Abstract
Background: Micropollutants comprise organic/mineral substances that cause an undesirable impact on the environment, by affecting life at all scales. In this study, we explored the changes they impart on the global proteome of a soil bacterium Serratia nematodiphila MB307, for two classes of pollutants, i.e., Azo dyes (Methyl orange, Congo red) and a pharmaceutical (Ibuprofen).
Methods: The 100 μg pollutant supplemented alteration of pure S. nematodiphila MB307 culture after 24 hours of incubation at 37 °C and its control was analyzed using a differential proteomics approach. MaxQuant software with the Perseus package was used for data analysis purposes.
Results: Prominently, ribosomal proteins and chaperones were up or downregulated in the whole cell and membranous fraction.
Conclusion: This illustrates dynamic protein production adaptation of bacteria, to cope with stress and cell growth/division trade-off for survival. A collective pattern of survival under stress or pollution resistance could not be decrypted for all classes of pollutants, portraying dissimilar mechanisms of coping with differently structured pollutant moieties.
Keywords: LC-MS/MS, methyl orange, congo red, ibuprofen, proteome, remediation.
Graphical Abstract