Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Cysteine Metabolism in Tumor Redox Homeostasis

Author(s): Yanmei Fan, Xiao Tan, Hongcheng Zhao, Xiancong Tu, Xiaowen Liu* and Yueqing Wang*

Volume 30, Issue 16, 2023

Published on: 22 September, 2022

Page: [1813 - 1823] Pages: 11

DOI: 10.2174/0929867329666220817141227

Price: $65

Abstract

Cysteine (Cys) is a semi-essential nutrient amino acid that plays an important role in cells through endogenous production and various transport systems. Intracellular Cys can be used as a precursor of protein synthesis to maintain cell homeostasis and to generate sulfur-containing substances, including glutathione (GSH), hydrogen sulfide (H2S), and taurine. There have been quite a few reports that Cys is related to tumor occurrence and development, and its level is closely related to tumor proliferation, invasion, and metastasis. Moreover, it helps in maintaining the tumor redox balance and increasing drug resistance. This review aims to summarize the production and metabolism of Cys and its role in tumors, with special emphasis on the potential therapeutic value of Cys in tumors to improve the quality of life of cancer patients.

Keywords: Cysteine, metabolism, tumor, redox homeostasis, tumor treatment, glutathione.

[1]
Zhang, T.; Bauer, C.; Newman, A.C.; Uribe, A.H.; Athineos, D.; Blyth, K.; Maddocks, O.D.K. Polyamine pathway activity promotes cysteine essentiality in cancer cells. Nat. Metab., 2020, 2(10), 1062-1076.
[http://dx.doi.org/10.1038/s42255-020-0253-2] [PMID: 32747794]
[2]
Alvarez, S.W.; Sviderskiy, V.O.; Terzi, E.M.; Papagiannakopoulos, T.; Moreira, A.L.; Adams, S.; Sabatini, D.M.; Birsoy, K.; Possemato, R. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature, 2017, 551(7682), 639-643.
[http://dx.doi.org/10.1038/nature24637] [PMID: 29168506]
[3]
Wu, G.; Fang, Y.Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione metabolism and its implications for health. J. Nutr., 2004, 134(3), 489-492.
[http://dx.doi.org/10.1093/jn/134.3.489] [PMID: 14988435]
[4]
Cramer, S.L.; Saha, A.; Liu, J.; Tadi, S.; Tiziani, S.; Yan, W.; Triplett, K.; Lamb, C.; Alters, S.E.; Rowlinson, S.; Zhang, Y.J.; Keating, M.J.; Huang, P.; DiGiovanni, J.; Georgiou, G.; Stone, E. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med., 2017, 23(1), 120-127.
[http://dx.doi.org/10.1038/nm.4232] [PMID: 27869804]
[5]
Zhu, J.; Berisa, M.; Schwörer, S.; Qin, W.; Cross, J.R.; Thompson, C.B. Transsulfuration activity can support cell growth upon extracellular cysteine limitation. Cell Metab., 2019, 30(5), 865-876.e5.
[http://dx.doi.org/10.1016/j.cmet.2019.09.009] [PMID: 31607565]
[6]
Xu, Q.; Li, Y.; Gao, X.; Kang, K.; Williams, J.G.; Tong, L.; Liu, J.; Ji, M.; Deterding, L.J.; Tong, X.; Locasale, J.W.; Li, L.; Shats, I.; Li, X. HNF4α regulates sulfur amino acid metabolism and confers sensitivity to methionine restriction in liver cancer. Nat. Commun., 2020, 11(1), 3978.
[http://dx.doi.org/10.1038/s41467-020-17818-w] [PMID: 32770044]
[7]
Yu, X.; Long, Y.C. Crosstalk between cystine and glutathione is critical for the regulation of amino acid signaling pathways and ferroptosis. Sci. Rep., 2016, 6(1), 30033.
[http://dx.doi.org/10.1038/srep30033] [PMID: 27425006]
[8]
Scalise, M.; Pochini, L.; Console, L.; Losso, M.A.; Indiveri, C. The human slc1a5 (asct2) amino acid transporter: From function to structure and role in cell biology. Front. Cell Dev. Biol., 2018, 6, 96.
[http://dx.doi.org/10.3389/fcell.2018.00096] [PMID: 30234109]
[9]
Watts, S.D.; Torres-Salazar, D.; Divito, C.B.; Amara, S.G. Cysteine transport through excitatory amino acid transporter 3 (EAAT3). PLoS One, 2014, 9(10), e109245.
[http://dx.doi.org/10.1371/journal.pone.0109245] [PMID: 25275463]
[10]
Bonifácio, V.D.B.; Pereira, S.A.; Serpa, J.; Vicente, J.B. Cysteine metabolic circuitries: Druggable targets in cancer. Br. J. Cancer, 2021, 124(5), 862-879.
[http://dx.doi.org/10.1038/s41416-020-01156-1] [PMID: 33223534]
[11]
McBean, G.J. The transsulfuration pathway: A source of cysteine for glutathione in astrocytes. Amino Acids, 2012, 42(1), 199-205.
[http://dx.doi.org/10.1007/s00726-011-0864-8] [PMID: 21369939]
[12]
Paul, B.D.; Snyder, S.H. H 2 S: A novel gasotransmitter that signals by sulfhydration. Trends Biochem. Sci., 2015, 40(11), 687-700.
[http://dx.doi.org/10.1016/j.tibs.2015.08.007] [PMID: 26439534]
[13]
Banerjee, R.; Zou, C. Redox regulation and reaction mechanism of human cystathionine-β-synthase: A PLP-dependent hemesensor protein. Arch. Biochem. Biophys., 2005, 433(1), 144-156.
[http://dx.doi.org/10.1016/j.abb.2004.08.037] [PMID: 15581573]
[14]
Jones, C.L.; Stevens, B.M.; D’Alessandro, A.; Culp-Hill, R.; Reisz, J.A.; Pei, S.; Gustafson, A.; Khan, N.; DeGregori, J.; Pollyea, D.A.; Jordan, C.T. Cysteine depletion targets leukemia stem cells through inhibition of electron transport complex II. Blood, 2019, 134(4), 389-394.
[http://dx.doi.org/10.1182/blood.2019898114] [PMID: 31101624]
[15]
Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A. Transport of cystine across x C − antiporter. Arch. Biochem. Biophys., 2019, 664, 117-126.
[http://dx.doi.org/10.1016/j.abb.2019.01.039] [PMID: 30738038]
[16]
Martis, R.M.; Knight, L.J.; Donaldson, P.J.; Lim, J.C. Identification, expression, and roles of the cystine/glutamate antiporter in ocular tissues. Oxid. Med. Cell. Longev., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/4594606] [PMID: 32655769]
[17]
Dixon, S.J.; Patel, D.N.; Welsch, M.; Skouta, R.; Lee, E.D.; Hayano, M.; Thomas, A.G.; Gleason, C.E.; Tatonetti, N.P.; Slusher, B.S.; Stockwell, B.R. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife, 2014, 3, e02523.
[http://dx.doi.org/10.7554/eLife.02523] [PMID: 24844246]
[18]
Lewerenz, J.; Hewett, S.J.; Huang, Y.; Lambros, M.; Gout, P.W.; Kalivas, P.W.; Massie, A.; Smolders, I.; Methner, A.; Pergande, M.; Smith, S.B.; Ganapathy, V.; Maher, P. The cystine/glutamate antiporter system x(c)(-) in health and disease: From molecular mechanisms to novel therapeutic opportunities. Antioxid. Redox Signal., 2013, 18(5), 522-555.
[http://dx.doi.org/10.1089/ars.2011.4391] [PMID: 22667998]
[19]
Koppula, P.; Zhang, Y.; Zhuang, L.; Gan, B. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun. (Lond.), 2018, 38(1), 12.
[http://dx.doi.org/10.1186/s40880-018-0288-x] [PMID: 29764521]
[20]
Hanigan, M.H. Gamma-glutamyl transpeptidase. Adv. Cancer Res., 2014, 122, 103-141.
[http://dx.doi.org/10.1016/B978-0-12-420117-0.00003-7] [PMID: 24974180]
[21]
Zhang, H.; Jay Forman, H.; Choi, J. Gamma-glutamyl transpeptidase in glutathione biosynthesis. Methods Enzymol., 2005, 401, 468-483.
[http://dx.doi.org/10.1016/S0076-6879(05)01028-1] [PMID: 16399403]
[22]
Ndrepepa, G.; Colleran, R.; Kastrati, A. Gamma-glutamyl transferase and the risk of atherosclerosis and coronary heart disease. Clin. Chim. Acta, 2018, 476, 130-138.
[http://dx.doi.org/10.1016/j.cca.2017.11.026] [PMID: 29175647]
[23]
Lieberman, M.W.; Wiseman, A.L.; Shi, Z.Z.; Carter, B.Z.; Barrios, R.; Ou, C.N.; Chévez-Barrios, P.; Wang, Y.; Habib, G.M.; Goodman, J.C.; Huang, S.L.; Lebovitz, R.M.; Matzuk, M.M. Growth retardation and cysteine deficiency in gamma-glutamyl transpeptidase-deficient mice. Proc. Natl. Acad. Sci. USA, 1996, 93(15), 7923-7926.
[http://dx.doi.org/10.1073/pnas.93.15.7923] [PMID: 8755578]
[24]
Terzyan, S.S.; Burgett, A.W.G.; Heroux, A.; Smith, C.A.; Mooers, B.H.M.; Hanigan, M.H. Human γ-glutamyl transpeptidase 1. J. Biol. Chem., 2015, 290(28), 17576-17586.
[http://dx.doi.org/10.1074/jbc.M115.659680] [PMID: 26013825]
[25]
Combs, J.A.; DeNicola, G.M. The non-essential amino acid cysteine becomes essential for tumor proliferation and survival. Cancers (Basel), 2019, 11(5), 678.
[http://dx.doi.org/10.3390/cancers11050678] [PMID: 31100816]
[26]
Paul, B.D.; Sbodio, J.I.; Snyder, S.H. Cysteine metabolism in neuronal redox homeostasis. Trends Pharmacol. Sci., 2018, 39(5), 513-524.
[http://dx.doi.org/10.1016/j.tips.2018.02.007] [PMID: 29530337]
[27]
Yin, J.; Ren, W.; Yang, G.; Duan, J.; Huang, X.; Fang, R.; Li, C.; Li, T.; Yin, Y.; Hou, Y.; Kim, S.W.; Wu, G. L-Cysteine metabolism and its nutritional implications. Mol. Nutr. Food Res., 2016, 60(1), 134-146.
[http://dx.doi.org/10.1002/mnfr.201500031] [PMID: 25929483]
[28]
Peter, E.A.; Shen, X.; Shah, S.H.; Pardue, S.; Glawe, J.D.; Zhang, W.W.; Reddy, P.; Akkus, N.I.; Varma, J.; Kevil, C.G. Plasma free H2S levels are elevated in patients with cardiovascular disease. J. Am. Heart Assoc., 2013, 2(5), e000387.
[http://dx.doi.org/10.1161/JAHA.113.000387] [PMID: 24152982]
[29]
Bełtowski, J. Synthesis, metabolism, and signaling mechanisms of hydrogen sulfide: An overview. Methods Mol. Biol., 2019, 2007, 1-8.
[http://dx.doi.org/10.1007/978-1-4939-9528-8_1] [PMID: 31148102]
[30]
Cuevasanta, E.; Möller, M.N.; Alvarez, B. Biological chemistry of hydrogen sulfide and persulfides. Arch. Biochem. Biophys., 2017, 617, 9-25.
[http://dx.doi.org/10.1016/j.abb.2016.09.018] [PMID: 27697462]
[31]
Stipanuk, M.H. Sulfur amino acid metabolism: Pathways for production and removal of homocysteine and cysteine. Annu. Rev. Nutr., 2004, 24(1), 539-577.
[http://dx.doi.org/10.1146/annurev.nutr.24.012003.132418] [PMID: 15189131]
[32]
Shibuya, N.; Kimura, H. Production of hydrogen sulfide from d-cysteine and its therapeutic potential. Front. Endocrinol. (Lausanne), 2013, 4, 87.
[http://dx.doi.org/10.3389/fendo.2013.00087] [PMID: 23882260]
[33]
Al-Awadi, F.; Yang, M.; Tan, Y.; Han, Q.; Li, S.; Hoffman, R.M. Human tumor growth in nude mice is associated with decreased plasma cysteine and homocysteine. Anticancer Res., 2008, 28(5A), 2541-2544.
[PMID: 19035276]
[34]
Nunes, S.C.; Ramos, C.; Lopes-Coelho, F.; Sequeira, C.O.; Silva, F.; Gouveia-Fernandes, S.; Rodrigues, A.; Guimarães, A.; Silveira, M.; Abreu, S.; Santo, V.E.; Brito, C.; Félix, A.; Pereira, S.A.; Serpa, J. Cysteine allows ovarian cancer cells to adapt to hypoxia and to escape from carboplatin cytotoxicity. Sci. Rep., 2018, 8(1), 9513.
[http://dx.doi.org/10.1038/s41598-018-27753-y] [PMID: 29934500]
[35]
Badgley, M.A.; Kremer, D.M.; Maurer, H.C.; DelGiorno, K.E.; Lee, H.J.; Purohit, V.; Sagalovskiy, I.R.; Ma, A.; Kapilian, J.; Firl, C.E.M.; Decker, A.R.; Sastra, S.A.; Palermo, C.F.; Andrade, L.R.; Sajjakulnukit, P.; Zhang, L.; Tolstyka, Z.P.; Hirschhorn, T.; Lamb, C.; Liu, T.; Gu, W.; Seeley, E.S.; Stone, E.; Georgiou, G.; Manor, U.; Iuga, A.; Wahl, G.M.; Stockwell, B.R.; Lyssiotis, C.A.; Olive, K.P. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science, 2020, 368(6486), 85-89.
[http://dx.doi.org/10.1126/science.aaw9872] [PMID: 32241947]
[36]
Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol., 2018, 217(7), 2291-2298.
[http://dx.doi.org/10.1083/jcb.201804161] [PMID: 29915025]
[37]
Harris, I.S.; Treloar, A.E.; Inoue, S.; Sasaki, M.; Gorrini, C.; Lee, K.C.; Yung, K.Y.; Brenner, D.; Knobbe-Thomsen, C.B.; Cox, M.A.; Elia, A.; Berger, T.; Cescon, D.W.; Adeoye, A.; Brüstle, A.; Molyneux, S.D.; Mason, J.M.; Li, W.Y.; Yamamoto, K.; Wakeham, A.; Berman, H.K.; Khokha, R.; Done, S.J.; Kavanagh, T.J.; Lam, C.W.; Mak, T.W. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell, 2015, 27(2), 211-222.
[http://dx.doi.org/10.1016/j.ccell.2014.11.019] [PMID: 25620030]
[38]
Geck, R.C.; Toker, A. Nonessential amino acid metabolism in breast cancer. Adv. Biol. Regul., 2016, 62, 11-17.
[http://dx.doi.org/10.1016/j.jbior.2016.01.001] [PMID: 26838061]
[39]
Eagle, H. The specific amino acid requirements of a human carcinoma cell (Stain HeLa) in tissue culture. J. Exp. Med., 1955, 102(1), 37-48.
[http://dx.doi.org/10.1084/jem.102.1.37] [PMID: 14392239]
[40]
Eagle, H. Nutrition needs of mammalian cells in tissue culture. Science, 1955, 122(3168), 501-504.
[http://dx.doi.org/10.1126/science.122.3168.501] [PMID: 13255879]
[41]
Noda, T.; Iwakiri, R.; Fujimoto, K.; Rhoads, C.A.; Aw, T.Y. Exogenous cysteine and cystine promote cell proliferation in CaCo-2 cells. Cell Prolif., 2002, 35(2), 117-129.
[http://dx.doi.org/10.1046/j.1365-2184.2002.00229.x] [PMID: 11952646]
[42]
Sayin, V.I.; Ibrahim, M.X.; Larsson, E.; Nilsson, J.A.; Lindahl, P.; Bergo, M.O. Antioxidants accelerate lung cancer progression in mice. Sci. Transl. Med., 2014, 6(221), 221ra15.
[http://dx.doi.org/10.1126/scitranslmed.3007653] [PMID: 24477002]
[43]
Hirschhorn, T.; Stockwell, B.R. The development of the concept of ferroptosis. Free Radic. Biol. Med., 2019, 133, 130-143.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.043] [PMID: 30268886]
[44]
Raj, L.; Ide, T.; Gurkar, A.U.; Foley, M.; Schenone, M.; Li, X.; Tolliday, N.J.; Golub, T.R.; Carr, S.A.; Shamji, A.F.; Stern, A.M.; Mandinova, A.; Schreiber, S.L.; Lee, S.W. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature, 2011, 475(7355), 231-234.
[http://dx.doi.org/10.1038/nature10167] [PMID: 21753854]
[45]
Tardiolo, G.; Bramanti, P.; Mazzon, E. Overview on the effects of n-acetylcysteine in neurodegenerative diseases. Molecules, 2018, 23(12), 3305.
[http://dx.doi.org/10.3390/molecules23123305] [PMID: 30551603]
[46]
Le Gal, K.; Ibrahim, M.X.; Wiel, C.; Sayin, V.I.; Akula, M.K.; Karlsson, C.; Dalin, M.G.; Akyürek, L.M.; Lindahl, P.; Nilsson, J.; Bergo, M.O. Antioxidants can increase melanoma metastasis in mice. Sci. Transl. Med., 2015, 7(308), 308re8.
[http://dx.doi.org/10.1126/scitranslmed.aad3740] [PMID: 26446958]
[47]
Piskounova, E.; Agathocleous, M.; Murphy, M.M.; Hu, Z.; Huddlestun, S.E.; Zhao, Z.; Leitch, A.M.; Johnson, T.M.; DeBerardinis, R.J.; Morrison, S.J. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature, 2015, 527(7577), 186-191.
[http://dx.doi.org/10.1038/nature15726] [PMID: 26466563]
[48]
Klaunig, J.E. Oxidative stress and cancer. Curr. Pharm. Des., 2019, 24(40), 4771-4778.
[http://dx.doi.org/10.2174/1381612825666190215121712] [PMID: 30767733]
[49]
Kang, Y.P.; Mockabee-Macias, A.; Jiang, C.; Falzone, A.; Prieto-Farigua, N.; Stone, E.; Harris, I.S.; DeNicola, G.M. Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell Metab., 2021, 33(1), 174-189.e7.
[http://dx.doi.org/10.1016/j.cmet.2020.12.007] [PMID: 33357455]
[50]
Cross, J.V.; Templeton, D.J. Regulation of signal transduction through protein cysteine oxidation. Antioxid. Redox Signal., 2006, 8(9-10), 1819-1827.
[http://dx.doi.org/10.1089/ars.2006.8.1819] [PMID: 16987034]
[51]
Li, Y.; Zhao, P.; Gong, T.; Wang, H.; Jiang, X.; Cheng, H.; Liu, Y.; Wu, Y.; Bu, W. Redox dyshomeostasis strategy for hypoxic tumor therapy based on dnazyme‐loaded electrophilic ZIFs. Angew. Chem. Int. Ed., 2020, 59(50), 22537-22543.
[http://dx.doi.org/10.1002/anie.202003653] [PMID: 32856362]
[52]
Sosa, V.; Moliné, T.; Somoza, R.; Paciucci, R.; Kondoh, H.; LLeonart, M.E. Oxidative stress and cancer: An overview. Ageing Res. Rev., 2013, 12(1), 376-390.
[http://dx.doi.org/10.1016/j.arr.2012.10.004] [PMID: 23123177]
[53]
Kim, E.H.; Shin, D.; Lee, J.; Jung, A.R.; Roh, J.L. CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer Lett., 2018, 432, 180-190.
[http://dx.doi.org/10.1016/j.canlet.2018.06.018] [PMID: 29928961]
[54]
Ji, X.; Qian, J.; Rahman, S.M.J.; Siska, P.J.; Zou, Y.; Harris, B.K.; Hoeksema, M.D.; Trenary, I.A.; Heidi, C.; Eisenberg, R.; Rathmell, J.C.; Young, J.D.; Massion, P.P. xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression. Oncogene, 2018, 37(36), 5007-5019.
[http://dx.doi.org/10.1038/s41388-018-0307-z] [PMID: 29789716]
[55]
Sbodio, J.I.; Snyder, S.H.; Paul, B.D. Regulators of the transsulfuration pathway. Br. J. Pharmacol., 2019, 176(4), 583-593.
[http://dx.doi.org/10.1111/bph.14446] [PMID: 30007014]
[56]
Guo, H.; Gai, J.W.; Wang, Y.; Jin, H.F.; Du, J.B.; Jin, J. Characterization of hydrogen sulfide and its synthases, cystathionine β-synthase and cystathionine γ-lyase, in human prostatic tissue and cells. Urology, 2012, 79(2), 483.e1-483.e5.
[http://dx.doi.org/10.1016/j.urology.2011.10.013] [PMID: 22310774]
[57]
Akihiko, T.; Yoshiko, M.; Nobuhiko, K. Characterization of human serum γ-glutamyltranspeptidase. Clin. Chim. Acta, 1980, 104(3), 361-366.
[http://dx.doi.org/10.1016/0009-8981(80)90394-0] [PMID: 6104548]
[58]
Pompella, A.; Corti, A.; Paolicchi, A.; Giommarelli, C.; Zunino, F. γ-Glutamyltransferase, redox regulation and cancer drug resistance. Curr. Opin. Pharmacol., 2007, 7(4), 360-366.
[http://dx.doi.org/10.1016/j.coph.2007.04.004] [PMID: 17613273]
[59]
Wang, Q.; Shu, X.; Dong, Y.; Zhou, J.; Teng, R.; Shen, J.; Chen, Y.; Dong, M.; Zhang, W.; Huang, Y.; Xie, S.; Wei, Q.; Zhao, W.; Chen, W.; Yuan, X.; Qi, X.; Wang, L. Tumor and serum gamma-glutamyl transpeptidase, new prognostic and molecular interpretation of an old biomarker in gastric cancer. Oncotarget, 2017, 8(22), 36171-36184.
[http://dx.doi.org/10.18632/oncotarget.15609] [PMID: 28404903]
[60]
Hong, T.C.; Yang, H.C.; Chen, C.L.; Kao, J.H.; Liu, C.J.; Chen, M.J.; Wang, H.Y.; Kuo, Y.C.; Yu, L.Y.; Hu, K.C. Relationship between serum gamma-glutamyl transferase level and colorectal adenoma. PLoS One, 2020, 15(10), e0240445.
[http://dx.doi.org/10.1371/journal.pone.0240445] [PMID: 33048943]
[61]
Wei, J.R.; Dong, J.; Li, L. Cancer-associated fibroblasts-derived gamma-glutamyltransferase 5 promotes tumor growth and drug resistance in lung adenocarcinoma. Aging (Albany NY), 2020, 12(13), 13220-13233.
[http://dx.doi.org/10.18632/aging.103429] [PMID: 32640421]
[62]
Hanigan, M.H.; Gallagher, B.C.; Townsend, D.M.; Gabarra, V. γ-glutamyl transpeptidase accelerates tumor growth and increases the resistance of tumors to cisplatin in vivo. Carcinogenesis, 1999, 20(4), 553-559.
[http://dx.doi.org/10.1093/carcin/20.4.553] [PMID: 10223181]
[63]
Alanazi, A.M.; Mostafa, G.A.E.; Al-Badr, A.A. Glutathione. Profiles Drug Subst. Excip. Relat. Methodol., 2015, 40, 43-158.
[http://dx.doi.org/10.1016/bs.podrm.2015.02.001] [PMID: 26051685]
[64]
Akaike, T.; Ida, T.; Wei, F.Y.; Nishida, M.; Kumagai, Y.; Alam, M.M.; Ihara, H.; Sawa, T.; Matsunaga, T.; Kasamatsu, S.; Nishimura, A.; Morita, M.; Tomizawa, K.; Nishimura, A.; Watanabe, S.; Inaba, K.; Shima, H.; Tanuma, N.; Jung, M.; Fujii, S.; Watanabe, Y.; Ohmuraya, M.; Nagy, P.; Feelisch, M.; Fukuto, J.M.; Motohashi, H. Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nat. Commun., 2017, 8(1), 1177.
[http://dx.doi.org/10.1038/s41467-017-01311-y] [PMID: 29079736]
[65]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[66]
Gout, P.W.; Buckley, A.R.; Simms, C.R.; Bruchovsky, N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the xc − cystine transporter: A new action for an old drug. Leukemia, 2001, 15(10), 1633-1640.
[http://dx.doi.org/10.1038/sj.leu.2402238] [PMID: 11587223]
[67]
Louandre, C.; Ezzoukhry, Z.; Godin, C.; Barbare, J.C.; Mazière, J.C.; Chauffert, B.; Galmiche, A. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int. J. Cancer, 2013, 133(7), 1732-1742.
[http://dx.doi.org/10.1002/ijc.28159] [PMID: 23505071]
[68]
Shin, S.S.; Jeong, B.S.; Wall, B.A.; Li, J.; Shan, N.L.; Wen, Y.; Goydos, J.S.; Chen, S. Participation of xCT in melanoma cell proliferation in vitro and tumorigenesis in vivo. Oncogenesis, 2018, 7(11), 86.
[http://dx.doi.org/10.1038/s41389-018-0098-7] [PMID: 30425240]
[69]
Cao, X.; Ding, L.; Xie, Z.; Yang, Y.; Whiteman, M.; Moore, P.K.; Bian, J.S. A review of hydrogen sulfide synthesis, metabolism, and measurement: Is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid. Redox Signal., 2019, 31(1), 1-38.
[http://dx.doi.org/10.1089/ars.2017.7058] [PMID: 29790379]
[70]
Tong, X.; Li, T.; Long, R.; Guo, Y.; Wu, L.; Shi, S. Determination of the activity of γ-glutamyl transpeptidase and of its inhibitors by using the inner filter effect on the fluorescence of nitrogen-doped carbon dots. Mikrochim. Acta, 2020, 187(3), 182.
[http://dx.doi.org/10.1007/s00604-020-4160-8] [PMID: 32086563]
[71]
Zou, T.; Lum, C.T.; Lok, C.N.; Zhang, J.J.; Che, C.M. Chemical biology of anticancer gold( III ) and gold( I ) complexes. Chem. Soc. Rev., 2015, 44(24), 8786-8801.
[http://dx.doi.org/10.1039/C5CS00132C] [PMID: 25868756]
[72]
Liu, J.; Zhang, B.; Chai, Y.; Xu, Y.; Xing, C.; Wang, X. Fluvastatin attenuated the effect of expression of β1 integrin in PAN-treated podocytes by inhibiting reactive oxygen species. Mol. Cell. Biochem., 2015, 398(1-2), 207-215.
[http://dx.doi.org/10.1007/s11010-014-2220-2] [PMID: 25240415]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy