Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Design Synthesis and in vitro Evaluation of Tacrine-flavone Hybrids as Multifunctional Cholinesterase Inhibitors for Alzheimer’s Disease

Author(s): R. S. Remya*, N. Ramalakshmi, C.N. Nalini, V. Niraimathi and S. Amuthalakshmi

Volume 18, Issue 4, 2022

Published on: 16 September, 2022

Page: [271 - 292] Pages: 22

DOI: 10.2174/1573409918666220804153754

Price: $65

Abstract

Background: Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder. The multifactorial etiology of AD has led to the design of multitarget directed ligands (MTDL) for AD. Tacrine an acetylcholinesterase (AChE) inhibitor was the first FDA approved drug for AD but is discontinued due to hepatotoxicity.

Objective: Present research focused on incorporating a flavone to the tacrine nucleus to enhance the anti-Alzheimer’s property of the tacrine with the synergistic effect of flavone which is a very good antioxidant. It is expected that the antioxidant property and hepatoprotective nature of flavones will reduce the hepatotoxic side effect of tacrine.

Methods: We designed and synthesized ten flavone substituted tacrine derivatives and evaluated for in vitro AChE and BuChE inhibitoy activity by modified Ellman’s method using eeAChE and eqBuChE. In vitro antioxidant activity was studied by DPPH radical scavenging assay. Molecular modeling studies were conducted in Schrodinger and AutoDock Vina with TcAChE(PDB ID:1H23),hAChE(PDB ID:4EY7) and hBuChE(PDB ID:4TPK).

Results: All the compounds exhibited potent inhibitory effect on AChE and BuChE with IC50 values in μM concentration. The compounds exhibited very good antioxidant activity in DPPH radical scavenging assay. Among the compounds the compound AF1 showed highest activity with IC50 value of 0.93 μM for AChE and 1.48 μM for BuChE and also showed significant antioxidant activity (2.6 nM). A correlation graph was plotted for IC 50 values vs Dock score and the results are promising with r2 values of 0.62 and 0.73 for AChE and BuChE inhibition respectively which proved the reliability of docking approaches.

Conclusion: The results highlighted the multifunctional nature of the novel Tacrine-Flavone hybrids and they may be promising MTDL for AD.

Keywords: Alzheimer’s disease, cholinesterase, acetylcholinesterase, butyrylcholinesterase, tacrine, flavone, antioxidant.

Graphical Abstract

[1]
Wu, W.Y.; Dai, Y.C.; Li, N.G.; Dong, Z.X.; Gu, T.; Shi, Z.H.; Xue, X.; Tang, Y.P.; Duan, J.A. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 572-587.
[http://dx.doi.org/10.1080/14756366.2016.1210139] [PMID: 28133981]
[2]
Zawada, K.; Czarnecka, K.; Girek, M. New hybrids of tacrine and indomethacin as multifunctional acetylcholinesterase inhibitors. Chem. Pap., 2021, 75, 249-264.
[http://dx.doi.org/10.1007/s11696-020-01295-y]
[3]
Swerdlow, R.H. Pathogenesis of Alzheimer’s disease. Clin. Interv. Aging, 2007, 2(3), 347-359.
[PMID: 18044185]
[4]
Kang, D.; Song, Y.; Zhan, P.; Zhang, Q.; Liu, X. Design synthesis and acetylcholinesterase inhibition assay of novel 9-(1-(substituted- ben-zyl)piperidin-4-yl)-2-Chloo-9H-purin-6-amino derivatives. J. Chem., 2013, 9.
[5]
Yáñez, M.; Viña, D. Dual inhibitors of monoamine oxidase and cholinesterase for the treatment of Alzheimer disease. Curr. Top. Med. Chem., 2013, 13(14), 1692-1706.
[http://dx.doi.org/10.2174/15680266113139990120] [PMID: 23889051]
[6]
Liu, H.R.; Liu, X.J.; Fan, H.Q.; Tang, J.J.; Gao, X.H.; Liu, W.K. Design, synthesis and pharmacological evaluation of chalcone derivatives as acetylcholinesterase inhibitors. Bioorg. Med. Chem., 2014, 22(21), 6124-6133.
[http://dx.doi.org/10.1016/j.bmc.2014.08.033] [PMID: 25260958]
[7]
Ballard, C.G.; Greig, N.H.; Guillozet-Bongaarts, A.L.; Enz, A.; Darvesh, S. Cholinesterases: Roles in the brain during health and disease. Curr. Alzheimer Res., 2005, 2(3), 307-318.
[http://dx.doi.org/10.2174/1567205054367838] [PMID: 15974896]
[8]
Tripathi, R.K.P.; M., Sasi V.; Gupta, S.K.; Krishnamurthy, S.; Ayyannan, S.R. Design, synthesis, and pharmacological evaluation of 2-amino-5-nitrothiazole derived semicarbazones as dual inhibitors of monoamine oxidase and cholinesterase: Effect of the size of aryl binding site. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 37-57.
[http://dx.doi.org/10.1080/14756366.2017.1389920] [PMID: 29098902]
[9]
Giacobini, E. Cholinesterase inhibitors: New roles and therapeutic alternatives. Pharmacol. Res., 2004, 50(4), 433-440.
[http://dx.doi.org/10.1016/j.phrs.2003.11.017] [PMID: 15304240]
[10]
Narayanan, S.E.; Narayanan, H.; Mukundan, M. Design, synthesis and biological evaluation of substituted pyrazoles endowed with bromin-ated 4-methyl 7-hydroxy coumarin as new scaffolds against Alzheimer’s disease. Futur J. Pharm. Sci., 2021, 7, 161.
[http://dx.doi.org/10.1186/s43094-021-00278-4]
[11]
Tasker, A.; Perry, E.K.; Ballard, C.G. Butyrylcholinesterase: Impact on symptoms and progression of cognitive impairment. Expert Rev. Neurother., 2005, 5(1), 101-106.
[http://dx.doi.org/10.1586/14737175.5.1.101] [PMID: 15853480]
[12]
Panek, D.; Więckowska, A.; Pasieka, A.; Godyń, J.; Jończyk, J.; Bajda, M.; Knez, D.; Gobec, S.; Malawska, B. Design, synthesis, and biologi-cal evaluation of 2-(benzylamino-2-hydroxyalkyl)isoindoline-1,3-diones derivatives as potential disease-modifying multifunctional anti-alzheimer agents. Molecules, 2018, 23(2), 347.
[http://dx.doi.org/10.3390/molecules23020347] [PMID: 29414887]
[13]
Giacobini, E. Cholinergic function and Alzheimer’s disease. Int. J. Geriatr. Psychiatry, 2003, 18(Suppl. 1), S1-S5.
[http://dx.doi.org/10.1002/gps.935] [PMID: 12973744]
[14]
Lane, R.M.; Potkin, S.G.; Enz, A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol., 2006, 9(1), 101-124.
[http://dx.doi.org/10.1017/S1461145705005833] [PMID: 16083515]
[15]
Butini, S.; Guarino, E.; Campiani, G.; Brindisi, M.; Coccone, S.S.; Fiorini, I.; Novellino, E.; Belinskaya, T.; Saxena, A.; Gemma, S. Tacrine based human cholinesterase inhibitors: Synthesis of peptidic-tethered derivatives and their effect on potency and selectivity. Bioorg. Med. Chem. Lett., 2008, 18(19), 5213-5216.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.076] [PMID: 18786825]
[16]
Gargari, M.S.; Mivehroud, M.H.; Hemmati, S.; Mojarrad, J.S.; Notash, B. Design, synthesis, and biological evaluation of novel indanone-based hybrids as multifunctional cholinesterase inhibitors for Alzheimer’s disease. J. Mol. Struct., 2021, 1229, 129787.
[http://dx.doi.org/10.1016/j.molstruc.2020.129787]
[17]
Zhang, C.; Du, Q.Y.; Chen, L.D.; Wu, W.H.; Liao, S.Y.; Yu, L.H.; Liang, X.T. Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as multi-targeted compounds against Alzheimer’s disease. Eur. J. Med. Chem., 2016, 116, 200-209.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.077] [PMID: 27061983]
[18]
Decker, M.; Kraus, B.; Heilmann, J. Design, synthesis and pharmacological evaluation of hybrid molecules out of quinazolinimines and lipo-ic acid lead to highly potent and selective butyrylcholinesterase inhibitors with antioxidant properties. Bioorg. Med. Chem., 2008, 16(8), 4252-4261.
[http://dx.doi.org/10.1016/j.bmc.2008.02.083] [PMID: 18343673]
[19]
Geula, C.; Darvesh, S. Butyrylcholinesterase, cholinergic neurotransmission and the pathology of Alzheimer’s disease. Drugs Today (Barc), 2004, 40(8), 711-721.
[http://dx.doi.org/10.1358/dot.2004.40.8.850473] [PMID: 15510242]
[20]
Fu, J.; Bao, F.; Gu, M.; Liu, J.; Zhang, Z.; Ding, J.; Xie, S.S.; Ding, J. Design, synthesis and evaluation of quinolinone derivatives containing dithiocarbamate moiety as multifunctional AChE inhibitors for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 118-128.
[http://dx.doi.org/10.1080/14756366.2019.1687460] [PMID: 31694418]
[21]
Zanon, V.S.; Lima, J.A.; Amaral, R.F.; Lima, F.R.S.; Kitagawa, D.A.S.; França, T.C.C.; Vargas, M.D. Design, synthesis, molecular modeling and neuroprotective effects of a new framework of cholinesterase inhibitors for Alzheimer’s disease. J. Biomol. Struct. Dyn., 2021, 39(16), 6112-6125.
[http://dx.doi.org/10.1080/07391102.2020.1796796] [PMID: 32715924]
[22]
Guo, Y.; Yang, H.; Huang, Z.; Tian, S.; Li, Q.; Du, C.; Chen, T.; Liu, Y.; Sun, H.; Liu, Z. Design, synthesis, and evaluation of acetylcholines-terase and butyrylcholinesterase dual-target inhibitors against Alzheimer’s diseases. Molecules, 2020, 25(3), 489.
[http://dx.doi.org/10.3390/molecules25030489] [PMID: 31979317]
[23]
Sarıkaya, G.; Çoban, G.; Parlar, S. Multifunctional cholinesterase inhibitors for Alzheimer’s disease: Synthesis, biological evaluations, and docking studies of o/p-propoxyphenylsubstituted-1Hbenzimidazole derivatives. Arch. Pharm. Chem. Life Sci., 2018, 1-18.
[http://dx.doi.org/10.1002/ardp.201800076]
[24]
Ozer, E.D.; Tan, O.U.; Ozadali, K. Synthesis, molecular modeling and evaluation of novel N0-2-(4-benzylpiperidin-/piperazin-1-yl) acylhy-drazone derivatives as dual inhibitors for cholinesterases and Aβ aggregationBioorg. Med. Chem. Lett., 2013, 23, 440-443.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.064]
[25]
Wang, J.; Wang, Z.M.; Li, X.M.; Li, F.; Wu, J.J.; Kong, L.Y.; Wang, X.B. Synthesis and evaluation of multi-target-directed ligands for the treatment of Alzheimer’s disease based on the fusion of donepezil and melatonin. Bioorg. Med. Chem., 2016, 24(18), 4324-4338.
[http://dx.doi.org/10.1016/j.bmc.2016.07.025] [PMID: 27460699]
[26]
Saxena, AK; Saini, R he structural hybrids of acetylcholinesteraseinhibitors in the treatment of Alzheimer’s disease: A review. J. Alzheimers Neurodegener., 2018, 4, 015
[27]
Akram, M.; Rauf, A.; Saeed, A.; Ahmed, F.; Mubeen, S.; Ashraf, M. Synthesis, biological evaluation and molecular docking studies of Man-nich bases derived from 1, 3, 4-oxadiazole-2-thiones as potential urease inhibitors. Trop. J. Pharm. Res., 2018, 17(1), 127-134.
[http://dx.doi.org/10.4314/tjpr.v17i1.18]
[28]
Saxena, M.; Dubey, R. Target enzyme in Alzheimer’s disease: Acetylcholinesterase inhibitors. Curr. Top. Med. Chem., 2019, 19(4), 264-275.
[http://dx.doi.org/10.2174/1568026619666190128125912] [PMID: 30706815]
[29]
Wu, G.; Gao, Y.; Kang, D.; Huang, B.; Huo, Z.; Liu, H.; Poongavanam, V.; Zhan, P.; Liu, X. Design, synthesis and biological evaluation of tacrine-1,2,3-triazole derivatives as potent cholinesterase inhibitors. MedChemComm, 2017, 9(1), 149-159.
[http://dx.doi.org/10.1039/C7MD00457E] [PMID: 30108908]
[30]
Mariki, A.A.; Anaeigoudari, A.; Zahedifar, M.; Pouramiri, B.; Ayati, A.; Lotfi, S. Design, green synthesis, and biological evaluation of new substituted tetrahydropyrimidine derivatives as acetylcholinesterase inhibitors. Polycycl. Aromat. Compd., 2022.
[http://dx.doi.org/10.1080/10406638.2021.1933102]
[31]
Muñoz-Torrero, D. Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer’s disease. Curr. Med. Chem., 2008, 15(24), 2433-2455.
[http://dx.doi.org/10.2174/092986708785909067] [PMID: 18855672]
[32]
Ogura, H.; Kosasa, T.; Kuriya, Y.; Yamanishi, Y. Comparison of inhibitory activities of donepezil and other cholinesterase inhibitors on acetylcholinesterase and butyrylcholinesterase in vitro. Methods Find. Exp. Clin. Pharmacol., 2000, 22(8), 609-613.
[http://dx.doi.org/10.1358/mf.2000.22.8.701373] [PMID: 11256231]
[33]
Sameem, B.; Saeedi, M.; Mahdavi, M.; Shafiee, A. A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s dis-ease. Eur. J. Med. Chem., 2017, 128, 332-345.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.060] [PMID: 27876467]
[34]
Chianella, C.; Gragnaniello, D.; Maisano Delser, P.; Visentini, M.F.; Sette, E.; Tola, M.R.; Barbujani, G.; Fuselli, S. BCHE and CYP2D6 genet-ic variation in Alzheimer’s disease patients treated with cholinesterase inhibitors. Eur. J. Clin. Pharmacol., 2011, 67(11), 1147-1157.
[http://dx.doi.org/10.1007/s00228-011-1064-x] [PMID: 21630031]
[35]
Greig, N.H.; Utsuki, T.; Ingram, D.K.; Wang, Y.; Pepeu, G.; Scali, C.; Yu, Q.S.; Mamczarz, J.; Holloway, H.W.; Giordano, T.; Chen, D.; Fu-rukawa, K.; Sambamurti, K.; Brossi, A.; Lahiri, D.K. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learn-ing and lowers Alzheimer beta-amyloid peptide in rodent. Proc. Natl. Acad. Sci. USA, 2005, 102(47), 17213-17218.
[http://dx.doi.org/10.1073/pnas.0508575102] [PMID: 16275899]
[36]
Sadowski, M.; Wisniewski, T. Disease modifying approaches for Alzheimer’s pathology. Curr. Pharm. Des., 2007, 13(19), 1943-1954.
[http://dx.doi.org/10.2174/138161207781039788] [PMID: 17627527]
[37]
Ramalakshmi, N. R S, R.; C N, N. Multitarget directed ligand approaches for Alzheimer’s disease: A comprehensive review. Mini Rev. Med. Chem., 2021, 21(16), 2361-2388.
[http://dx.doi.org/10.2174/1389557521666210405161205] [PMID: 33820504]
[38]
Bolognesi, M.L.; Cavalli, A.; Valgimigli, L.; Bartolini, M.; Rosini, M.; Andrisano, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed drug design strategy: From a dual binding site acetylcholinesterase inhibitor to a trifunctional compound against Alzheimer’s disease. J. Med. Chem., 2007, 50(26), 6446-6449.
[http://dx.doi.org/10.1021/jm701225u] [PMID: 18047264]
[39]
Tumiatti, V.; Milelli, A.; Minarini, A.; Rosini, M.; Bolognesi, M.L.; Micco, M.; Andrisano, V.; Bartolini, M.; Mancini, F.; Recanatini, M.; Cavalli, A.; Melchiorre, C. Structure-activity relationships of acetylcholinesterase noncovalent inhibitors based on a polyamine backbone. 4. Further investigation on the inner spacer. J. Med. Chem., 2008, 51(22), 7308-7312.
[http://dx.doi.org/10.1021/jm8009684] [PMID: 18954037]
[40]
Watkins, P.B.; Zimmerman, H.J.; Knapp, M.J.; Gracon, S.I.; Lewis, K.W. Hepatotoxic effects of tacrine administration in patients with Alz-heimer’s disease. JAMA, 1994, 271(13), 992-998.
[http://dx.doi.org/10.1001/jama.1994.03510370044030] [PMID: 8139084]
[41]
Mao, F.; Chen, J.; Zhou, Q.; Luo, Z.; Huang, L.; Li, X. Novel tacrine-ebselen hybrids with improved cholinesterase inhibitory, hydrogen peroxide and peroxynitrite scavenging activity. Bioorg. Med. Chem. Lett., 2013, 23(24), 6737-6742.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.034] [PMID: 24220172]
[42]
Fernández-Bachiller, M.I.; Pérez, C.; González-Muñoz, G.C.; Conde, S.; López, M.G.; Villarroya, M.; García, A.G.; Rodríguez-Franco, M.I. Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, choliner-gic, antioxidant, and copper-complexing properties. J. Med. Chem., 2010, 53(13), 4927-4937.
[http://dx.doi.org/10.1021/jm100329q] [PMID: 20545360]
[43]
Fang, L.; Kraus, B.; Lehmann, J.; Heilmann, J.; Zhang, Y.; Decker, M. Design and synthesis of tacrine-ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorg. Med. Chem. Lett., 2008, 18(9), 2905-2909.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.073] [PMID: 18406135]
[44]
Fernández-Bachiller, M.I.; Pérez, C.; Campillo, N.E.; Páez, J.A.; González-Muñoz, G.C.; Usán, P.; García-Palomero, E.; López, M.G.; Villar-roya, M.; García, A.G.; Martínez, A.; Rodríguez-Franco, M.I. Tacrine-melatonin hybrids as multifunctional agents for Alzheimer’s disease, with cholinergic, antioxidant, and neuroprotective properties. ChemMedChem, 2009, 4(5), 828-841.
[http://dx.doi.org/10.1002/cmdc.200800414] [PMID: 19308922]
[45]
Fernández-Bachiller, M.I.; Pérez, C.; Monjas, L.; Rademann, J.; Rodríguez-Franco, M.I. New tacrine-4-oxo-4H-chromene hybrids as multi-functional agents for the treatment of Alzheimer’s disease, with cholinergic, antioxidant, and β-amyloid-reducing properties. J. Med. Chem., 2012, 55(3), 1303-1317.
[http://dx.doi.org/10.1021/jm201460y] [PMID: 22243648]
[46]
Shoaib, M.; Shah, S.W.A.; Ali, N. In vitro enzyme inhibition potentials and antioxidant activity of synthetic flavone derivatives. J. Chem., 2015, 2015, 516878.
[47]
Guzior, N.; Więckowska, A.; Panek, D.; Malawska, B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr. Med. Chem., 2015, 22(3), 373-404.
[http://dx.doi.org/10.2174/0929867321666141106122628] [PMID: 25386820]
[48]
Zhang, H.Y. One-compound-multiple-targets strategy to combat Alzheimer’s disease. FEBS Lett., 2005, 579(24), 5260-5264.
[http://dx.doi.org/10.1016/j.febslet.2005.09.006] [PMID: 16194540]
[49]
Mehta, M.; Adem, A.; Sabbagh, M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int. J. Alzheimers Dis., 2012, 2012, 728983.
[http://dx.doi.org/10.1155/2012/728983] [PMID: 22216416]
[50]
Kumar, B.K. Faheem, Sekhar, K.V.G.C.; Ojha, R.; Prajapati, V.K.; Pai, A.; Murugesan, S. Pharmacophore based virtual screening, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 inhibitor from natural product data-bases. J. Biomol. Struct. Dyn., 2020, 28, 1-24. Epub ahead of print
[http://dx.doi.org/10.1080/07391102.2020.1862706] [PMID: 32981461]
[51]
Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model., 1999, 17(1), 57-61.
[PMID: 10660911]
[52]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[53]
Hamulakova, S.; Janovec, L.; Soukup, O.; Jun, D.; Kuca, K. Synthesis, in vitro acetylcholinesterase inhibitory activity and molecular docking of new acridine-coumarin hybrids. Int. J. Biol. Macromol., 2017, 104(Pt A), 333-338.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.006] [PMID: 28601645]
[54]
Xie, S.S.; Lan, J.S.; Wang, X.; Wang, Z.M.; Jiang, N.; Li, F.; Wu, J.J.; Wang, J.; Kong, L.Y. Design, synthesis and biological evaluation of novel donepezil-coumarin hybrids as multi-target agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(7), 1528-1539.
[http://dx.doi.org/10.1016/j.bmc.2016.02.023] [PMID: 26917219]
[55]
Patel, S.; Shah, U. Synthesis of Flavones from 2-Hydroxy Acetophenone and aromatic aldehyde derivatives by conventional methods and green chemistry approach. Asian J. Pharm. Clin. Res., 2017, 10(2), 403-406.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i2.15928]
[56]
Menezes, MJ; Manjrekar, S.; Pai, V. A facile microwave assisted synthesis of flavones. Indian J. Chem., 48, 1311-1314.
[57]
Gul, H.I.; Demirtas, A.; Ucar, G.; Taslimi, P.; Ilhami Gulcini, I. Lett. Drug Des. Discov., 2017, 14(5), 573-580.
[58]
Roman, G. Mannich bases in medicinal chemistry and drug design. Eur. J. Med. Chem., 2015, 89, 743-816.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.076] [PMID: 25462280]
[59]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activi-ty. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[60]
Camps, P.; Formosa, X.; Galdeano, C.; Gómez, T.; Muñoz-Torrero, D.; Scarpellini, M.; Viayna, E.; Badia, A.; Clos, M.V.; Camins, A.; Pallàs, M.; Bartolini, M.; Mancini, F.; Andrisano, V.; Estelrich, J.; Lizondo, M.; Bidon-Chanal, A.; Luque, F.J. Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation. J. Med. Chem., 2008, 51(12), 3588-3598.
[http://dx.doi.org/10.1021/jm8001313] [PMID: 18517184]
[61]
dos Santos Pisoni, D.; Sobieski da Costa, J.; Gamba, D.; Petzhold, C.L.; de Amorim Borges, A.C.; Ceschi, M.A.; Lunardi, P. Saraiva Gon-çalves, C.A. Synthesis and AChE inhibitory activity of new chiral tetrahydroacridine analogues from terpenic cyclanones. Eur. J. Med. Chem., 2010, 45(2), 526-535.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.039] [PMID: 19954865]
[62]
Keri, R.S.; Quintanova, C.; Marques, S.M.; Esteves, A.R.; Cardoso, S.M.; Santos, M.A. Design, synthesis and neuroprotective evaluation of novel tacrine-benzothiazole hybrids as multi-targeted compounds against Alzheimer’s disease. Bioorg. Med. Chem., 2013, 21(15), 4559-4569.
[http://dx.doi.org/10.1016/j.bmc.2013.05.028] [PMID: 23768661]
[63]
Borioni, J.L.; Cavallaro, V.; Murray, A.P.; Peñéñory, A.B.; Puiatti, M.; García, M.E. Design, synthesis and evaluation of cholinesterase hy-brid inhibitors using a natural steroidal alkaloid as precursor. Bioorg. Chem., 2021, 111, 104893.
[http://dx.doi.org/10.1016/j.bioorg.2021.104893] [PMID: 33882364]
[64]
Dhanasekaran, S; Perumal, P; Palayan, M In-vitro Screening for acetylcholinesterase enzyme inhibition potential and antioxidant activity of extracts of Ipomoea aquatica Forsk: Therapeutic lead for Alzheimer’s disease. J. Appl. Pharm. Sci., 2015, 5(2), 012-016.
[65]
Zhu, J.; Yang, H.; Chen, Y.; Lin, H.; Li, Q.; Mo, J.; Bian, Y.; Pei, Y.; Sun, H. Synthesis, pharmacology and molecular docking on multifunc-tional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 496-506.
[http://dx.doi.org/10.1080/14756366.2018.1430691] [PMID: 29405075]
[66]
Piemontese, L.; Tomás, D.; Hiremathad, A.; Capriati, V.; Candeias, E.; Cardoso, S.M.; Chaves, S.; Santos, M.A. Donepezil structure-based hybrids as potential multifunctional anti-Alzheimer’s drug candidates. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1212-1224.
[http://dx.doi.org/10.1080/14756366.2018.1491564] [PMID: 30160188]
[67]
Pandolfi, F.; De Vita, D.; Bortolami, M.; Coluccia, A.; Di Santo, R.; Costi, R.; Andrisano, V.; Alabiso, F.; Bergamini, C.; Fato, R.; Bartolini, M.; Scipione, L. New pyridine derivatives as inhibitors of acetylcholinesterase and amyloid aggregation. Eur. J. Med. Chem., 2017, 141, 197-210.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.022] [PMID: 29031067]
[68]
Cen, J.; Guo, H.; Hong, C.; Lv, J.; Yang, Y.; Wang, T.; Fang, D.; Luo, W.; Wang, C. Development of tacrine-bifendate conjugates with im-proved cholinesterase inhibitory and pro-cognitive efficacy and reduced hepatotoxicity. Eur. J. Med. Chem., 2018, 144, 128-136.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.005] [PMID: 29268129]
[69]
Jiang, N.; Huang, Q.; Liu, J.; Liang, N.; Li, Q.; Li, Q.; Xie, S.S. Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 146, 287-298.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.055] [PMID: 29407958]
[70]
Khoobi, M.; Ghanoni, F.; Nadri, H.; Moradi, A.; Hamedani, M.P.; Moghadam, F.H.; Emami, S.M.; Vosooghi, M.; Zadmard, R.; Foroumadi, A. New tetracyclic tacrine analogs containing pyrano [2, 3-c] pyrazole: Efficient synthesis, biological assessment and docking simulation study. Eur. J. Med. Chem., 2015, 89, 296-303.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.049]
[71]
Rodríguez-Franco, M.I.; Fernández-Bachiller, M.I.; Pérez, C.; Hernández-Ledesma, B.; Bartolomé, B. Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J. Med. Chem., 2006, 49(2), 459-462.
[http://dx.doi.org/10.1021/jm050746d] [PMID: 16420031]
[72]
Rahman, M.M.; Islam, M.B.; Biswas, M.; Khurshid Alam, A.H. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res. Notes, 2015, 8, 621.
[http://dx.doi.org/10.1186/s13104-015-1618-6] [PMID: 26518275]
[73]
Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol., 1995, 28(1), 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[74]
Muthoni Guchu, B.; Machocho, A.K.; Mwihia, S.K.; Ngugi, M.P. In vitro antioxidant activities of methanolic extracts of Caesalpinia volkensii Harms., Vernonia lasiopus O. Hoffm., and Acacia hockii De Wild. Evid. Based Complement. Alternat. Med., 2020, 2020, 3586268.
[http://dx.doi.org/10.1155/2020/3586268] [PMID: 33062006]
[75]
Adebiyi, O.E.; Olayemi, F.O.; Hua, T.N.; Zhi, Z.G. In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of Grewia carpinifolia, Beni-Suef University. J. Basic Appl., 2017, 6(1), 10-14.
[http://dx.doi.org/10.1016/j.bjbas.2016.12.003]
[76]
Xu, Y.; Colletier, J.P.; Weik, M.; Jiang, H.; Moult, J.; Silman, I.; Sussman, J.L. Flexibility of aromatic residues in the active-site gorge of ace-tylcholinesterase: X-ray versus molecular dynamics. Biophys. J., 2008, 95(5), 2500-2511.
[http://dx.doi.org/10.1529/biophysj.108.129601] [PMID: 18502801]
[77]
Roy, K.K.; Tota, S.; Tripathi, T.; Chander, S.; Nath, C.; Saxena, A.K. Lead optimization studies towards the discovery of novel carbamates as potent AChE inhibitors for the potential treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2012, 20(21), 6313-6320.
[http://dx.doi.org/10.1016/j.bmc.2012.09.005] [PMID: 23026084]
[78]
Ordentlich, A.; Barak, D.; Kronman, C.; Flashner, Y.; Leitner, M.; Segall, Y.; Ariel, N.; Cohen, S.; Velan, B.; Shafferman, A. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hy-drophobic site, and the acyl pocket. J. Biol. Chem., 1993, 268(23), 17083-17095.
[http://dx.doi.org/10.1016/S0021-9258(19)85305-X] [PMID: 8349597]
[79]
Radić, Z.; Gibney, G.; Kawamoto, S.; MacPhee-Quigley, K.; Bongiorno, C.; Taylor, P. Expression of recombinant acetylcholinesterase in a baculovirus system: Kinetic properties of glutamate 199 mutants. Biochemistry, 1992, 31(40), 9760-9767.
[http://dx.doi.org/10.1021/bi00155a032] [PMID: 1356436]
[80]
Chaudhaery, S.S.; Roy, K.K.; Shakya, N.; Saxena, G.; Sammi, S.R.; Nazir, A.; Nath, C.; Saxena, A.K. Novel carbamates as orally active ace-tylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: Pharmacophore-based virtual screening, synthesis, and pharmacology. J. Med. Chem., 2010, 53(17), 6490-6505.
[http://dx.doi.org/10.1021/jm100573q] [PMID: 20684567]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy