseases.

Keywords: STAT3, structural domain, small molecule inhibitor, natural product, anticancer therapy, cell proliferation.

[1]
Darnell, J.E., Jr; Kerr, I.M.; Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 1994, 264(5164), 1415-1421.
[http://dx.doi.org/10.1126/science.8197455] [PMID: 8197455]
[2]
Ihle, J.N. The Stat family in cytokine signaling. Curr. Opin. Cell Biol., 2001, 13(2), 211-217.
[http://dx.doi.org/10.1016/S0955-0674(00)00199-X] [PMID: 11248555]
[3]
Hevehan, D.L.M.; Miller, W.M.; Papoutsakis, E.T. Differential expression and phosphorylation of distinct STAT3 proteins during granulocytic differentiation. Blood, 2002, 99(5), 1627-1637.
[http://dx.doi.org/10.1182/blood.V99.5.1627] [PMID: 11861277]
[4]
Johnson, D.E.; O’Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol., 2018, 15(4), 234-248.
[http://dx.doi.org/10.1038/nrclinonc.2018.8] [PMID: 29405201]
[5]
Villarino, A.V.; Kanno, Y.; Ferdinand, J.R.; O’Shea, J.J. Mechanisms of Jak/STAT signaling in immunity and disease. J. Immunol., 2015, 194(1), 21-27.
[http://dx.doi.org/10.4049/jimmunol.1401867] [PMID: 25527793]
[6]
Mankan, A.K.G.; Greten, F.R. Inhibiting signal transducer and activator of transcription 3: Rationality and rationale design of inhibitors. Expert Opin. Investig. Drugs, 2011, 20(9), 1263-1275.
[http://dx.doi.org/10.1517/13543784.2011.601739] [PMID: 21751940]
[7]
Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer, 2009, 9(11), 798-809.
[http://dx.doi.org/10.1038/nrc2734] [PMID: 19851315]
[8]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[9]
Bai, L.; Zhou, H.; Xu, R.; Zhao, Y.; Chinnaswamy, K.; McEachern, D.; Chen, J.; Yang, C.Y.; Liu, Z.; Wang, M.; Liu, L.; Jiang, H.; Wen, B.; Kumar, P.; Meagher, J.L.; Sun, D.; Stuckey, J.A.; Wang, S. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell, 2019, 36(5), 498-511.e17.
[http://dx.doi.org/10.1016/j.ccell.2019.10.002] [PMID: 31715132]
[10]
Belo, Y.; Mielko, Z.; Nudelman, H.; Afek, A.; Ben-David, O.; Shahar, A.; Zarivach, R.; Gordan, R.; Arbely, E. Unexpected implications of STAT3 acetylation revealed by genetic encoding of acetyl-lysine. Biochim. Biophys. Acta Gen. Subj., 2019, 1863(9), 1343-1350.
[http://dx.doi.org/10.1016/j.bbagen.2019.05.019] [PMID: 31170499]
[11]
La Sala, G.; Michiels, C.; Kükenshöner, T.; Brandstoetter, T.; Maurer, B.; Koide, A.; Lau, K.; Pojer, F.; Koide, S.; Sexl, V.; Dumoutier, L.; Hantschel, O. Selective inhibition of STAT3 signaling using monobodies targeting the coiled-coil and N-terminal domains. Nat. Commun., 2020, 11(1), 4115.
[http://dx.doi.org/10.1038/s41467-020-17920-z] [PMID: 32807795]
[12]
Xiong, A.; Yang, Z.; Shen, Y.; Zhou, J.; Shen, Q. Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers (Basel), 2014, 6(2), 926-957.
[http://dx.doi.org/10.3390/cancers6020926] [PMID: 24743778]
[13]
Fagard, R.; Metelev, V.; Souissi, I.; Baran-Marszak, F. STAT3 inhibitors for cancer therapy: Have all roads been explored? JAK-STAT, 2013, 2(1), e22882.
[http://dx.doi.org/10.4161/jkst.22882] [PMID: 24058788]
[14]
Gronowski, A.M.; Zhong, Z.; Wen, Z.; Thomas, M.J.; Darnell, J.E., Jr; Rotwein, P. In vivo growth hormone treatment rapidly stimulates the tyrosine phosphorylation and activation of Stat3. Mol. Endocrinol., 1995, 9(2), 171-177.
[PMID: 7776967]
[15]
Campbell, G.S.; Meyer, D.J.; Raz, R.; Levy, D.E.; Schwartz, J.; Carter-Su, C. Activation of acute phase response factor (APRF)/Stat3 transcription factor by growth hormone. J. Biol. Chem., 1995, 270(8), 3974-3979.
[http://dx.doi.org/10.1074/jbc.270.8.3974] [PMID: 7876144]
[16]
Gibbs, C.P.; Kukekov, V.G.; Reith, J.D.; Tchigrinova, O.; Suslov, O.N.; Scott, E.W.; Ghivizzani, S.C.; Ignatova, T.N.; Steindler, D.A. Stem-like cells in bone sarcomas: Implications for tumorigenesis. Neoplasia, 2005, 7(11), 967-976.
[http://dx.doi.org/10.1593/neo.05394] [PMID: 16331882]
[17]
Page, B.D.; Fletcher, S.; Yue, P.; Li, Z.; Zhang, X.; Sharmeen, S.; Datti, A.; Wrana, J.L.; Trudel, S.; Schimmer, A.D.; Turkson, J.; Gunning, P.T. Identification of a non-phosphorylated, cell permeable, small molecule ligand for the Stat3 SH2 domain. Bioorg. Med. Chem. Lett., 2011, 21(18), 5605-5609.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.056] [PMID: 21788134]
[18]
Zhang, X.; Yue, P.; Page, B.D.; Li, T.; Zhao, W.; Namanja, A.T.; Paladino, D.; Zhao, J.; Chen, Y.; Gunning, P.T.; Turkson, J. Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. Proc. Natl. Acad. Sci. USA, 2012, 109(24), 9623-9628.
[http://dx.doi.org/10.1073/pnas.1121606109] [PMID: 22623533]
[19]
Page, B.D.; Croucher, D.C.; Li, Z.H.; Haftchenary, S.; Jimenez-Zepeda, V.H.; Atkinson, J.; Spagnuolo, P.A.; Wong, Y.L.; Colaguori, R.; Lewis, A.M.; Schimmer, A.D.; Trudel, S.; Gunning, P.T. Inhibiting aberrant signal transducer and activator of transcription protein activation with tetrapodal, small molecule Src homology 2 domain binders: Promising agents against multiple myeloma. J. Med. Chem., 2013, 56(18), 7190-7200.
[http://dx.doi.org/10.1021/jm3017255] [PMID: 23968501]
[20]
Yue, P.; Lopez-Tapia, F.; Paladino, D.; Li, Y.; Chen, C.H.; Namanja, A.T.; Hilliard, T.; Chen, Y.; Tius, M.A.; Turkson, J. Hydroxamic acid and benzoic acid-based STAT3 inhibitors suppress human glioma and breast cancer phenotypes in vitro and in vivo. Cancer Res., 2016, 76(3), 652-663.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3558] [PMID: 26088127]
[21]
Lopez-Tapia, F.; Brotherton-Pleiss, C.; Yue, P.; Murakami, H.; Costa Araujo, A.C.; Reis Dos Santos, B.; Ichinotsubo, E.; Rabkin, A.; Shah, R.; Lantz, M.; Chen, S.; Tius, M.A.; Turkson, J. Linker variation and structure-activity relationship analyses of carboxylic acid-based small molecule STAT3 inhibitors. ACS Med. Chem. Lett., 2018, 9(3), 250-255.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00544] [PMID: 29541369]
[22]
Brotherton-Pleiss, C.; Yue, P.; Zhu, Y.; Nakamura, K.; Chen, W.; Fu, W.; Kubota, C.; Chen, J.; Alonso-Valenteen, F.; Mikhael, S.; Medina-Kauwe, L.; Tius, M.A.; Lopez-Tapia, F.; Turkson, J. Discovery of novel azetidine amides as potent small-molecule STAT3 inhibitors. J. Med. Chem., 2021, 64(1), 695-710.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01705] [PMID: 33352047]
[23]
Lin, L.; Hutzen, B.; Li, P.K.; Ball, S.; Zuo, M.; DeAngelis, S.; Foust, E.; Sobo, M.; Friedman, L.; Bhasin, D.; Cen, L.; Li, C.; Lin, J. A novel small molecule, LLL12, inhibits STAT3 phosphorylation and activities and exhibits potent growth-suppressive activity in human cancer cells. Neoplasia, 2010, 12(1), 39-50.
[http://dx.doi.org/10.1593/neo.91196] [PMID: 20072652]
[24]
Xiao, H.; Bid, H.K.; Jou, D.; Wu, X.; Yu, W.; Li, C.; Houghton, P.J.; Lin, J. A novel small molecular STAT3 inhibitor, LY5, inhibits cell viability, cell migration, and angiogenesis in medulloblastoma cells. J. Biol. Chem., 2015, 290(6), 3418-3429.
[http://dx.doi.org/10.1074/jbc.M114.616748] [PMID: 25313399]
[25]
Yu, W.; Li, C.; Zhang, W.; Xia, Y.; Li, S.; Lin, J.Y.; Yu, K.; Liu, M.; Yang, L.; Luo, J.; Chen, Y.; Sun, H.; Kong, L. Discovery of an orally selective inhibitor of signal transducer and activator of transcription 3 using advanced multiple ligand simultaneous docking. J. Med. Chem., 2017, 60(7), 2718-2731.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01489] [PMID: 28245116]
[26]
Lai, M.J.; Lee, H.Y.; Chuang, H.Y.; Chang, L.H.; Tsai, A.C.; Chen, M.C.; Huang, H.L.; Wu, Y.W.; Teng, C.M.; Pan, S.L.; Liu, Y.M.; Mehndiratta, S.; Liou, J.P. N-sulfonyl-aminobiaryls as antitubulin agents and inhibitors of signal transducers and activators of transcription 3 (STAT3) signaling. J. Med. Chem., 2015, 58(16), 6549-6558.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00659] [PMID: 26241032]
[27]
Leung, K.H.; Liu, L.J.; Lin, S.; Lu, L.; Zhong, H.J.; Susanti, D.; Rao, W.; Wang, M.; Che, W.I.; Chan, D.S.; Leung, C.H.; Chan, P.W.; Ma, D.L. Discovery of a small-molecule inhibitor of STAT3 by ligand-based pharmacophore screening. Methods, 2015, 71, 38-43.
[http://dx.doi.org/10.1016/j.ymeth.2014.07.010] [PMID: 25160651]
[28]
Guo, J.; Yu, W.; Cai, G.; Zhang, W.; Li, S.; Zhu, J.; Song, D.; Kong, L. Discovery of new benzensulfonamide derivatives as tripedal STAT3 inhibitors. Eur. J. Med. Chem., 2018, 151, 752-764.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.053] [PMID: 29674294]
[29]
Schust, J.; Sperl, B.; Hollis, A.; Mayer, T.U.; Berg, T. Stattic: A small-molecule inhibitor of STAT3 activation and dimerization. Chem. Biol., 2006, 13(11), 1235-1242.
[http://dx.doi.org/10.1016/j.chembiol.2006.09.018] [PMID: 17114005]
[30]
Chen, H.; Zhou, X.; Wang, A.; Zheng, Y.; Gao, Y.; Zhou, J. Evolutions in fragment-based drug design: The deconstruction-reconstruction approach. Drug Discov. Today, 2015, 20(1), 105-113.
[http://dx.doi.org/10.1016/j.drudis.2014.09.015] [PMID: 25263697]
[31]
Chen, H.; Yang, Z.; Ding, C.; Chu, L.; Zhang, Y.; Terry, K.; Liu, H.; Shen, Q.; Zhou, J. Fragment-based drug design and identification of HJC0123, a novel orally bioavailable STAT3 inhibitor for cancer therapy. Eur. J. Med. Chem., 2013, 62, 498-507.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.023] [PMID: 23416191]
[32]
Chen, H.; Yang, Z.; Ding, C.; Xiong, A.; Wild, C.; Wang, L.; Ye, N.; Cai, G.; Flores, R.M.; Ding, Y.; Shen, Q.; Zhou, J. Discovery of potent anticancer agent HJC0416, an orally bioavailable small molecule inhibitor of signal transducer and activator of transcription 3 (STAT3). Eur. J. Med. Chem., 2014, 82, 195-203.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.049] [PMID: 24904966]
[33]
Ji, P.; Xu, X.; Ma, S.; Fan, J.; Zhou, Q.; Mao, X.; Qiao, C. Novel 2-Carbonylbenzo[b]thiophene 1,1-Dioxide derivatives as potent inhibitors of STAT3 signaling pathway. ACS Med. Chem. Lett., 2015, 6(9), 1010-1014.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00228] [PMID: 26396689]
[34]
Zhang, W.; Ma, T.; Li, S.; Yang, Y.; Guo, J.; Yu, W.; Kong, L. Antagonizing STAT3 activation with benzo[b]thiophene 1, 1-dioxide based small molecules. Eur. J. Med. Chem., 2017, 125, 538-550.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.068] [PMID: 27718470]
[35]
Zhang, X.; Ba, Q.; Gu, Z.; Guo, D.; Zhou, Y.; Xu, Y.; Wang, H.; Ye, D.; Liu, H. Fluorescent coumarin-artemisinin conjugates as mitochondria-targeting theranostic probes for enhanced anticancer activities. Chemistry, 2015, 21(48), 17415-17421.
[http://dx.doi.org/10.1002/chem.201502543] [PMID: 26458147]
[36]
Yao, H.; Wei, G.; Liu, Y.; Yao, H.; Zhu, Z.; Ye, W.; Wu, X.; Xu, J.; Xu, S. Synthesis, biological evaluation of fluorescent 23-hydroxybetulinic acid probes, and their cellular localization studies. ACS Med. Chem. Lett., 2018, 9(10), 1030-1034.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00321] [PMID: 30344912]
[37]
Cai, G.; Yu, W.; Song, D.; Zhang, W.; Guo, J.; Zhu, J.; Ren, Y.; Kong, L. Discovery of fluorescent coumarin-benzo[b]thiophene 1, 1-dioxide conjugates as mitochondria-targeting antitumor STAT3 inhibitors. Eur. J. Med. Chem., 2019, 174, 236-251.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.024] [PMID: 31048139]
[38]
Ren, X.; Duan, L.; He, Q.; Zhang, Z.; Zhou, Y.; Wu, D.; Pan, J.; Pei, D.; Ding, K. Identification of niclosamide as a new small-molecule inhibitor of the STAT3 signaling pathway. ACS Med. Chem. Lett., 2010, 1(9), 454-459.
[http://dx.doi.org/10.1021/ml100146z] [PMID: 24900231]
[39]
Thilakasiri, P.S.; Dmello, R.S.; Nero, T.L.; Parker, M.W.; Ernst, M.; Chand, A.L. Repurposing of drugs as STAT3 inhibitors for cancer therapy. Semin. Cancer Biol., 2021, 68, 31-46.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.022] [PMID: 31711994]
[40]
Wang, X.; Wu, K.; Fang, L.; Yang, X.; Zheng, N.; Du, Z.; Lu, Y.; Xie, Z.; Liu, Z.; Zuo, Z.; Ye, F. Discovery of N-substituted sulfamoylbenzamide derivatives as novel inhibitors of STAT3 signaling pathway based on Niclosamide. Eur. J. Med. Chem., 2021, 218, 113362.
[http://dx.doi.org/10.1016/j.ejmech.2021.113362] [PMID: 33774344]
[41]
Blechacz, B.R.; Smoot, R.L.; Bronk, S.F.; Werneburg, N.W.; Sirica, A.E.; Gores, G.J. Sorafenib inhibits signal transducer and activator of transcription-3 signaling in cholangiocarcinoma cells by activating the phosphatase shatterproof 2. Hepatology, 2009, 50(6), 1861-1870.
[http://dx.doi.org/10.1002/hep.23214] [PMID: 19821497]
[42]
Yang, F.; Brown, C.; Buettner, R.; Hedvat, M.; Starr, R.; Scuto, A.; Schroeder, A.; Jensen, M.; Jove, R. Sorafenib induces growth arrest and apoptosis of human glioblastoma cells through the dephosphorylation of signal transducers and activators of transcription 3. Mol. Cancer Ther., 2010, 9(4), 953-962.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0947] [PMID: 20371721]
[43]
Chen, K.F.; Tai, W.T.; Huang, J.W.; Hsu, C.Y.; Chen, W.L.; Cheng, A.L.; Chen, P.J.; Shiau, C.W. Sorafenib derivatives induce apoptosis through inhibition of STAT3 independent of Raf. Eur. J. Med. Chem., 2011, 46(7), 2845-2851.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.007] [PMID: 21531053]
[44]
Li, H.; Liu, A.; Zhao, Z.; Xu, Y.; Lin, J.; Jou, D.; Li, C. Fragment-based drug design and drug repositioning using multiple ligand simultaneous docking (MLSD): Identifying celecoxib and template compounds as novel inhibitors of signal transducer and activator of transcription 3 (STAT3). J. Med. Chem., 2011, 54(15), 5592-5596.
[http://dx.doi.org/10.1021/jm101330h] [PMID: 21678971]
[45]
Li, Y.; Rogoff, H.A.; Keates, S.; Gao, Y.; Murikipudi, S.; Mikule, K.; Leggett, D.; Li, W.; Pardee, A.B.; Li, C.J. Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc. Natl. Acad. Sci. USA, 2015, 112(6), 1839-1844.
[http://dx.doi.org/10.1073/pnas.1424171112] [PMID: 25605917]
[46]
Hubbard, J.M.; Grothey, A. Napabucasin: An update on the first-in-class cancer stemness inhibitor. Drugs, 2017, 77(10), 1091-1103.
[http://dx.doi.org/10.1007/s40265-017-0759-4] [PMID: 28573435]
[47]
Bi, S.; Chen, K.; Feng, L.; Fu, G.; Yang, Q.; Deng, M.; Zhao, H.; Li, Z.; Yu, L.; Fang, Z.; Xu, B. Napabucasin (BBI608) eliminate AML cells in vitro and in vivo via inhibition of Stat3 pathway and induction of DNA damage. Eur. J. Pharmacol., 2019, 855, 252-261.
[http://dx.doi.org/10.1016/j.ejphar.2019.05.020] [PMID: 31085238]
[48]
Feng, K.R.; Wang, F.; Shi, X.W.; Tan, Y.X.; Zhao, J.Y.; Zhang, J.W.; Li, Q.H.; Lin, G.Q.; Gao, D.; Tian, P. Design, synthesis and biological evaluation of novel potent STAT3 inhibitors based on BBI608 for cancer therapy. Eur. J. Med. Chem., 2020, 201, 112428.
[http://dx.doi.org/10.1016/j.ejmech.2020.112428] [PMID: 32603980]
[49]
Kim, K.; Kim, S.J.; Han, Y.T.; Hong, S.J.; An, H.; Chang, D.J.; Kim, T.; Lim, B.; Lee, J.; Surh, Y.J.; Suh, Y.G. Identification of small molecule inhibitors of the STAT3 signaling pathway: Insights into their structural features and mode of action. Bioorg. Med. Chem. Lett., 2015, 25(22), 5444-5448.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.063] [PMID: 26392052]
[50]
Park, S.K.; Byun, W.S.; Lee, S.; Han, Y.T.; Jeong, Y.S.; Jang, K.; Chung, S.J.; Lee, J.; Suh, Y.G.; Lee, S.K. A novel small molecule STAT3 inhibitor SLSI-1216 suppresses proliferation and tumor growth of triple-negative breast cancer cells through apoptotic induction. Biochem. Pharmacol., 2020, 178, 114053.
[http://dx.doi.org/10.1016/j.bcp.2020.114053] [PMID: 32450253]
[51]
Poli, G.; Gelain, A.; Porta, F.; Asai, A.; Martinelli, A.; Tuccinardi, T. Identification of a new STAT3 dimerization inhibitor through a pharmacophore-based virtual screening approach. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1011-1017.
[http://dx.doi.org/10.3109/14756366.2015.1079184] [PMID: 26308397]
[52]
Beshay, B.Y.; Abdellatef, A.A.; Loksha, Y.M.; Fahmy, S.M.; Habib, N.S.; Bekhit, A.E.A.; Georghiou, P.E.; Hayakawa, Y.; Bekhit, A.A. Design and synthesis of 2-Substituted-4-benzyl-5-methylimidazoles as new potential Anti-breast cancer agents to inhibit oncogenic STAT3 functions. Bioorg. Chem., 2021, 113, 105033.
[http://dx.doi.org/10.1016/j.bioorg.2021.105033] [PMID: 34089945]
[53]
Huang, M.; Song, K.; Liu, X.; Lu, S.; Shen, Q.; Wang, R.; Gao, J.; Hong, Y.; Li, Q.; Ni, D.; Xu, J.; Chen, G.; Zhang, J. AlloFinder: A strategy for allosteric modulator discovery and allosterome analyses. Nucleic Acids Res., 2018, 46(W1), W451-W458.
[http://dx.doi.org/10.1093/nar/gky374] [PMID: 29757429]
[54]
Huang, W.; Dong, Z.; Wang, F.; Peng, H.; Liu, J.Y.; Zhang, J.T. A small molecule compound targeting STAT3 DNA-binding domain inhibits cancer cell proliferation, migration, and invasion. ACS Chem. Biol., 2014, 9(5), 1188-1196.
[http://dx.doi.org/10.1021/cb500071v] [PMID: 24661007]
[55]
Hou, S.; Yi, Y.W.; Kang, H.J.; Zhang, L.; Kim, H.J.; Kong, Y.; Liu, Y.; Wang, K.; Kong, H.S.; Grindrod, S.; Bae, I.; Brown, M.L. Novel carbazole inhibits phospho-STAT3 through induction of protein-tyrosine phosphatase PTPN6. J. Med. Chem., 2014, 57(15), 6342-6353.
[http://dx.doi.org/10.1021/jm4018042] [PMID: 24978112]
[56]
Shahani, V.M.; Yue, P.; Haftchenary, S.; Zhao, W.; Lukkarila, J.L.; Zhang, X.; Ball, D.; Nona, C.; Gunning, P.T.; Turkson, J. Identification of purine-scaffold small-molecule inhibitors of stat3 activation by QSAR studies. ACS Med. Chem. Lett., 2011, 2(1), 79-84.
[http://dx.doi.org/10.1021/ml100224d] [PMID: 21243039]
[57]
Pallandre, J.R.; Borg, C.; Rognan, D.; Boibessot, T.; Luzet, V.; Yesylevskyy, S.; Ramseyer, C.; Pudlo, M. Novel aminotetrazole derivatives as selective STAT3 non-peptide inhibitors. Eur. J. Med. Chem., 2015, 103, 163-174.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.054] [PMID: 26352675]
[58]
Xu, L.; Shi, L.; Qiu, S.; Chen, S.; Lin, M.; Xiang, Y.; Zhao, C.; Zhu, J.; Shen, L.; Zuo, Z. Design, synthesis, and evaluation of cyanopyridines as anti-colorectal cancer agents via inhibiting stat3 pathway. Drug Des. Devel. Ther., 2019, 13, 3369-3381.
[http://dx.doi.org/10.2147/DDDT.S217800] [PMID: 31576111]
[59]
Huang, R.; Jing, X.; Huang, X.; Pan, Y.; Fang, Y.; Liang, G.; Liao, Z.; Wang, H.; Chen, Z.; Zhang, Y. Bifunctional naphthoquinone aromatic amide-oxime derivatives exert combined immunotherapeutic and antitumor effects through simultaneous targeting of indoleamine-2,3-dioxygenase and signal transducer and activator of transcription 3. J. Med. Chem., 2020, 63(4), 1544-1563.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01386] [PMID: 31999451]
[60]
Peng, T.; Wonganan, O.; Zhang, Z.; Yu, J.; Xi, R.; Cao, Y.; Suksamrarn, A.; Zhang, G.; Wang, F. A 2-benzylmalonate derivative as STAT3 inhibitor suppresses tumor growth in hepatocellular carcinoma by upregulating β-TrCP E3 ubiquitin ligase. Int. J. Mol. Sci., 2021, 22(7), 3354.
[http://dx.doi.org/10.3390/ijms22073354] [PMID: 33805945]
[61]
Aggarwal, B.B.; Shishodia, S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol., 2006, 71(10), 1397-1421.
[http://dx.doi.org/10.1016/j.bcp.2006.02.009] [PMID: 16563357]
[62]
Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci., 2008, 65(11), 1631-1652.
[http://dx.doi.org/10.1007/s00018-008-7452-4] [PMID: 18324353]
[63]
Lin, L.; Deangelis, S.; Foust, E.; Fuchs, J.; Li, C.; Li, P-K.; Schwartz, E.B.; Lesinski, G.B.; Benson, D.; Lü, J.; Hoyt, D.; Lin, J. A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol. Cancer, 2010, 9, 217.
[http://dx.doi.org/10.1186/1476-4598-9-217] [PMID: 20712901]
[64]
Zhang, W.; Guo, J.; Li, S.; Ma, T.; Xu, D.; Han, C.; Liu, F.; Yu, W.; Kong, L. Discovery of monocarbonyl curcumin-BTP hybrids as STAT3 inhibitors for drug-sensitive and drug-resistant breast cancer therapy. Sci. Rep., 2017, 7, 46352.
[http://dx.doi.org/10.1038/srep46352] [PMID: 28397855]
[65]
Sandur, S.K.; Pandey, M.K.; Sung, B.; Aggarwal, B.B. 5-hydroxy-2-methyl-1,4-naphthoquinone, a vitamin K3 analogue, suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase, SHP-1: Potential role in chemosensitization. Mol. Cancer Res., 2010, 8(1), 107-118.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0257] [PMID: 20068065]
[66]
Li, N.; Ou, J.; Bao, N.; Chen, C.; Shi, Z.; Chen, L.; Sun, J. Design, synthesis and biological evaluation of novel plumbagin derivatives as potent antitumor agents with STAT3 inhibition. Bioorg. Chem., 2020, 104, 104208.
[http://dx.doi.org/10.1016/j.bioorg.2020.104208] [PMID: 32919131]
[67]
Zhang, E.H.; Wang, R.F.; Guo, S.Z.; Liu, B. An update on antitumor activity of naturally occurring chalcones. Evid. Based Complement. Alternat. Med., 2013, 2013, 815621.
[http://dx.doi.org/10.1155/2013/815621] [PMID: 23690855]
[68]
Al-Masoudi, N.A.; Kadhim, R.A.; Abdul-Rida, N.A.; Saeed, B.A.; Engel, M. New biaryl-chalcone derivatives of pregnenolone via Suzuki-Miyaura cross-coupling reaction. Synthesis, CYP17 hydroxylase inhibition activity, QSAR, and molecular docking study. Steroids, 2015, 101, 43-50.
[http://dx.doi.org/10.1016/j.steroids.2015.05.011] [PMID: 26051784]
[69]
Liu, Y.C.; Hsieh, C.W.; Wu, C.C.; Wung, B.S. Chalcone inhibits the activation of NF-kappaB and STAT3 in endothelial cells via endogenous electrophile. Life Sci., 2007, 80(15), 1420-1430.
[http://dx.doi.org/10.1016/j.lfs.2006.12.040] [PMID: 17320913]
[70]
Fathi, M.A.A.; Abd El-Hafeez, A.A.; Abdelhamid, D.; Abbas, S.H.; Montano, M.M.; Abdel-Aziz, M. 1,3,4-oxadiazole/chalcone hybrids: Design, synthesis, and inhibition of leukemia cell growth and EGFR, Src, IL-6 and STAT3 activities. Bioorg. Chem., 2019, 84, 150-163.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.032] [PMID: 30502626]
[71]
Lamie, P.F.; Philoppes, J.N. 2-Thiopyrimidine/chalcone hybrids: Design, synthesis, ADMET prediction, and anticancer evaluation as STAT3/STAT5a inhibitors. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 864-879.
[http://dx.doi.org/10.1080/14756366.2020.1740922] [PMID: 32208772]
[72]
Shin, D.S.; Kim, H.N.; Shin, K.D.; Yoon, Y.J.; Kim, S.J.; Han, D.C.; Kwon, B.M. Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells. Cancer Res., 2009, 69(1), 193-202.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2575] [PMID: 19118003]
[73]
Lu, L.; Zhang, S.; Li, C.; Zhou, C.; Li, D.; Liu, P.; Huang, M.; Shen, X. Cryptotanshinone inhibits human glioma cell proliferation in vitro and in vivo through SHP-2-dependent inhibition of STAT3 activation. Cell Death Dis., 2017, 8(5), e2767.
[http://dx.doi.org/10.1038/cddis.2017.174] [PMID: 28492557]
[74]
Wang, Y.; Lu, H.L.; Liu, Y.D.; Yang, L.Y.; Jiang, Q.K.; Zhu, X.J.; Fan, H.N.; Qian, Y. Cryptotanshinone sensitizes antitumor effect of paclitaxel on tongue squamous cell carcinoma growth by inhibiting the JAK/STAT3 signaling pathway. Biomed. Pharmacother., 2017, 95, 1388-1396.
[http://dx.doi.org/10.1016/j.biopha.2017.09.062] [PMID: 28946186]
[75]
Lin, W.S.; Leland, J.V.; Ho, C.T.; Pan, M.H. Occurrence, bioavailability, anti-inflammatory, and anticancer effects of Pterostilbene. J. Agric. Food Chem., 2020, 68(46), 12788-12799.
[http://dx.doi.org/10.1021/acs.jafc.9b07860] [PMID: 32064876]
[76]
Wen, W.; Lowe, G.; Roberts, C.M.; Finlay, J.; Han, E.S.; Glackin, C.A.; Dellinger, T.H. Pterostilbene suppresses ovarian cancer growth via induction of apoptosis and blockade of cell cycle progression involving inhibition of the STAT3 pathway. Int. J. Mol. Sci., 2018, 19(7), E1983.
[http://dx.doi.org/10.3390/ijms19071983] [PMID: 29986501]
[77]
Riche, D.M.; McEwen, C.L.; Riche, K.D.; Sherman, J.J.; Wofford, M.R.; Deschamp, D.; Griswold, M. Analysis of safety from a human clinical trial with pterostilbene. J. Toxicol., 2013, 2013, 463595.
[http://dx.doi.org/10.1155/2013/463595] [PMID: 23431291]
[78]
Lai, C.S.; Yang, G.; Li, S.; Lee, P.S.; Wang, B.N.; Chung, M.C.; Nagabhushanam, K.; Ho, C.T.; Pan, M.H. 3′-Hydroxypterostilbene suppresses colitis-associated tumorigenesis by inhibition of IL-6/STAT3 signaling in mice. J. Agric. Food Chem., 2017, 65(44), 9655-9664.
[http://dx.doi.org/10.1021/acs.jafc.7b03712] [PMID: 29032686]
[79]
Ren, Y.; Li, S.; Zhu, R.; Wan, C.; Song, D.; Zhu, J.; Cai, G.; Long, S.; Kong, L.; Yu, W. Discovery of STAT3 and Histone Deacetylase (HDAC) dual-pathway inhibitors for the treatment of solid cancer. J. Med. Chem., 2021, 64(11), 7468-7482.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00136] [PMID: 34043359]
[80]
Miklossy, G.; Youn, U.J.; Yue, P.; Zhang, M.; Chen, C.H.; Hilliard, T.S.; Paladino, D.; Li, Y.; Choi, J.; Sarkaria, J.N.; Kawakami, J.K.; Wongwiwatthananukit, S.; Chen, Y.; Sun, D.; Chang, L.C.; Turkson, J. Hirsutinolide Series Inhibit Stat3 Activity, Alter GCN1, MAP1B, Hsp105, G6PD, Vimentin, TrxR1, and Importin α-2 expression, and induce antitumor effects against human glioma. J. Med. Chem., 2015, 58(19), 7734-7748.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00686] [PMID: 26331426]
[81]
Lis, C.; Rubner, S.; Roatsch, M.; Berg, A.; Gilcrest, T.; Fu, D.; Nguyen, E.; Schmidt, A.M.; Krautscheid, H.; Meiler, J.; Berg, T. Development of Erasin: A chromone-based STAT3 inhibitor which induces apoptosis in Erlotinib-resistant lung cancer cells. Sci. Rep., 2017, 7(1), 17390.
[http://dx.doi.org/10.1038/s41598-017-17600-x] [PMID: 29234062]
[82]
Wu, K.J.; Huang, J.M.; Zhong, H.J.; Dong, Z.Z.; Vellaisamy, K.; Lu, J.J.; Chen, X.P.; Chiu, P.; Kwong, D.W.J.; Han, Q.B.; Ma, D.L.; Leung, C.H. A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells. PLoS One, 2017, 12(6), e0177123.
[http://dx.doi.org/10.1371/journal.pone.0177123] [PMID: 28570563]
[83]
Wei, M.; Xie, M.; Zhang, Z.; Wei, Y.; Zhang, J.; Pan, H.; Li, B.; Wang, J.; Song, Y.; Chong, C.; Zhao, R.; Wang, J.; Yu, L.; Yang, G.; Yang, C. Design and synthesis of novel Flavone-based histone deacetylase inhibitors antagonizing activation of STAT3 in breast cancer. Eur. J. Med. Chem., 2020, 206, 112677.
[http://dx.doi.org/10.1016/j.ejmech.2020.112677] [PMID: 32823005]
[84]
Li, S.; Zhang, W.; Yang, Y.; Ma, T.; Guo, J.; Wang, S.; Yu, W.; Kong, L. Discovery of oral-available resveratrol-caffeic acid based hybrids inhibiting acetylated and phosphorylated STAT3 protein. Eur. J. Med. Chem., 2016, 124, 1006-1018.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.028] [PMID: 27783972]
[85]
Zeng, B.; Cheng, Y.; Zheng, K.; Liu, S.; Shen, L.; Hu, J.; Li, Y.; Pan, X. Design, synthesis and in vivo anticancer activity of novel parthenolide and micheliolide derivatives as NF-κB and STAT3 inhibitors. Bioorg. Chem., 2021, 111, 104973.
[http://dx.doi.org/10.1016/j.bioorg.2021.104973] [PMID: 34004586]
[86]
Chen, J.; Bai, L.; Bernard, D.; Nikolovska-Coleska, Z.; Gomez, C.; Zhang, J.; Yi, H.; Wang, S. Structure-based design of conformationally constrained, cell-permeable STAT3 inhibitors. ACS Med. Chem. Lett., 2010, 1(2), 85-89.
[http://dx.doi.org/10.1021/ml100010j] [PMID: 20596242]
[87]
Zhou, H.; Bai, L.; Xu, R.; Zhao, Y.; Chen, J.; McEachern, D.; Chinnaswamy, K.; Wen, B.; Dai, L.; Kumar, P.; Yang, C.Y.; Liu, Z.; Wang, M.; Liu, L.; Meagher, J.L.; Yi, H.; Sun, D.; Stuckey, J.A.; Wang, S. Structure-based discovery of sd-36 as a potent, selective, and efficacious PROTAC Degrader of STAT3 Protein. J. Med. Chem., 2019, 62(24), 11280-11300.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01530] [PMID: 31747516]
[88]
Shahani, V.M.; Yue, P.; Fletcher, S.; Sharmeen, S.; Sukhai, M.A.; Luu, D.P.; Zhang, X.; Sun, H.; Zhao, W.; Schimmer, A.D.; Turkson, J.; Gunning, P.T. Design, synthesis, and in vitro characterization of novel hybrid peptidomimetic inhibitors of STAT3 protein. Bioorg. Med. Chem., 2011, 19(5), 1823-1838.
[http://dx.doi.org/10.1016/j.bmc.2010.12.010] [PMID: 21216604]
[89]
Escobar, Z.; Bjartell, A.; Canesin, G.; Evans-Axelsson, S.; Sterner, O.; Hellsten, R.; Johansson, M.H. Preclinical Characterization of 3β-(N-Acetyl l-cysteine methyl ester)-2aβ,3-dihydrogaliellalactone (GPA512), a prodrug of a direct STAT3 inhibitor for the treatment of prostate cancer. J. Med. Chem., 2016, 59(10), 4551-4562.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01814] [PMID: 27111731]
[90]
Liu, A.; Liu, Y.; Xu, Z.; Yu, W.; Wang, H.; Li, C.; Lin, J. Novel small molecule, XZH-5, inhibits constitutive and interleukin-6-induced STAT3 phosphorylation in human rhabdomyosarcoma cells. Cancer Sci., 2011, 102(7), 1381-1387.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01932.x] [PMID: 21435102]
[91]
Daka, P.; Liu, A.; Karunaratne, C.; Csatary, E.; Williams, C.; Xiao, H.; Lin, J.; Xu, Z.; Page, R.C.; Wang, H. Design, synthesis and evaluation of XZH-5 analogues as STAT3 inhibitors. Bioorg. Med. Chem., 2015, 23(6), 1348-1355.
[http://dx.doi.org/10.1016/j.bmc.2015.01.025] [PMID: 25698618]
[92]
Ma, D.L.; Liu, L.J.; Leung, K.H.; Chen, Y.T.; Zhong, H.J.; Chan, D.S.; Wang, H.M.; Leung, C.H. Antagonizing STAT3 dimerization with a rhodium(III) complex. Angew. Chem. Int. Ed. Engl., 2014, 53(35), 9178-9182.
[http://dx.doi.org/10.1002/anie.201404686] [PMID: 24889897]
[93]
Dong, J.; Cheng, X.D.; Zhang, W.D.; Qin, J.J. Recent update on development of small-molecule stat3 inhibitors for cancer therapy: From phosphorylation inhibition to protein degradation. J. Med. Chem., 2021, 64(13), 8884-8915.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00629] [PMID: 34170703]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy