Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

In silico Study and Solvent-free one-pot Synthesis of Tetrahydropyrimidine derivatives by Mechanochemistry Approach for Targeting Human Neutrophil Elastase against Lung Cancer

Author(s): Ashish Patel*, Karan Gandhi, Sweta Shah, Darshan Patel, Shreyas Chhatbar, Drashti Shah, Stuti Patel, Harnisha Patel and Tushar Bambharoliya

Volume 18, Issue 4, 2022

Published on: 16 September, 2022

Page: [293 - 306] Pages: 14

DOI: 10.2174/1573409918666220622232501

Price: $65

Abstract

Background: Pyrimidine derivative has evinced its biological importance in targeting lung cancer by inhibiting neutrophil elastase.

Methods: All THPM derivatives were synthesized by the grindstone method at ambient temperature followed by molecular docking study for efficient binding interaction of THPM compounds by targeting human neutrophil elastase (HNE) (PDB ID: 5A0A) and In-silico ADMET study using PkCSM. Moreover, all synthesized compounds were characterized by spectroscopy techniques and screened for anti-cancer activity using in vitro HNE assay kit.

Results: We reported a one-pot solvent-free mechanochemical approach for synthesizing tetrahydropyrimidine (THPM) derivatives from various aromatic aldehydes, ethyl cyanoacetate, and urea followed by in silico study and evaluation against human neutrophil elastase (HNE) for treatment of lung cancer. We calibrated the best molecules that bound to specific targets more efficiently using a molecular docking approach and provided the desired efficacy. In-silico ADMET studies revealed that all best-scored compounds had drug-like characteristics for potential use as human neutrophil elastase inhibitors (HNE) in lung cancer treatment. Additionally, the in vitro studies revealed that compounds 1, 2, and 8 show potent HNE inhibitory activity for lung cancer treatment.

Conclusion: In a nutshell, the tetrahydropyrimidine (THPM) scaffold and its derivatives may serve as potential HNE inhibitors for the development of a promising anti-cancer agent.

Keywords: Biginelii condensation, mechanochemistry, human neutrophil elastase, tetrahydropyrimidine, lung cancer, green chemistry.

Graphical Abstract

[1]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treat-ment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[2]
Deng, X.; Elkins, J.M.; Zhang, J.; Yang, Q.; Erazo, T.; Gomez, N.; Choi, H.G.; Wang, J.; Dzamko, N.; Lee, J.D.; Sim, T.; Kim, N.; Alessi, D.R.; Lizcano, J.M.; Knapp, S.; Gray, N.S. Structural determinants for ERK5 (MAPK7) and leucine rich repeat kinase 2 activities of ben-zo[e]pyrimido-[5,4-b]diazepine-6(11H)-ones. Eur. J. Med. Chem., 2013, 70, 758-767.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.052] [PMID: 24239623]
[3]
Sachdeva, H.; Saroj, R.; Khaturia, S.; Singh, H.L.J. Comparative studies of lewis acidity of alkyl-tin chlorides in multicomponent biginelli condensation using grindstone chemistry technique. J. Chil. Chem. Soc., 2012, 57(1), 1012-1016.
[http://dx.doi.org/10.4067/S0717-97072012000100013]
[4]
Beena, K.P.; Swaminathan, S.R.; Rajasekaran, A.; Manna, P.K.J. DihydroPyrimidinones-A versatile scaffold with diverse biological activity. Pharm. Sci., 2016, 8(8), 741-746.
[5]
Moroy, G.; Alix, A.J.; Sapi, J.; Hornebeck, W.; Bourguet, E. Neutrophil elastase as a target in lung cancer. Anticancer. Agents Med. Chem., 2012, 12(6), 565-579.
[http://dx.doi.org/10.2174/187152012800617696] [PMID: 22263788]
[6]
Yang, P.; Taniguchi, K.; Deschampes, C.; Bass, E.; Meyer, R.; Liu, W. Neutrophil elastase gene in lung cancer development: Evidence from molecular genetics and clinical epidemiology. Nat. Genet., 2001, 27(4), 97-98.
[http://dx.doi.org/10.1038/87372]
[7]
Zhu, Y.M.; Webster, S.J.; Flower, D.; Woll, P.J. Interleukin-8/CXCL8 is a growth factor for human lung cancer cells. Br. J. Cancer, 2004, 91(11), 1970-1976.
[http://dx.doi.org/10.1038/sj.bjc.6602227] [PMID: 15545974]
[8]
National Centre for Biotechnology Information. Genetic Testing Registry., https://www.ncbi.nlm.nih.gov/gene/3577
[9]
Sibous, S.; Boukhris, S.; Ghailane, R.; Habbadi, N.; Hassikou, A.; Souizi, A. Easy synthesis of 3,4-dihydropyrimidin-2-(1H)-ones using phosphate fertilizers MAP, DAP and TSP as efficient catalysts. J. Turkish chem. soc, 2017, 4(2), 481-488.
[http://dx.doi.org/10.18596/jotcsa.286900]
[10]
Qu, H.; Li, X.; Mo, F.; Lin, X. Efficient synthesis of dihydropyrimidinones via a three-component Biginelli-type reaction of urea, alkylalde-hyde and arylaldehyde. Beilstein J. Org. Chem., 2013, 9, 2846-2851.
[http://dx.doi.org/10.3762/bjoc.9.320] [PMID: 24367449]
[11]
Achar, T.K.; Bose, A.; Mal, P. Mechanochemical synthesis of small organic molecules. Beilstein J. Org. Chem., 2017, 13, 1907-1931.
[http://dx.doi.org/10.3762/bjoc.13.186] [PMID: 29062410]
[12]
Patel, A.; Shah, D.; Patel, N.; Patel, K.; Soni, N.; Nagani, A.; Parikh, V.; Shah, H.; Bambharoliya, T. Benzimidazole as ubiquitous structural fragment: An update on development of its green synthetic approaches. Mini Rev. Org. Chem., 2021, 18(8), 1064-1085.
[http://dx.doi.org/10.2174/1570193X17999201211194908]
[13]
Bhutia, Z.T.; Prasannakumar, G.; Das, A.; Biswas, M.; Chatterjee, A.; Banerjee, M.A. Facile, catalyst-free mechano-synthesis of quinoxa-lines and their in-vitro antibacterial activity study. ChemistrySelect, 2017, 2(3), 1183-1187.
[http://dx.doi.org/10.1002/slct.201601672]
[14]
Baig, R.B.; Varma, R.S. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev., 2012, 41(4), 1559-1584.
[http://dx.doi.org/10.1039/C1CS15204A] [PMID: 22076552]
[15]
Sato, T.; Takahashi, S.; Mizumoto, T.; Harao, M.; Akizuki, M.; Takasugi, M.; Fukutomi, T.; Yamashita, J. Neutrophil elastase and cancer. Surg. Oncol., 2006, 15(4), 217-222.
[http://dx.doi.org/10.1016/j.suronc.2007.01.003] [PMID: 17320378]
[16]
Sjö, P. Neutrophil elastase inhibitors: Recent advances in the development of mechanism-based and nonelectrophilic inhibitors. Future Med. Chem., 2012, 4(5), 651-660.
[http://dx.doi.org/10.4155/fmc.12.17] [PMID: 22458683]
[17]
Bayer Corp. Prolastin. Company World Wide Web Site Available from: http://www.bayerdirect.com/pro.html/
[18]
Kawabata, K.; Suzuki, M.; Sugitani, M.; Imaki, K.; Toda, M.; Miyamoto, T. ONO-5046, a novel inhibitor of human neutrophil elastase. Biochem. Biophys. Res. Commun., 1991, 177(2), 814-820.
[http://dx.doi.org/10.1016/0006-291X(91)91862-7] [PMID: 2049103]
[19]
Stockley, R.; De Soyza, A.; Gunawardena, K.; Perrett, J.; Forsman-Semb, K.; Entwistle, N.; Snell, N. Phase II study of a neutrophil elastase inhibitor (AZD9668) in patients with bronchiectasis. Respir. Med., 2013, 107(4), 524-533.
[http://dx.doi.org/10.1016/j.rmed.2012.12.009] [PMID: 23433769]
[20]
Crocetti, L.; Bartolucci, G.; Cilibrizzi, A.; Giovannoni, M.P.; Guerrini, G.; Iacovone, A.; Menicatti, M.; Schepetkin, I.A.; Khlebnikov, A.I.; Quinn, M.T.; Vergelli, C. Synthesis and analytical characterization of new thiazol-2-(3H)-ones as human neutrophil elastase (HNE) inhibi-tors. Chem. Cent. J., 2017, 11(1), 127.
[http://dx.doi.org/10.1186/s13065-017-0358-1] [PMID: 29214393]
[21]
Crocetti, L.; Giovannoni, M.P.; Schepetkin, I.A.; Quinn, M.T.; Khlebnikov, A.I.; Cantini, N.; Guerrini, G.; Iacovone, A.; Teodori, E.; Vergelli, C. 1H-pyrrolo[2,3-b]pyridine: A new scaffold for human neutrophil elastase (HNE) inhibitors. Bioorg. Med. Chem., 2018, 26(21), 5583-5595.
[http://dx.doi.org/10.1016/j.bmc.2018.09.034] [PMID: 30385225]
[22]
Crocetti, L.; Giovannoni, M.P.; Schepetkin, I.A.; Quinn, M.T.; Khlebnikov, A.I.; Cilibrizzi, A.; Piaz, V.D.; Graziano, A.; Vergelli, C. Design, synthesis and evaluation of N-benzoylindazole derivatives and analogues as inhibitors of human neutrophil elastase. Bioorg. Med. Chem., 2011, 19(15), 4460-4472.
[http://dx.doi.org/10.1016/j.bmc.2011.06.036] [PMID: 21741848]
[23]
Crocetti, L.; Quinn, M.T.; Schepetkin, I.A.; Giovannoni, M.P. A patenting perspective on human neutrophil elastase (HNE) inhibitors (2014-2018) and their therapeutic applications. Expert Opin. Ther. Pat., 2019, 29(7), 555-578.
[http://dx.doi.org/10.1080/13543776.2019.1630379] [PMID: 31204543]
[24]
Crocetti, L.; Schepetkin, I.A.; Ciciani, G.; Giovannoni, M.P.; Guerrini, G.; Iacovone, A.; Khlebnikov, A.I.; Kirpotina, L.N.; Quinn, M.T.; Vergelli, C. Synthesis and pharmacological evaluation of indole derivatives as deaza analogues of potent human neutrophil elastase inhibi-tors. Drug Dev. Res., 2016, 77(6), 285-299.
[http://dx.doi.org/10.1002/ddr.21323] [PMID: 27474878]
[25]
Crocetti, L.; Schepetkin, I.A.; Cilibrizzi, A.; Graziano, A.; Vergelli, C.; Giomi, D.; Khlebnikov, A.I.; Quinn, M.T.; Giovannoni, M.P. Optimi-zation of N-benzoylindazole derivatives as inhibitors of human neutrophil elastase. J. Med. Chem., 2013, 56(15), 6259-6272.
[http://dx.doi.org/10.1021/jm400742j] [PMID: 23844670]
[26]
Giovannoni, M.P.; Cantini, N.; Crocetti, L.; Guerrini, G.; Iacovone, A.; Schepetkin, I.A.; Vergelli, C.; Khlebnikov, A.I.; Quinn, M.T. Further modifications of 1H-pyrrolo[2,3-b]pyridine derivatives as inhibitors of human neutrophil elastase. Drug Dev. Res., 2019, 80(5), 617-628.
[http://dx.doi.org/10.1002/ddr.21539] [PMID: 31002441]
[27]
Giovannoni, M.P.; Schepetkin, I.A.; Crocetti, L.; Ciciani, G.; Cilibrizzi, A.; Guerrini, G.; Khlebnikov, A.I.; Quinn, M.T.; Vergelli, C. Cin-noline derivatives as human neutrophil elastase inhibitors. J. Enzyme Inhib. Med. Chem., 2016, 31(4), 628-639.
[http://dx.doi.org/10.3109/14756366.2015.1057718] [PMID: 26194018]
[28]
Giovannoni, M.P.; Schepetkin, I.A.; Quinn, M.T.; Cantini, N.; Crocetti, L.; Guerrini, G.; Iacovone, A.; Paoli, P.; Rossi, P.; Bartolucci, G.; Menicatti, M.; Vergelli, C. Synthesis, biological evaluation, and molecular modelling studies of potent human neutrophil elastase (HNE) in-hibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1108-1124.
[http://dx.doi.org/10.1080/14756366.2018.1480615] [PMID: 29969929]
[29]
Vergelli, C.; Schepetkin, I.A.; Crocetti, L.; Iacovone, A.; Giovannoni, M.P.; Guerrini, G.; Khlebnikov, A.I.; Ciattini, S.; Ciciani, G.; Quinn, M.T. Isoxazol-5(2H)-one: A new scaffold for potent human neutrophil elastase (HNE) inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 821-831.
[http://dx.doi.org/10.1080/14756366.2017.1326915] [PMID: 28612630]
[30]
Patel, A.D.; Barot, R.; Parmar, I.; Panchal, I.; Shah, U.; Patel, M.; Mishtry, B. Molecular docking, in-silico ADMET study and development of 1,6- dihydropyrimidine derivative as protein tyrosine phosphatase inhibitor: An approach to design and develop antidiabetic agents. Curr. Computeraided Drug Des., 2018, 14(4), 349-362.
[http://dx.doi.org/10.2174/1573409914666180426125721] [PMID: 29701158]
[31]
Ma, Y.; Qian, C.; Wang, L.; Yang, M. Lanthanide triflate catalyzed Biginelli reaction. one-pot synthesis of dihydropyrimidinones under solvent-free conditions. J. Org. Chem., 2000, 65(12), 3864-3868.
[http://dx.doi.org/10.1021/jo9919052] [PMID: 10864778]
[32]
Su, W.K.; Li, J.J.; Zheng, Z.G.; Shen, Y.C. One-pot synthesis of dihydropyrimidionescatalyzed by strontium(II) triflate under solvent-free conditions. Tetrahedron Lett., 2005, 46(36), 6037-6040.
[http://dx.doi.org/10.1016/j.tetlet.2005.07.021]
[33]
Debache, A.; Amimour, M.; Belfaitah, A.; Rhouati, S.; Carboni, B. A one-pot Biginelli synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thionescatalyzed by triphenylphosphine as Lewis base. Tetrahedron Lett., 2008, 49(42), 6119-6121.
[http://dx.doi.org/10.1016/j.tetlet.2008.08.016]
[34]
Kumar, K.A.; Kasthuraiah, M.; Reddy, C.S.; Reddy, C.D. Mn(OAc)3•2H2O-mediated three-component, one-pot, condensation reaction: An efficient synthesis of 4-aryl-substituted 3,4-dihydropyrimidin-2-ones. Tetrahedron Lett., 2001, 42(44), 7873-7875.
[http://dx.doi.org/10.1016/S0040-4039(01)01603-3]
[35]
Nandurkar, N.S.; Bhanushali, M.J.; Bhor, M.D.; Bhanage, B.M.Y. (NO3)3•6H2O: A novel and reusable catalyst for one pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. J. Mol. Catal. Chem., 2007, 271(1-2), 14-17.
[http://dx.doi.org/10.1016/j.molcata.2007.02.021]
[36]
Ahmed, N.; Lier, J.E.V. TaBr5-catalyzed Biginelli reaction: One-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under solvent-free conditions. Tetrahedron Lett., 2007, 48(31), 5407-5409.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.005]
[37]
Salehi, H.; Guo, Q.X. A facile and efficient one‐pot synthesis of dihydropyrimidinonescatalyzed by magnesium bromide under solvent‐free conditions. Synth. Commun., 2004, 34(1), 171-179.
[http://dx.doi.org/10.1081/SCC-120027250]
[38]
Kakaei, S.; Kalal, K.S.; Hoveidi, H. Ultrasound assisted one-pot synthesis ofdihydropyrimidinones using holmium chloride as catalyst. J. Sci. I. R. Iran., 2015, 26(2), 117-123.
[39]
Quadri, S.A.I.; Malik, M.S.; Seddigi, Z.S.; Farooqui, M. Efficient ferric citrate-catalyzed synthesis of novel dihydropyrimidin-(1H)-ones sulfonamide conjugates and their evaluation as potential antimicrobials. ChemistrySelect, 2017, 2(23), 6818-6822.
[http://dx.doi.org/10.1002/slct.201700291]
[40]
Quadri, S.A.I.; Das, T.C.; Farooqui, M.; Malik, M.S.; Seddigi, Z.S.; Farooqui, M. Itaconic acid as an environmentally benign catalyst in efficient and scalable synthesis of 3,4-Dihydropyrimidin-2(1H)-ones. ChemistrySelect, 2016, 1(15), 4602-4606.
[http://dx.doi.org/10.1002/slct.201600983]
[41]
Chopda, L.V.; Dave, P.N. 12-tungstosilicic acid H4[W12SiO40] over natural bentonite as a heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-Ones. ChemistrySelect, 2020, 5(8), 2395-2400.
[http://dx.doi.org/10.1002/slct.201904962]
[42]
Ghomi, J.S.; Bakhtiari, A. Ultrasonic accelerated biginelli-like reaction by the covalently anchored copper-isatoic anhydride over the modi-fied surface of mesoporous SBA-15 to the synthesis of pyrimidines. ChemistrySelect, 2018, 3(44), 12704-12711.
[http://dx.doi.org/10.1002/slct.201802435]
[43]
Anvar, S.G.; Behbahani, F.K. A new key for old lock: Glycerol, as an OH-acid, catalysed one pot three component and fully green synthesis of 3,4-gihydropyrimidinr-2(1H)-one and thiones. Eur. Chem. Bull., 2019, 8(9), 301-306.
[http://dx.doi.org/10.17628/ecb.2019.8.301-306]
[44]
Heravi, M.M.; Behbahani, F.K.; Oskooie, H.A. Ferric perchlorate catalyzed one-pot synthesis of 1,2,3,4-Tetrahydro-2-pyrimidinones and -thiones: An expedient protocol for the biginellireaction. Chin. J. Chem., 2008, 26(12), 2203-2206.
[http://dx.doi.org/10.1002/cjoc.200890392]
[45]
Moradi, F.; Behbahani, F.K. Synthesis of arylidenedihydropyrimidinones and thionescatalyzed by iron (III) phosphate. Chem. Lett., 2018, 7, 87-92.
[http://dx.doi.org/10.5267/j.ccl.2018.08.003]
[46]
Patel, A.; Shah, J.; Patel, K.; Patel, K.; Patel, H.; Dobaria, D.; Shah, U.; Patel, M.; Chokshi, A.; Patel, S.; Parekh, N.; Shah, H.; Patel, H.; Bam-bharoliya, T. Ultrasound assisted one-pot synthesis of tetrahydropyrimidnederiva-tives through biginelli condensation: A catalyst free green chemistry approach. Lett. Org. Chem., 2021, 18(9), 749-756.
[http://dx.doi.org/10.2174/1570178617999201105162851]
[47]
Ali, E.; Naimi-Jamal, M.R.; Dekamin, M.G. Highly efficient and rapid synthesis of imines in the presence of nano-ordered MCM-41- SO3H heterogeneous catalyst. Sci. Iran., 2013, 20(3), 592-597.
[http://dx.doi.org/10.1016/j.scient.2013.02.007]
[48]
Bose, A.K.; Pednekar, S.; Ganguly, S.N.; Chakraborty, G.; Manhasa, M.S. A simplified green chemistry approach to the Biginelli reaction using ‘Grindstone Chemistry’. Tetrahedron Lett., 2004, 45(45), 8351-8353.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.064]
[49]
Phukan, M.; Kalita, M.K.; Borah, R. A new protocol for Biginelli (or like) reaction under solvent-free grinding method using Fe (NO3)3.9H2O as catalyst. Green Chem. Lett. Rev., 2010, 3(4), 329-334.
[http://dx.doi.org/10.1080/17518253.2010.487841]
[50]
Patel, A.; Pasha, T.Y.; Kothari, R. Synthesis and biological evaluation of some novel heterocyclic compounds as protein tyrosine phospha-tase (PTP-1B). Inhibitor. J. Chem. Pharma. Res., 2015, 7(10), 509-517.
[51]
Patel, A.; Pasha, T.Y.; Modi, A. Synthesis and biological evaluation of 4-Aryl substituted -2-(5-carboxylicacid-1, 6-dihydro)-2- thio-phenylethylene-6-oxopyrimidine as Protein Tyrosine Phosphatase (PTP-1B) Inhibitors. Int. J. Pharm. Tech. Res., 2015, 8(8), 136-143.
[52]
Patel, A.D.; Pasha, T.Y.; Lunagariya, P.; Shah, U.; Bhambharoliya, T.; Tripathi, R.K.P. A library of Thiazolidin-4-one derivatives as protein tyrosine phosphatase 1B (PTP1B) inhibitors: An attempt to discover novel antidiabetic agents. ChemMedChem, 2020, 15(13), 1229-1242.
[http://dx.doi.org/10.1002/cmdc.202000055] [PMID: 32390300]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy