Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Perspective

Promising Molecular Targets Related to Polyamine Biosynthesis in Drug Discovery against Leishmaniasis

Author(s): Kaio M. Santiago-Silva, Priscila G. Camargo and Marcelle L.F. Bispo*

Volume 19, Issue 1, 2023

Published on: 29 August, 2022

Page: [2 - 9] Pages: 8

DOI: 10.2174/1573406418666220713145446

Abstract

Leishmaniasis is a neglected tropical disease widely distributed worldwide, caused by parasitic protozoa of the genus Leishmania. Despite representing a significant public health problem, the therapeutic options are old, with several reported adverse effects, have high costs, with administration mainly by parenteral route, which makes treatment difficult, increasing dropout and, consequently, the emergence of resistant strains. Thus, the research and development of new antileishmanial therapies become necessary. In this field, inhibiting essential targets that affect the parasite’s growth, survival, and infectivity represents an attractive therapeutic strategy. With this in mind, this review addresses the main structural, functional characteristics and recent reports of the discovery of promising inhibitors of the enzymes Arginase (ARG) and trypanothione synthase (TryS), which are involved in the biosynthesis of polyamines and trypanothione and Trypanothione Reductase (TR), responsible for the reduction of trypanothione thiol.

Keywords: Arginase, leishmaniasis, polyamines, trypanothione synthase, trypanothione reductase, tropical disease.

Graphical Abstract

[1]
World Health Organization. Leishmaniasis., 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (Accessed on December 1, 2021).
[2]
Ghorbani, M.; Farhoudi, R. Leishmaniasis in humans: Drug or vaccine therapy? Drug Des. Devel. Ther., 2017, 12, 25-40.
[http://dx.doi.org/10.2147/DDDT.S146521] [PMID: 29317800]
[3]
Drugs for Neglected Diseases initiative (DNDi). Towards a new generation of treatments for leishmaniasis, 2019. Available from: https://dndi.org/wp-content/uploads/2018/12/DNDi_Leishmaniasis_2018.pdf
[4]
Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[5]
Sundar, S.; Singh, B. Emerging therapeutic targets for treatment of leishmaniasis. Expert Opin. Ther. Targets, 2018, 22(6), 467-486.
[http://dx.doi.org/10.1080/14728222.2018.1472241] [PMID: 29718739]
[6]
Colotti, G.; Ilari, A. Polyamine metabolism in Leishmania: From arginine to trypanothione. Amino Acids, 2011, 40(2), 269-285.
[http://dx.doi.org/10.1007/s00726-010-0630-3] [PMID: 20512387]
[7]
da Silva, M.F.L.; Floeter-Winter, L.M. Arginase in Leishmania. In: Proteins Proteomics Leishmania trypanos; Santos, A.L.S.; Branquinha, M.H.; d’Avila-Levy, C.M.; Kneipp, L.F.; Sodré, C.L., Eds.; Springer Netherlands: Dordrecht, 2014; pp. 103-117.
[http://dx.doi.org/10.1007/978-94-007-7305-9_4]
[8]
D’Antonio, E.L.; Ullman, B.; Roberts, S.C.; Dixit, U.G.; Wilson, M.E.; Hai, Y.; Christianson, D.W. Crystal structure of arginase from Leishmania mexicana and implications for the inhibition of polyamine biosynthesis in parasitic infections. Arch. Biochem. Biophys., 2013, 535(2), 163-176.
[http://dx.doi.org/10.1016/j.abb.2013.03.015] [PMID: 23583962]
[9]
Pessenda, G.; da Silva, J.S. Arginase and its mechanisms in Leishmania persistence. Parasite Immunol., 2020, 42(7), e12722.
[http://dx.doi.org/10.1111/pim.12722] [PMID: 32294247]
[10]
Di Costanzo, L.; Sabio, G.; Mora, A.; Rodriguez, P.C.; Ochoa, A.C.; Centeno, F.; Christianson, D.W. Crystal structure of human arginase I at 1.29-A resolution and exploration of inhibition in the immune response. Proc. Natl. Acad. Sci. USA, 2005, 102(37), 13058-13063.
[http://dx.doi.org/10.1073/pnas.0504027102] [PMID: 16141327]
[11]
Mandal, A.; Das, S.; Kumar, A.; Roy, S.; Verma, S.; Ghosh, A.K.; Singh, R.; Abhishek, K.; Saini, S.; Sardar, A.H.; Purkait, B.; Kumar, A.; Mandal, C.; Das, P. l-arginine uptake by cationic amino acid transporter promotes intra-macrophage survival of Leishmania donovani by enhancing arginase-mediated polyamine synthesis. Front. Immunol., 2017, 8, 839.
[http://dx.doi.org/10.3389/fimmu.2017.00839] [PMID: 28798743]
[12]
Garcia, A.R.; Oliveira, D.M.P.; Jesus, J.B.; Souza, A.M.T.; Sodero, A.C.R.; Vermelho, A.B.; Leal, I.C.R.; Souza, R.O.M.A.; Miranda, L.S.M.; Pinheiro, A.S.; Rodrigues, I.A. Identification of chalcone derivatives as inhibitors of Leishmania infantum arginase and promising antileishmanial agents. Front Chem., 2021, 8, 624678.
[http://dx.doi.org/10.3389/fchem.2020.624678] [PMID: 33520939]
[13]
Feitosa, L.M.; da Silva, E.R.; Hoelz, L.V.B.; Souza, D.L.; Come, J.A.A.S.S.; Cardoso-Santos, C.; Batista, M.M.; Soeiro, M.N.C.; Boechat, N.; Pinheiro, L.C.S. New pyrazolopyrimidine derivatives as Leishmania amazonensis arginase inhibitors. Bioorg. Med. Chem., 2019, 27(14), 3061-3069.
[http://dx.doi.org/10.1016/j.bmc.2019.05.026] [PMID: 31176565]
[14]
Crizanto de Lima, E.; Castelo-Branco, F.S.; Maquiaveli, C.C.; Farias, A.B.; Rennó, M.N.; Boechat, N.; Silva, E.R. Phenylhydrazides as inhibitors of Leishmania amazonensis arginase and antileishmanial activity. Bioorg. Med. Chem., 2019, 27(17), 3853-3859.
[http://dx.doi.org/10.1016/j.bmc.2019.07.022] [PMID: 31311700]
[15]
Manta, B.; Comini, M.; Medeiros, A.; Hugo, M.; Trujillo, M.; Radi, R. Trypanothione: A unique bis-glutathionyl derivative in trypanosomatids. Biochim. Biophys. Acta, 2013, 1830(5), 3199-3216.
[http://dx.doi.org/10.1016/j.bbagen.2013.01.013] [PMID: 23396001]
[16]
Leroux, A.E.; Haanstra, J.R.; Bakker, B.M.; Krauth-Siegel, R.L. Dissecting the catalytic mechanism of Trypanosoma brucei trypanothione synthetase by kinetic analysis and computational modeling. J. Biol. Chem., 2013, 288(33), 23751-23764.
[http://dx.doi.org/10.1074/jbc.M113.483289] [PMID: 23814051]
[17]
Fyfe, P.K.; Oza, S.L.; Fairlamb, A.H.; Hunter, W.N. Leishmania trypanothione synthetase-amidase structure reveals a basis for regulation of conflicting synthetic and hydrolytic activities. J. Biol. Chem., 2008, 283(25), 17672-17680.
[http://dx.doi.org/10.1074/jbc.M801850200] [PMID: 18420578]
[18]
Hiratake, J. Enzyme inhibitors as chemical tools to study enzyme catalysis: Rational design, synthesis, and applications. Chem. Rec., 2005, 5(4), 209-228.
[http://dx.doi.org/10.1002/tcr.20045] [PMID: 16041744]
[19]
Sousa, A.F.; Gomes-Alves, A.G.; Benítez, D.; Comini, M.A.; Flohé, L.; Jaeger, T.; Passos, J.; Stuhlmann, F.; Tomás, A.M.; Castro, H. Genetic and chemical analyses reveal that trypanothione synthetase but not glutathionylspermidine synthetase is essential for Leishmania infantum. Free Radic. Biol. Med., 2014, 73, 229-238.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.05.007] [PMID: 24853758]
[20]
Benítez, D.; Medeiros, A.; Fiestas, L.; Panozzo-Zenere, E.A.; Maiwald, F.; Prousis, K.C.; Roussaki, M.; Calogeropoulou, T.; Detsi, A.; Jaeger, T.; Šarlauskas, J.; Peterlin Mašič, L.; Kunick, C.; Labadie, G.R.; Flohé, L.; Comini, M.A. Identification of novel chemical scaffolds inhibiting trypanothione synthetase from pathogenic trypanosomatids. PLoS Negl. Trop. Dis., 2016, 10(4), e0004617.
[http://dx.doi.org/10.1371/journal.pntd.0004617] [PMID: 27070550]
[21]
Medeiros, A.; Benítez, D.; Korn, R.S.; Ferreira, V.C.; Barrera, E.; Carrión, F.; Pritsch, O.; Pantano, S.; Kunick, C.; de Oliveira, C.I.; Orban, O.C.F.; Comini, M.A. Mechanistic and biological characterisation of novel N5-substituted paullones targeting the biosynthesis of trypanothione in Leishmania. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1345-1358.
[http://dx.doi.org/10.1080/14756366.2020.1780227] [PMID: 32588679]
[22]
Müller, S.; Liebau, E.; Walter, R.D.; Krauth-Siegel, R.L. Thiol-based redox metabolism of protozoan parasites. Trends Parasitol., 2003, 19(7), 320-328.
[http://dx.doi.org/10.1016/S1471-4922(03)00141-7] [PMID: 12855383]
[23]
Bond, C.S.; Zhang, Y.; Berriman, M.; Cunningham, M.L.; Fairlamb, A.H.; Hunter, W.N. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure, 1999, 7(1), 81-89.
[http://dx.doi.org/10.1016/S0969-2126(99)80011-2] [PMID: 10368274]
[24]
Fairlamb, A.H.; Cerami, A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu. Rev. Microbiol., 1992, 46(1), 695-729.
[http://dx.doi.org/10.1146/annurev.mi.46.100192.003403] [PMID: 1444271]
[25]
Kuldeep, J.; R, K.; Kaur, P.; Goyal, N.; Siddiqi, M.I. Identification of potential anti-leishmanial agents using computational investigation and biological evaluation against trypanothione reductase. J. Biomol. Struct. Dyn., 2021, 39(3), 960-969.
[http://dx.doi.org/10.1080/07391102.2020.1721330] [PMID: 31984862]
[26]
Inacio, J.D.F.; Fonseca, M.S.; Limaverde-Sousa, G.; Tomas, A.M.; Castro, H.; Almeida-Amaral, E.E. Epigallocathechin-O-3-gallate inhibits trypanothione reductase of Leishmania infantum, causing alterations in redox balance and leading to parasite death. Front. Cell. Infect. Microbiol., 2021, 11, 640561.
[http://dx.doi.org/10.3389/fcimb.2021.640561] [PMID: 33842389]
[27]
Revuelto, A.; de Lucio, H.; García-Soriano, J.C.; Sánchez-Murcia, P.A.; Gago, F.; Jiménez-Ruiz, A.; Camarasa, M-J.; Velázquez, S. Efficient dimerization disruption of Leishmania infantum trypanothione reductase by triazole-phenyl-thiazoles. J. Med. Chem., 2021, 64(9), 6137-6160.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00206] [PMID: 33945281]

© 2025 Bentham Science Publishers | Privacy Policy