Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Investigation of the Potential Mechanism of Danggui Shaoyao San for the Treatment of Non-alcoholic Fatty Liver Disease (NAFLD) with Network Pharmacology and Molecular Docking

Author(s): Fang Cheng, Qiang Li, Jinglin Wang, Fang Zeng* and Yu Zhang*

Volume 18, Issue 4, 2022

Published on: 23 September, 2022

Page: [258 - 270] Pages: 13

DOI: 10.2174/1573409918666220815093324

Price: $65

conference banner
Abstract

Background: Danggui Shaoyao San (DSS) is a well-known herbal formula, which has been widely used in the treatment of non-alcoholic fatty liver disease (NAFLD). However, the potential mechanisms of DSS for NAFLD remain unknown.

Objective: Our study aims to explore the active components and potential molecular mechanisms of DSS for the treatment of NAFLD.

Methods: In this study, network pharmacology and molecular docking were performed to predict the active ingredients, potential targets and molecular mechanisms of DSS for the treatment of NAFLD.

Results: The 28 active components and 27 potential targets of DSS associated with NAFLD were identified, and five components most closely associated with NAFLD were beta-sitosterol, kaempferol, hederagenin, 3β-acetoxyatractylone, and sitosterol. DSS was involved in regulating pathways in cancer, AGE-RAGE signalling pathway in diabetic complications, IL-17 signalling pathway, NAFLD, hepatitis B, apoptosis, and hepatitis C. Additionally, IL-6, Caspase 3, RELA, PTGS2, and JUN might be the potential targets of DSS for NAFLD treatment. In addition, the results of molecular docking indicated that kaempferol and beta-sitosterol compounds could bind to the important targets.

Conclusion: Our study systematically investigated the potential molecular mechanism of DSS for the treatment of NAFLD, which would potentially provide a new clinical approach for NAFLD.

Keywords: Danggui Shaoyao San, non-alcoholic fatty liver disease, pharmacology technology network, traditional Chinese medicine, NAFLD, Liver cells

Graphical Abstract

[1]
Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol., 2015, 62(1)(Suppl.), S47-S64.
[http://dx.doi.org/10.1016/j.jhep.2014.12.012] [PMID: 25920090]
[2]
Soret, P.A.; Magusto, J.; Housset, C.; Gautheron, J. in vitro and in vivo models of non-alcoholic fatty liver disease: A critical appraisal. J. Clin. Med., 2020, 10(1), E36.
[http://dx.doi.org/10.3390/jcm10010036] [PMID: 33374435]
[3]
Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(1), 11-20.
[http://dx.doi.org/10.1038/nrgastro.2017.109] [PMID: 28930295]
[4]
Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med., 2018, 24(7), 908-922.
[http://dx.doi.org/10.1038/s41591-018-0104-9] [PMID: 29967350]
[5]
Rinella, M.E.; Sanyal, A.J. Management of NAFLD: A stage-based approach. Nat. Rev. Gastroenterol. Hepatol., 2016, 13(4), 196-205.
[http://dx.doi.org/10.1038/nrgastro.2016.3] [PMID: 26907882]
[6]
Younes, R.; Bugianesi, E. A spotlight on pathogenesis, interactions and novel therapeutic options in NAFLD. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(2), 80-82.
[http://dx.doi.org/10.1038/s41575-018-0094-6] [PMID: 30559444]
[7]
Zhang, X.; Ji, X.; Wang, Q.; Li, J.Z. New insight into inter-organ crosstalk contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Protein Cell, 2018, 9(2), 164-177.
[http://dx.doi.org/10.1007/s13238-017-0436-0] [PMID: 28643267]
[8]
Thiagarajan, P.; Aithal, G.P. Drug development for nonalcoholic fatty liver disease: Landscape and challenges. J. Clin. Exp. Hepatol., 2019, 9(4), 515-521.
[http://dx.doi.org/10.1016/j.jceh.2019.03.002] [PMID: 31516268]
[9]
Tang, J.L.; Liu, B.Y.; Ma, K.W. Traditional Chinese medicine. Lancet, 2008, 372(9654), 1938-1940.
[http://dx.doi.org/10.1016/S0140-6736(08)61354-9] [PMID: 18930523]
[10]
Xutian, S.; Cao, D.; Wozniak, J.; Junion, J.; Boisvert, J. Comprehension of the unique characteristics of traditional Chinese medicine. Am. J. Chin. Med., 2012, 40(2), 231-244.
[http://dx.doi.org/10.1142/S0192415X12500188] [PMID: 22419419]
[11]
Wang, H.; Tan, H.; Zhan, W.; Song, L.; Zhang, D.; Chen, X.; Lin, Z.; Wang, W.; Yang, Y.; Wang, L.; Bei, W.; Guo, J. Molecular mechanism of Fufang Zhenzhu Tiaozhi capsule in the treatment of type 2 diabetes mellitus with nonalcoholic fatty liver disease based on network pharmacology and validation in minipigs. J. Ethnopharmacol., 2021, 274, 114056.
[http://dx.doi.org/10.1016/j.jep.2021.114056] [PMID: 33771638]
[12]
Feng, Y.; Chen, Y.; Yang, B.; Lan, Q.; Wang, T.; Cui, G.; Ren, Z.; Choi, I.C.; Leung, G.P.; Yan, F.; Chen, D.; Yu, H.H.; Lee, S.M.Y. Hepa-toprotective effect of jianpi huoxue formula on nonalcoholic fatty liver disease induced by methionine-choline-deficient diet in rat. BioMed Res. Int., 2019, 2019, 7465272.
[http://dx.doi.org/10.1155/2019/7465272] [PMID: 31355279]
[13]
Hung, T.C.; Zhao, N.; Huang, C.; Liu, S.; Liu, T.; Huang, W.; Xu, X.; Ji, Z.L.; Yang, S. Exploring the mechanism of PingTang No.5 capsule on nonalcoholic fatty liver disease through network pharmacology and experimental validation. Biomed. Pharmacother., 2021, 138, 111408.
[http://dx.doi.org/10.1016/j.biopha.2021.111408] [PMID: 33684693]
[14]
Nie, H.; Deng, Y.; Zheng, C.; Pan, M.; Xie, J.; Zhang, Y.; Yang, Q. A network pharmacology-based approach to explore the effects of chaihu shugan powder on a non-alcoholic fatty liver rat model through nuclear receptors. J. Cell. Mol. Med., 2020, 24(9), 5168-5184.
[http://dx.doi.org/10.1111/jcmm.15166] [PMID: 32189432]
[15]
Wei, W.L.; Zeng, R.; Gu, C.M.; Qu, Y.; Huang, L.F. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phyto-chemistry and chemical analysis. J. Ethnopharmacol., 2016, 190, 116-141.
[http://dx.doi.org/10.1016/j.jep.2016.05.023] [PMID: 27211015]
[16]
Wang, K.; Wang, J.; Song, M.; Wang, H.; Xia, N.; Zhang, Y. Angelica sinensis polysaccharide attenuates CCl4-induced liver fibrosis via the IL-22/STAT3 pathway. Int. J. Biol. Macromol., 2020, 162, 273-283.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.166] [PMID: 32569681]
[17]
Wang, K.; Cao, P.; Wang, H.; Tang, Z.; Wang, N.; Wang, J.; Zhang, Y. Chronic administration of Angelica sinensis polysaccharide effec-tively improves fatty liver and glucose homeostasis in high-fat diet-fed mice. Sci. Rep., 2016, 6(1), 26229.
[http://dx.doi.org/10.1038/srep26229] [PMID: 27189109]
[18]
Ma, P.; Sun, C.; Li, W.; Deng, W.; Adu-Frimpong, M.; Yu, J.; Xu, X. Extraction and structural analysis of Angelica sinensis polysaccharide with low molecular weight and its lipid-lowering effect on nonalcoholic fatty liver disease. Food Sci. Nutr., 2020, 8(7), 3212-3224.
[http://dx.doi.org/10.1002/fsn3.1581] [PMID: 32724586]
[19]
Mei, Z.G.; Tan, L.J.; Wang, J.F.; Li, X.L.; Huang, W.F.; Zhou, H.J. Fermented Chinese formula Shuan-Tong-Ling attenuates ischemic stroke by inhibiting inflammation and apoptosis. Neural Regen. Res., 2017, 12(3), 425-432.
[http://dx.doi.org/10.4103/1673-5374.202946] [PMID: 28469657]
[20]
Su-Hong, C.; Qi, C.; Bo, L.; Jian-Li, G.; Jie, S.; Gui-Yuan, L. Antihypertensive effect of radix paeoniae alba in spontaneously hypertensive rats and excessive alcohol intake and high fat diet induced hypertensive rats. Evid. Based Complement. Alternat. Med., 2015, 2015, 731237.
[http://dx.doi.org/10.1155/2015/731237] [PMID: 25784949]
[21]
Chen, I.C.; Lin, T.H.; Hsieh, Y.H.; Chao, C.Y.; Wu, Y.R.; Chang, K.H.; Lee, M.C.; Lee-Chen, G.J.; Chen, C.M. Formulated Chinese medi-cine shaoyao gancao tang reduces tau aggregation and exerts neuroprotection through anti-oxidation and anti-inflammation. Oxid. Med. Cell. Longev., 2018, 2018, 9595741.
[http://dx.doi.org/10.1155/2018/9595741] [PMID: 30510632]
[22]
Tang, K.; Deng, Y.; Zheng, C.; Nie, H.; Pan, M.; Chen, R.; Xie, J.; Yang, Q.; Zhang, Y. Prevention of nonalcoholic hepatic steatosis by shenling baizhu powder: Involvement of adiponectin-induced inhibition of hepatic SREBP-1c. Oxid. Med. Cell. Longev., 2020, 2020, 9701285.
[http://dx.doi.org/10.1155/2020/9701285] [PMID: 33062150]
[23]
Fang, J.; Sun, X.; Xue, B.; Fang, N.; Zhou, M. Dahuang zexie decoction protects against high-fat diet-induced NAFLD by modulating gut microbiota-mediated toll-like receptor 4 signaling activation and loss of intestinal barrier. Evid. Based Complement. Alternat. Med., 2017, 2017, 2945803.
[http://dx.doi.org/10.1155/2017/2945803] [PMID: 29259643]
[24]
Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol., 2008, 4(11), 682-690.
[http://dx.doi.org/10.1038/nchembio.118] [PMID: 18936753]
[25]
Hopkins, A.L. Network pharmacology. Nat. Biotechnol., 2007, 25(10), 1110-1111.
[http://dx.doi.org/10.1038/nbt1007-1110] [PMID: 17921993]
[26]
Wang, D.; Tian, L.; Shi, C.; Wei, Y.X.; Wang, H.; Liu, T.T.; Gong, M.; Zhang, Y.W.; Yu, R.G.; Wu, X.H. Network pharmacology-based prediction of the active ingredients and mechanism of Shen Gui capsule for application to coronary heart disease. Comput. Biol. Med., 2020, 122, 103825.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103825] [PMID: 32658730]
[27]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A data-base of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[28]
Xu, X.; Zhang, W.; Huang, C.; Li, Y.; Yu, H.; Wang, Y.; Duan, J.; Ling, Y. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci., 2012, 13(6), 6964-6982.
[http://dx.doi.org/10.3390/ijms13066964] [PMID: 22837674]
[29]
Zhang, S.N.; Li, X.Z.; Yang, X.Y. Drug-likeness prediction of chemical constituents isolated from Chinese materia medica Ciwujia. J. Ethnopharmacol., 2017, 198, 131-138.
[http://dx.doi.org/10.1016/j.jep.2017.01.002] [PMID: 28065780]
[30]
Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; Bye-A-Jee, H.; Coetzee, R.; Cukura, A.; Da Silva, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Castro, L.G.; Garmiri, P.; Georghiou, G.; Gonzales, L.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Jokinen, P.; Joshi, V.; Jyothi, D.; Lock, A.; Lopez, R.; Luciani, A.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Menchi, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Oliveira, C.S.; Pundir, S.; Qi, G.; Raj, S.; Rice, D.; Lopez, M.R.; Saidi, R.; Sampson, J.; Sawford, T.; Speretta, E.; Turner, E.; Tyagi, N.; Vasudev, P.; Volynkin, V.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A.; Poux, S.; Redaschi, N.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.; Axelsen, K.; Bansal, P.; Baratin, D.; Blatter, M-C.; Bolleman, J.; Boutet, E.; Breuza, L.; Casals-Casas, C.; de Castro, E.; Echioukh, K.C.; Coudert, E.; Cuche, B.; Doche, M.; Dornevil, D.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz-Gumowski, N.; Hinz, U.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Keller, G.; Kerhornou, A.; Lara, V.; Le Mercier, P.; Lieberherr, D.; Lombardot, T.; Martin, X.; Masson, P.; Morgat, A.; Neto, T.B.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pour-cel, L.; Pozzato, M.; Pruess, M.; Rivoire, C.; Sigrist, C.; Sonesson, K.; Stutz, A.; Sundaram, S.; Tognolli, M.; Verbregue, L.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Garavelli, J.S.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Yeh, L-S.; Zhang, J.; Ruch, P.; Teodoro, D. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res., 2021, 49(D1), D480-D489.
[http://dx.doi.org/10.1093/nar/gkaa1100] [PMID: 33237286]
[31]
Piñero, J.; Queralt-Rosinach, N.; Bravo, À.; Deu-Pons, J.; Bauer-Mehren, A.; Baron, M.; Sanz, F.; Furlong, L.I. DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford), 2015, 2015(0), bav028.
[http://dx.doi.org/10.1093/database/bav028] [PMID: 25877637]
[32]
Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res., 2015, 43(Database issue), D789-D798.
[http://dx.doi.org/10.1093/nar/gku1205] [PMID: 25428349]
[33]
Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. GeneCards Version 3: The human gene integrator. Database (Oxford), 2010, 2010(0), baq020.
[http://dx.doi.org/10.1093/database/baq020] [PMID: 20689021]
[34]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(Database issue), D447-D452.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[35]
Assenov, Y.; Ramírez, F.; Schelhorn, S.E.; Lengauer, T.; Albrecht, M. Computing topological parameters of biological networks. Bioinformatics, 2008, 24(2), 282-284.
[http://dx.doi.org/10.1093/bioinformatics/btm554] [PMID: 18006545]
[36]
Huang, W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res., 2009, 37(1), 1-13.
[http://dx.doi.org/10.1093/nar/gkn923] [PMID: 19033363]
[37]
Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C. Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res., 2011, 39(Web Server issue), 316-3222011.
[38]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the autodock suite. Nat. Protoc., 2016, 11(5), 905-919.
[http://dx.doi.org/10.1038/nprot.2016.051] [PMID: 27077332]
[39]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[40]
Wang, Y.; Bryant, S.H.; Cheng, T.; Wang, J.; Gindulyte, A.; Shoemaker, B.A.; Thiessen, P.A.; He, S.; Zhang, J. Pubchem bioassay: 2017 Update. Nucleic Acids Res., 2017, 45(D1), D955-D963.
[http://dx.doi.org/10.1093/nar/gkw1118] [PMID: 27899599]
[41]
Wang, Y.; Fan, S.; Yang, M.; Shi, G.; Hu, S.; Yin, D.; Zhang, Y.; Xu, F. Evaluation of the mechanism of danggui-shaoyao-san in regulating the metabolome of nephrotic syndrome based on urinary metabonomics and bioinformatics approaches. J. Ethnopharmacol., 2020, 261, 113020.
[http://dx.doi.org/10.1016/j.jep.2020.113020] [PMID: 32592886]
[42]
Zhu, H.; Guan, J.; Zhang, H.; Chang, S.; Wang, L.; Shi, J.; Feng, B.; Gu, J. Simultaneous determination of ferulic acid, paeoniflorin, and albiflorin in rat plasma by ultra-high performance liquid chromatography with tandem mass spectrometry: Application to a pharmacokinet-ic study of Danggui-Shaoyao-San. J. Sep. Sci., 2020, 43(11), 2053-2060.
[http://dx.doi.org/10.1002/jssc.201900846] [PMID: 32112520]
[43]
Babu, S.; Jayaraman, S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed. Pharmacother., 2020, 131, 110702.
[http://dx.doi.org/10.1016/j.biopha.2020.110702] [PMID: 32882583]
[44]
Abdou, E.M.; Fayed, M.A.A.; Helal, D.; Ahmed, K.A. Assessment of the hepatoprotective effect of developed lipid-polymer hybrid nano-particles (LPHNPs) encapsulating naturally extracted β-Sitosterol against CCl4 induced hepatotoxicity in rats. Sci. Rep., 2019, 9(1), 19779.
[http://dx.doi.org/10.1038/s41598-019-56320-2] [PMID: 31875004]
[45]
Sharmila, R.; Sindhu, G. Evaluate the antigenotoxicity and anticancer role of β-sitosterol by determining oxidative DNA damage and the expression of phosphorylated mitogen-activated protein kinases’, c-fos, c-jun, and endothelial growth factor receptor. Pharmacogn. Mag., 2017, 13(49), 95-101.
[PMID: 28216890]
[46]
Liao, P.C.; Lai, M.H.; Hsu, K.P.; Kuo, Y.H.; Chen, J.; Tsai, M.C.; Li, C.X.; Yin, X.J.; Jeyashoke, N.; Chao, L.K. Identification of β-sitosterol as in vitro anti-inflammatory constituent in moringa oleifera. J. Agric. Food Chem., 2018, 66(41), 10748-10759.
[http://dx.doi.org/10.1021/acs.jafc.8b04555] [PMID: 30280897]
[47]
Hidayathulla, S.; Shahat, A.A.; Ahamad, S.R.; Al Moqbil, A.A.N.; Alsaid, M.S.; Divakar, D.D. GC/MS analysis and characterization of 2-Hexadecen-1-ol and beta sitosterol from Schimpera arabica extract for its bioactive potential as antioxidant and antimicrobial. J. Appl. Microbiol., 2018, 124(5), 1082-1091.
[http://dx.doi.org/10.1111/jam.13704] [PMID: 29356238]
[48]
Yuan, C.; Zhang, X.; Long, X.; Jin, J.; Jin, R. Effect of β-sitosterol self-microemulsion and β-sitosterol ester with linoleic acid on lipid-lowering in hyperlipidemic mice. Lipids Health Dis., 2019, 18(1), 157.
[http://dx.doi.org/10.1186/s12944-019-1096-2] [PMID: 31351498]
[49]
Niering, P.; Michels, G.; Wätjen, W.; Ohler, S.; Steffan, B.; Chovolou, Y.; Kampkötter, A.; Proksch, P.; Kahl, R. Protective and detrimental effects of kaempferol in rat H4IIE cells: Implication of oxidative stress and apoptosis. Toxicol. Appl. Pharmacol., 2005, 209(2), 114-122.
[http://dx.doi.org/10.1016/j.taap.2005.04.004] [PMID: 16112156]
[50]
Das, S.; Hazarika, Z.; Sarmah, S.; Baruah, K.; Rohman, M.A.; Paul, D.; Jha, A.N.; Singha Roy, A. Exploring the interaction of bioactive kaempferol with serum albumin, lysozyme and hemoglobin: A biophysical investigation using multi-spectroscopic, docking and molecular dynamics simulation studies. J. Photochem. Photobiol. B, 2020, 205, 111825.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111825] [PMID: 32142995]
[51]
Devi, K.P.; Malar, D.S.; Nabavi, S.F.; Sureda, A.; Xiao, J.; Nabavi, S.M.; Daglia, M. Kaempferol and inflammation: From chemistry to medicine. Pharmacol. Res., 2015, 99, 1-10.
[http://dx.doi.org/10.1016/j.phrs.2015.05.002] [PMID: 25982933]
[52]
Imran, M.; Salehi, B.; Sharifi-Rad, J.; Aslam Gondal, T.; Saeed, F.; Imran, A.; Shahbaz, M.; Tsouh Fokou, P.V.; Umair Arshad, M.; Khan, H.; Guerreiro, S.G.; Martins, N.; Estevinho, L.M. Kaempferol: A key emphasis to its anticancer potential. Molecules, 2019, 24(12), E2277.
[http://dx.doi.org/10.3390/molecules24122277] [PMID: 31248102]
[53]
Kim, G.J.; Song, D.H.; Yoo, H.S.; Chung, K.H.; Lee, K.J.; An, J.H. Hederagenin supplementation alleviates the pro-inflammatory and apoptotic response to alcohol in rats. Nutrients, 2017, 9(1), E41.
[http://dx.doi.org/10.3390/nu9010041] [PMID: 28067819]
[54]
Wang, K.; Liu, X.; Liu, Q.; Ho, I.H.; Wei, X.; Yin, T.; Zhan, Y.; Zhang, W.; Zhang, W.; Chen, B.; Gu, J.; Tan, Y.; Zhang, L.; Chan, M.T.; Wu, W.K.; Du, B.; Xiao, J. Hederagenin potentiated cisplatin- and paclitaxel-mediated cytotoxicity by impairing autophagy in lung cancer cells. Cell Death Dis., 2020, 11(8), 611.
[http://dx.doi.org/10.1038/s41419-020-02880-5] [PMID: 32792495]
[55]
Varghese, D.S.; Ali, B.R. Pathological crosstalk between oxidized LDL and ER stress in human diseases: A comprehensive review. Front. Cell Dev. Biol., 2021, 9, 674103.
[http://dx.doi.org/10.3389/fcell.2021.674103] [PMID: 34124059]
[56]
Kozumi, K.; Kodama, T.; Murai, H.; Sakane, S.; Govaere, O.; Cockell, S.; Motooka, D.; Kakita, N.; Yamada, Y.; Kondo, Y.; Tahata, Y.; Yamada, R.; Hikita, H.; Sakamori, R.; Kamada, Y.; Daly, A.K.; Anstee, Q.M.; Tatsumi, T.; Morii, E.; Takehara, T. Transcriptomics identify thrombospondin-2 as a biomarker for nonalcoholic steatohepatitis and advanced liver fibrosis. Hepatology, 2021.
[http://dx.doi.org/10.1002/hep.31995]
[57]
Armandi, A.; Rosso, C.; Caviglia, G.P.; Bugianesi, E. Insulin resistance across the spectrum of nonalcoholic fatty liver disease. Metabolites, 2021, 11(3), 155.
[http://dx.doi.org/10.3390/metabo11030155] [PMID: 33800465]
[58]
Asadipooya, K.; Lankarani, K.B.; Raj, R.; Kalantarhormozi, M. RAGE is a potential cause of onset and progression of nonalcoholic fatty liver disease. Int. J. Endocrinol., 2019, 2019, 2151302.
[http://dx.doi.org/10.1155/2019/2151302] [PMID: 31641351]
[59]
Shneider, B.L.; González-Peralta, R.; Roberts, E.A. Controversies in the management of pediatric liver disease: Hepatitis B, C and NAFLD: Summary of a single topic conference. Hepatology, 2006, 44(5), 1344-1354.
[http://dx.doi.org/10.1002/hep.21373] [PMID: 17058223]
[60]
de Oliveira, S.; Houseright, R.A.; Graves, A.L.; Golenberg, N.; Korte, B.G.; Miskolci, V.; Huttenlocher, A. Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. J. Hepatol., 2019, 70(4), 710-721.
[http://dx.doi.org/10.1016/j.jhep.2018.11.034] [PMID: 30572006]
[61]
Oeckinghaus, A.; Hayden, M.S.; Ghosh, S. Crosstalk in NF-κB signaling pathways. Nat. Immunol., 2011, 12(8), 695-708.
[http://dx.doi.org/10.1038/ni.2065] [PMID: 21772278]
[62]
Zhang, T.; Hu, J.; Wang, X.; Zhao, X.; Li, Z.; Niu, J.; Steer, C.J.; Zheng, G.; Song, G. MicroRNA-378 promotes hepatic inflammation and fibrosis via modulation of the NF-κB-TNFα pathway. J. Hepatol., 2019, 70(1), 87-96.
[http://dx.doi.org/10.1016/j.jhep.2018.08.026] [PMID: 30218679]
[63]
Martín-Sanz, P.; Casado, M.; Boscá, L. Cyclooxygenase 2 in liver dysfunction and carcinogenesis: Facts and perspectives. World J. Gastroenterol., 2017, 23(20), 3572-3580.
[http://dx.doi.org/10.3748/wjg.v23.i20.3572] [PMID: 28611510]
[64]
Takada, I.; Makishima, M. Peroxisome proliferator-activated receptor agonists and antagonists: A patent review (2014-present). Expert Opin. Ther. Pat., 2020, 30(1), 1-13.
[http://dx.doi.org/10.1080/13543776.2020.1703952] [PMID: 31825687]
[65]
Besse-Patin, A.; Léveillé, M.; Oropeza, D.; Nguyen, B.N.; Prat, A.; Estall, J.L. Estrogen signals through peroxisome proliferator-activated receptor-γ coactivator 1α to reduce oxidative damage associated with diet-induced fatty liver disease. Gastroenterology, 2017, 152(1), 243-256.
[http://dx.doi.org/10.1053/j.gastro.2016.09.017] [PMID: 27658772]
[66]
Mridha, A.R.; Wree, A.; Robertson, A.A.B.; Yeh, M.M.; Johnson, C.D.; Van Rooyen, D.M.; Haczeyni, F.; Teoh, N.C.; Savard, C.; Ioannou, G.N.; Masters, S.L.; Schroder, K.; Cooper, M.A.; Feldstein, A.E.; Farrell, G.C. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J. Hepatol., 2017, 66(5), 1037-1046.
[http://dx.doi.org/10.1016/j.jhep.2017.01.022] [PMID: 28167322]
[67]
Schulien, I.; Hockenjos, B.; Schmitt-Graeff, A.; Perdekamp, M.G.; Follo, M.; Thimme, R.; Hasselblatt, P. The transcription factor c-Jun/AP-1 promotes liver fibrosis during non-alcoholic steatohepatitis by regulating osteopontin expression. Cell Death Differ., 2019, 26(9), 1688-1699.
[http://dx.doi.org/10.1038/s41418-018-0239-8] [PMID: 30778201]
[68]
Jiménez-Castro, M.B.; Cornide-Petronio, M.E.; Gracia-Sancho, J.; Casillas-Ramírez, A.; Peralta, C. Mitogen activated protein kinases in steatotic and non-steatotic livers submitted to ischemia-reperfusion. Int. J. Mol. Sci., 2019, 20(7), E1785.
[http://dx.doi.org/10.3390/ijms20071785] [PMID: 30974915]
[69]
Ibrahim, S.H.; Akazawa, Y.; Cazanave, S.C.; Bronk, S.F.; Elmi, N.A.; Werneburg, N.W.; Billadeau, D.D.; Gores, G.J. Glycogen synthase kinase-3 (GSK-3) inhibition attenuates hepatocyte lipoapoptosis. J. Hepatol., 2011, 54(4), 765-772.
[http://dx.doi.org/10.1016/j.jhep.2010.09.039] [PMID: 21147505]
[70]
Kanda, T.; Matsuoka, S.; Yamazaki, M.; Shibata, T.; Nirei, K.; Takahashi, H.; Kaneko, T.; Fujisawa, M.; Higuchi, T.; Nakamura, H.; Matsumoto, N.; Yamagami, H.; Ogawa, M.; Imazu, H.; Kuroda, K.; Moriyama, M. Apoptosis and non-alcoholic fatty liver diseases. World J. Gastroenterol., 2018, 24(25), 2661-2672.
[http://dx.doi.org/10.3748/wjg.v24.i25.2661] [PMID: 29991872]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy