Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Structure-Activity Relationships of Pyrimidine Derivatives and their Biological Activity - A Review

Author(s): Ramalakshmi Natarajan, Helina Navis Anthoni Samy*, Amuthalakshmi Sivaperuman and Arunkumar Subramani

Volume 19, Issue 1, 2023

Published on: 26 August, 2022

Page: [10 - 30] Pages: 21

DOI: 10.2174/1573406418666220509100356

Price: $65

Abstract

Background: Heterocycles play a major role in many fields of biochemical and physiological such as amino acids, DNA bases, vitamins, endogenous neurotransmitters, etc. Nitrogencontaining heterocyclic compounds play a vital role in medicinal chemistry and exhibit notable biological and pharmacological activities. In the past two decades, scientists focused more on the diverse biological activities of pyrimidine derivatives. Pyrimidine is a six-membered heterocyclic compound, and it is present naturally in nucleic acid components (uracil, thymine, and cytosine) and vitamin B1; it is a promising lead molecule for synthesising compounds with various substitutions to treat various diseases.

Objective: We focused on the structure-activity relationship of pyrimidine derivatives and its various biological activities reported from 2010 to date.

Results: From this review, we concluded that the position of substituents in the pyrimidine nucleus greatly influences biological activities. Thus, the pyrimidine nucleus showed anti-microbial, anticancer, anti-inflammatory, anti-tubercular, anti-convulsant, antihypertensive, anthelmintic, antidepressant, analgesic, anti-hyperglycemic activities, etc.

Conclusion: This study provides an overview of the pyrimidine nucleus and its derivatives from 2010 to date. There is a future scope for identifying a lead molecule for the target biological activity.

Keywords: Heterocycles, pyrimidine, drug discovery, substituents, biological activities, lead molecule.

Graphical Abstract

[1]
Finar, I.L. Organic Chemistry, 6th Ed; Pearson Education Ltd: London, UK, 2009, Vol. 1, pp. 826-864.
[2]
Bansal, R.K. Heterocyclic Chemistry, 3rd Ed; New Age International, Ltd: New Delhi, India, 1999, pp. 452-458.
[3]
Kunied, T.; Mutsanga, H. The Chemistry of Heterocyclic Compounds, Palmer, B; , 2002, p. 175.
[4]
Pyrimidine. Encyclopedia Britannica, 2017. Available from: https://www.britannica.com/science/pyrimidine (Accessed on 31 August 2021).
[5]
NCI thesaurus. Enterprise Vocabulary Services (EVS)., Available from: https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=NCI_Thesaurus&code=C789 (Accessed on March 21, 2021).
[6]
Katritzky, A.R.; Ramsden, C.A.; Joule, J.A.; Zhdankin, V.V. Handbook of Heterocyclic Chemistry; Elsevier, 2010, pp. 38-40.
[7]
Fathalla, O.A.; Zeid, I.F.; Haiba, M.E.; Soliman, A.M.; Abd-Elmoez, S.; El-Serwy, W.S. Synthesis, antibacterial and anticancer evaluation of some pyrimidine derivatives. Eur. J. Med. Chem., 2009, 4(2), 127-132.
[8]
Li, J.; An, B.; Song, X.; Zhang, Q.; Chen, C.; Wei, S.; Fan, R.; Li, X.; Zou, Y. Design, synthesis and biological evaluation of novel 2,4-diaryl pyrimidine derivatives as selective EGFRL858R/T790M inhibitors. Eur. J. Med. Chem., 2021, 212, 113019.
[http://dx.doi.org/10.1016/j.ejmech.2020.113019] [PMID: 33429247]
[9]
Ng, C.; Xiao, Y.D.; Lum, B.L.; Han, Y.H. Quantitative structure-activity relationships of methotrexate and methotrexate analogues transported by the rat multispecific resistance-associated protein 2 (rMrp2). Eur. J. Pharm. Sci., 2005, 26(5), 405-413.
[http://dx.doi.org/10.1016/j.ejps.2005.07.008] [PMID: 16154329]
[10]
Drug Bank. Available from: https://go.drugbank.com/categories/DBCAT000349 (Cited: March 27, 2021).
[11]
Prabhakar, V.; Babu, K.S.; Ravindranath, L.K.; Latha, J. Design, synthesis, characterization and biological activity of novel thieno [2, 3-d] pyrimidine derivatives. Indian J. Adv. Chem. Sci., 2017, 5(1), 30-42.
[12]
Amin, L.H.T.; Shawer, T.Z.; El-Naggar, A.M.; El-Sehrawi, H.M.A. Design, synthesis, anticancer evaluation and docking studies of new pyrimidine derivatives as potent thymidylate synthase inhibitors. Bioorg. Chem., 2019, 91, 103159.
[http://dx.doi.org/10.1016/j.bioorg.2019.103159] [PMID: 31382056]
[13]
Falcão, E.P.; de Melo, S.J.; Srivastava, R.M.; Catanho, M.T.; Do Nascimento, S.C. Synthesis and antiinflammatory activity of 4-amino-2-aryl-5-cyano-6-3- and 4-(N-phthalimidophenyl) pyrimidines. Eur. J. Med. Chem., 2006, 41(2), 276-282.
[http://dx.doi.org/10.1016/j.ejmech.2005.09.009] [PMID: 16414151]
[14]
Liu, P.; Yang, Y.; Tang, Y.; Yang, T.; Sang, Z.; Liu, Z.; Zhang, T.; Luo, Y. Design and synthesis of novel pyrimidine derivatives as potent antitubercular agents. Eur. J. Med. Chem., 2019, 163, 169-182.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.054] [PMID: 30508666]
[15]
Alam, O.; Mullick, P.; Verma, S.P.; Gilani, S.J.; Khan, S.A.; Siddiqui, N.; Ahsan, W. Synthesis, anticonvulsant and toxicity screening of newer pyrimidine semicarbazone derivatives. Eur. J. Med. Chem., 2010, 45(6), 2467-2472.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.031] [PMID: 20211511]
[16]
Bózsing, D.; Simonek, I.; Simig, G.; Jakóczi, I.; Gacsályi, I.; Lévay, G.; Tihanyi, K.; Schmidt, E. Synthesis and evaluation of 5-HT(2A) and 5-HT(2C) receptor binding affinities of novel pyrimidine derivatives. Bioorg. Med. Chem. Lett., 2002, 12(21), 3097-3099.
[http://dx.doi.org/10.1016/S0960-894X(02)00660-1] [PMID: 12372510]
[17]
Nofal, Z.M.; Fahmy, H.H.; Zarea, E.S.; El-Eraky, W. Synthesis of new pyrimidine derivatives with evaluation of their anti-inflammatory and analgesic activities. Acta Pol. Pharm., 2011, 68(4), 507-517.
[PMID: 21796933]
[18]
Lee, H.W.; Kim, B.Y.; Ahn, J.B.; Kang, S.K.; Lee, J.H.; Shin, J.S.; Ahn, S.K.; Lee, S.J.; Yoon, S.S. Molecular design, synthesis, and hypoglycemic and hypolipidemic activities of novel pyrimidine derivatives having thiazolidinedione. Eur. J. Med. Chem., 2005, 40(9), 862-874.
[http://dx.doi.org/10.1016/j.ejmech.2005.03.019] [PMID: 15908051]
[19]
Sahoo, B.M.; Rajeswari, M.; Jnyanaranjan, P.; Binayani, S. Green expedient synthesis of pyrimidine derivatives via chalcones and evaluation of their anthelmintic activity. Indian J. Pharm. Educ. Res., 2017, 51(4), S700-S706.
[http://dx.doi.org/10.5530/ijper.51.4s.101]
[20]
Coterón, J.M.; Catterick, D.; Castro, J.; Chaparro, M.J.; Díaz, B.; Fernández, E.; Ferrer, S.; Gamo, F.J.; Gordo, M.; Gut, J.; de las Heras, L.; Legac, J.; Marco, M.; Miguel, J.; Muñoz, V.; Porras, E.; de la Rosa, J.C.; Ruiz, J.R.; Sandoval, E.; Ventosa, P.; Rosenthal, P.J.; Fiandor, J.M. Falcipain inhibitors: Optimization studies of the 2-pyrimidinecarbonitrile lead series. J. Med. Chem., 2010, 53(16), 6129-6152.
[http://dx.doi.org/10.1021/jm100556b] [PMID: 20672841]
[21]
Katouah, H.A.; Gaffer, H.E. Synthesis and docking study of pyrimidine derivatives scaffold for anti‐hypertension application. ChemistrySelect, 2019, 4(20), 6250-6255.
[http://dx.doi.org/10.1002/slct.201900799]
[22]
Derabli, C.; Boulebd, H.; Abdelwahab, A.B.; Boucheraine, C.; Zerrouki, S.; Bensouici, C.; Kirsch, G.; Boulcina, R.; Debache, A. Synthesis, biological evaluation and molecular docking studies of novel 2-alkylthiopyrimidino-tacrines as anticholinesterase agents and their DFT calculations. J. Mol. Struct., 2020, 1209, 127902.
[http://dx.doi.org/10.1016/j.molstruc.2020.127902]
[23]
Bai, X.Q.; Li, C.S.; Cui, M.Y.; Song, Z.W.; Zhou, X.Y.; Zhang, C.; Zhao, Y.; Zhang, T.Y.; Jiang, T.Y. Synthesis and molecular docking studies of novel pyrimidine derivatives as potential antibacterial agents. Mol. Divers., 2020, 24(4), 1165-1176.
[http://dx.doi.org/10.1007/s11030-019-10019-8] [PMID: 31792660]
[24]
Zhang, J.; Peng, J.F.; Bai, Y.B.; Wang, P.; Wang, T.; Gao, J.M.; Zhang, Z.T. Synthesis of pyrazolo[1,5-a]pyrimidine derivatives and their antifungal activities against phytopathogenic fungi in vitro. Mol. Divers., 2016, 20(4), 887-896.
[http://dx.doi.org/10.1007/s11030-016-9690-y] [PMID: 27599494]
[25]
Rami, C.; Patel, L.; Patel, C.N.; Parmar, J.P. Synthesis, antifungal activity, and QSAR studies of 1,6-dihydropyrimidine derivatives. J. Pharm. Bioallied Sci., 2013, 5(4), 277-289.
[http://dx.doi.org/10.4103/0975-7406.120078] [PMID: 24302836]
[26]
Mostafa, Y.A.; Hussein, M.A.; Radwan, A.A.; Kfafy, A-H. Synthesis and antimicrobial activity of certain new 1,2,4-triazolo[1,5-a]pyrimidine derivatives. Arch. Pharm. Res., 2008, 31(3), 279-293.
[http://dx.doi.org/10.1007/s12272-001-1153-1] [PMID: 18409039]
[27]
Narwal, S.; Kumar, S.; Verma, P.K. Design, synthesis and antimicrobial evaluation of pyrimidin-2-ol/thiol/amine analogues. Chem. Cent. J., 2017, 11(1), 52.
[http://dx.doi.org/10.1186/s13065-017-0284-2] [PMID: 29086852]
[28]
Veeraswamy, B.; Madhu, D.; Jitender Dev, G.; Poornachandra, Y.; Shravan Kumar, G.; Ganesh Kumar, C.; Narsaiah, B. Studies on synthesis of novel pyrido[2,3-d]pyrimidine derivatives, evaluation of their antimicrobial activity and molecular docking. Bioorg. Med. Chem. Lett., 2018, 28(9), 1670-1675.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.022] [PMID: 29602683]
[29]
Sun, L.; Wu, J.; Zhang, L.; Luo, M.; Sun, D. Synthesis and antifungal activities of some novel pyrimidine derivatives. Molecules, 2011, 16(7), 5618-5628.
[http://dx.doi.org/10.3390/molecules16075618] [PMID: 21730919]
[30]
Fahim, A.M.; Farag, A.M. Synthesis, antimicrobial evaluation, molecular docking, and theoretical calculations of novel pyrazolo [1, 5-a] pyrimidine derivatives. J. Mol. Struct., 2020, 1199, 127025.
[http://dx.doi.org/10.1016/j.molstruc.2019.127025]
[31]
Mohamed, M.S.; Awad, S.M.; Sayed, A.I. Synthesis of certain pyrimidine derivatives as antimicrobial agents and anti-inflammatory agents. Molecules, 2010, 15(3), 1882-1890.
[http://dx.doi.org/10.3390/molecules15031882] [PMID: 20336018]
[32]
Keche, A.P.; Hatnapure, G.D.; Tale, R.H.; Rodge, A.H.; Birajdar, S.S.; Kamble, V.M. A novel pyrimidine derivatives with aryl urea, thiourea and sulfonamide moieties: Synthesis, anti-inflammatory and antimicrobial evaluation. Bioorg. Med. Chem. Lett., 2012, 22(10), 3445-3448.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.092] [PMID: 22520258]
[33]
Mantipally, M.; Gangireddy, M.R.; Gundla, R.; Badavath, V.N.; Mandha, S.R.; Maddipati, V.C. Rational design, molecular docking and synthesis of novel homopiperazine linked imidazo[1,2-a]pyrimidine derivatives as potent cytotoxic and antimicrobial agents. Bioorg. Med. Chem. Lett., 2019, 29(16), 2248-2253.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.031] [PMID: 31239178]
[34]
Thiriveedhi, A.; Nadh, R.V.; Srinivasu, N.; Bobde, Y.; Ghosh, B.; Sekhar, K.V.G.C. Design, synthesis and anti-tumour activity of new pyrimidine-pyrrole appended triazoles. Toxicol. In Vitro, 2019, 60, 87-96.
[http://dx.doi.org/10.1016/j.tiv.2019.05.009] [PMID: 31100376]
[35]
Dinakaran, V.S.; Jacob, D.; Mathew, J.E. Synthesis and biological evaluation of novel pyrimidine-2 (1 H)-ones/thiones as potent anti-inflammatory and anticancer agents. Med. Chem. Res., 2012, 21(11), 3598-3606.
[http://dx.doi.org/10.1007/s00044-011-9909-5]
[36]
Mohamed, M.S.; Kamel, R.; Fatahala, S.S. Synthesis and biological evaluation of some thio containing pyrrolo [2,3-d]pyrimidine derivatives for their anti-inflammatory and anti-microbial activities. Eur. J. Med. Chem., 2010, 45(7), 2994-3004.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.028] [PMID: 20399543]
[37]
Sawant, R.L.; Bansode, C.A.; Wadekar, J.B. In vitro anti-inflammatory potential and QSAR analysis of oxazolo/thiazolo pyrimidine derivatives. Med. Chem. Res., 2013, 22(4), 1884-1892.
[http://dx.doi.org/10.1007/s00044-012-0189-5]
[38]
Yewale, S.B.; Ganorkar, S.B.; Baheti, K.G.; Shelke, R.U. Novel 3-substituted-1-aryl-5-phenyl-6-anilinopyrazolo[3,4-d]pyrimidin-4-ones: Docking, synthesis and pharmacological evaluation as a potential anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2012, 22(21), 6616-6620.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.119] [PMID: 23036953]
[39]
Siddiqui, A.B.; Trivedi, A.R.; Kataria, V.B.; Shah, V.H. 4,5-Dihydro-1H-pyrazolo[3,4-d]pyrimidine containing phenothiazines as antitubercular agents. Bioorg. Med. Chem. Lett., 2014, 24(6), 1493-1495.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.012] [PMID: 24582983]
[40]
Venugopala, K.N.; Dharma Rao, G.B.; Bhandary, S.; Pillay, M.; Chopra, D.; Aldhubiab, B.E.; Attimarad, M.; Alwassil, O.I.; Harsha, S.; Mlisana, K. Design, synthesis, and characterization of (1-(4-aryl)- 1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates against Mycobacterium tuberculosis. Drug Des. Devel. Ther., 2016, 10, 2681-2690.
[http://dx.doi.org/10.2147/DDDT.S109760] [PMID: 27601885]
[41]
Kamdar, N.R.; Haveliwala, D.D.; Mistry, P.T.; Patel, S.K. Design, synthesis and in vitro evaluation of antitubercular and antimicrobial activity of some novel pyranopyrimidines. Eur. J. Med. Chem., 2010, 45(11), 5056-5063.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.014] [PMID: 20805011]
[42]
Thanh, N.D.; Hai, D.S.; Ha, N.T.T.; Tung, D.T.; Le, C.T.; Van, H.T.K.; Toan, V.N.; Toan, D.N.; Dang, L.H. Synthesis, biological evaluation and molecular docking study of 1,2,3-1H-triazoles having 4H-pyrano[2,3-d]pyrimidine as potential Mycobacterium tuberculosis protein tyrosine phosphatase B inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(2), 164-171.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.009] [PMID: 30551903]
[43]
Trivedi, A.R.; Dholariya, B.H.; Vakhariya, C.P.; Dodiya, D.K.; Ram, H.K.; Kataria, V.B.; Siddiqui, A.B.; Shah, V.H. Synthesis and anti-tubercular evaluation of some novel pyrazolo [3, 4-d] pyrimidine derivatives. Med. Chem. Res., 2012, 21(8), 1887-1891.
[http://dx.doi.org/10.1007/s00044-011-9712-3]
[44]
Cai, D.; Zhang, Z.H.; Chen, Y.; Yan, X.J.; Zhang, S.T.; Zou, L.J.; Meng, L.H.; Li, F.; Fu, B.J. Synthesis of some new thiazolo [3, 2-a] pyrimidine derivatives and screening of their in vitro antibacterial and antitubercular activities. Med. Chem. Res., 2016, 25(2), 292-302.
[http://dx.doi.org/10.1007/s00044-015-1481-y]
[45]
Patil, Y.; Shingare, R.; Choudhari, A.; Borkute, R.; Sarkar, D.; Madje, B.R. Synthesis and biological evaluation of some new tricyclic pyrrolo[3,2-e]tetrazolo[1,5-c]pyrimidine derivatives as potential antitubercular agents. Arch. Pharm. (Weinheim), 2018, 351(8), 1800040.
[http://dx.doi.org/10.1002/ardp.201800040] [PMID: 29943427]
[46]
Wang, S.B.; Piao, G.C.; Zhang, H.J.; Quan, Z.S. Synthesis of 5-alkoxythieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidine derivatives and evaluation of their anticonvulsant activities. Molecules, 2015, 20(4), 6827-6843.
[http://dx.doi.org/10.3390/molecules20046827] [PMID: 25884556]
[47]
Sahu, M.; Siddiqui, N.; Sharma, V.; Wakode, S. 5,6-Dihydropyrimidine-1(2H)-carbothioamides: Synthesis, in vitro GABA-AT screening, anticonvulsant activity and molecular modelling study. Bioorg. Chem., 2018, 77, 56-67.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.031] [PMID: 29331765]
[48]
Wang, S.B.; Deng, X.Q.; Zheng, Y.; Yuan, Y.P.; Quan, Z.S.; Guan, L.P. Synthesis and evaluation of anticonvulsant and antidepressant activities of 5-alkoxytetrazolo[1,5-c]thieno[2,3-e]pyrimidine derivatives. Eur. J. Med. Chem., 2012, 56, 139-144.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.027] [PMID: 22982524]
[49]
Atta, K.F.M.; Ibrahim, T.M.; Farahat, O.O.M.; Al-Shargabi, T.Q.; Marei, M.G.; Bekhit, A.A.; El Ashry, E.S.H. Synthesis, modeling and biological evaluation of hybrids from pyrazolo[1,5c]pyrimidine as antileishmanial agents. Future Med. Chem., 2017, 9(16), 1913-1929.
[http://dx.doi.org/10.4155/fmc-2017-0120] [PMID: 29028366]
[50]
Suryawanshi, S.N.; Kumar, S.; Shivahare, R.; Pandey, S.; Tiwari, A.; Gupta, S. Design, synthesis and biological evaluation of aryl pyrimidine derivatives as potential leishmanicidal agents. Bioorg. Med. Chem. Lett., 2013, 23(18), 5235-5238.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.060] [PMID: 23910597]
[51]
Bahashwan, S.A.; Ramadan, M.A.; Aboonq, M.S.; Fayed, A.A. In vitro anti-leishmania activity and safety of newly synthesized thiazolo pyrimidine derivatives augmented with interleukine-12 (IL-12) in BALB/c mice experimentally infected with cutaneous leishmaniasis. Trop. J. Pharm. Res., 2015, 14(11), 1975-1981.
[http://dx.doi.org/10.4314/tjpr.v14i11.4]
[52]
Rajanarendar, E.; Nagi Reddy, M.; Rama Krishna, S.; Rama Murthy, K.; Reddy, Y.N.; Rajam, M.V. Design, synthesis, antimicrobial, anti-inflammatory and analgesic activity of novel isoxazolyl pyrimido[4,5-b]quinolines and isoxazolyl chromeno[2,3-d]pyrimidin-4-ones. Eur. J. Med. Chem., 2012, 55, 273-283.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.029] [PMID: 22846796]
[53]
Gupta, J.K.; Sharma, P.K.; Dudhe, R.; Chaudhary, A.; Singh, A.; Verma, P.K.; Mondal, S.C.; Yadav, R.K.; Kashyap, S. Analgesic study of novel pyrimidine derivatives linked with coumarin moiety. Med. Chem. Res., 2012, 21(8), 1625-1632.
[http://dx.doi.org/10.1007/s00044-011-9675-4]
[54]
Pogaku, V.; Gangarapu, K.; Basavoju, S.; Tatapudi, K.K.; Katragadda, S.B. Design, synthesis, molecular modelling, ADME prediction and anti-hyperglycemic evaluation of new pyrazole-triazolopyrimidine hybrids as potent α-glucosidase inhibitors. Bioorg. Chem., 2019, 93, 103307.
[http://dx.doi.org/10.1016/j.bioorg.2019.103307] [PMID: 31585262]
[55]
Sroor, F.M.; Basyouni, W.M.; Tohamy, W.M.; Abdelhafez, T.H.; El-awady, M.K. Novel pyrrolo [2, 3-d] pyrimidine derivatives: Design, synthesis, structure elucidation and in vitro anti-BVDV activity. Tetrahedron, 2019, 75(51), 130749.
[http://dx.doi.org/10.1016/j.tet.2019.130749]
[56]
Razzaghi-Asl, N.; Kamrani-Moghadam, M.; Farhangi, B.; Vahabpour, R.; Zabihollahi, R.; Sepehri, S. Design, synthesis and evaluation of cytotoxic, antimicrobial, and anti-HIV-1 activities of new 1,2,3,4-tetrahydropyrimidine derivatives. Res. Pharm. Sci., 2019, 14(2), 155-166.
[http://dx.doi.org/10.4103/1735-5362.253363] [PMID: 31620192]
[57]
Rawal, R.K.; Tripathi, R.; Katti, S.B.; Pannecouque, C.; De Clercq, E. Synthesis and evaluation of 2-(2,6-dihalophenyl)-3-pyrimidinyl-1,3-thiazolidin-4-one analogues as anti-HIV-1 agents. Bioorg. Med. Chem., 2007, 15(9), 3134-3142.
[http://dx.doi.org/10.1016/j.bmc.2007.02.044] [PMID: 17349793]
[58]
Kang, D.; Fang, Z.; Li, Z.; Huang, B.; Zhang, H.; Lu, X.; Xu, H.; Zhou, Z.; Ding, X.; Daelemans, D.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Design, synthesis, and evaluation of thiophene [3, 2-d] pyrimidine derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors with significantly improved drug resistance profiles. J. Med. Chem., 2016, 59(17), 7991-8007.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00738] [PMID: 27541578]
[59]
Chitikina, S.S.; Buddiga, P.; Deb, P.K.; Mailavaram, R.P.; Venugopala, K.N.; Nair, A.B.; Al-Jaidi, B.; Kar, S. Synthesis and anthelmintic activity of some novel (E)-2-methyl/propyl-4-(2-(substitutedbenzylidene) hydrazinyl)-5, 6, 7, 8-tetrahydrobenzo [4, 5] thieno [2, 3-d] pyrimidines. Med. Chem. Res., 2020, 29(9), 1600-1610.
[http://dx.doi.org/10.1007/s00044-020-02586-5]
[60]
Sapkal, B.M.; More, D.H. One-pot three-component synthesis of pyrimidine-5-carbonitrile derivatives in water using p-dodecylbenzenesulfonic acid as catalyst and evaluation of in vitro anti-inflammatory and anthelmintic activities. Pharma Chem., 2015, 7(3), 167-173.
[61]
Madawali, I.M.; Das, K.K.; Gaviraj, E.N.; Kalyane, N.V.; Shivakumar, B. Synthesis and evaluation of 4-(1H-benzimidazol-2-Yl)-6-(2 chloroquinolin-3-Yl) pyrimidin-2-amines as potent anthelmintic agents. J. Chem. Pharm. Res., 2018, 10(11), 76-83.
[62]
Christian, DJ; Bhoi, MN; Mayuri, A; Borad, MA; Rajani, DP; Rajani, SD; Patel, HD Microwave assisted synthesis and in vitro anti-malarial screening of novel pyrimidine derivatives. W. J. Pharm. Pharmaceut. Sci., 2014, 3(8), 1955-1971.
[63]
Silveira, F.F.; Feitosa, L.M.; Mafra, J.C.; Maria de Lourdes, G.F.; Rogerio, K.R.; Carvalho, L.J.; Boechat, N.; Pinheiro, L.C. Synthesis and anti-Plasmodium falciparum evaluation of novel pyrazolopyrimidine derivatives. Med. Chem. Res., 2018, 27(8), 1876-1884.
[http://dx.doi.org/10.1007/s00044-018-2199-4]
[64]
Kumar, D.; Khan, S.I.; Tekwani, B.L.; Ponnan, P.; Rawat, D.S. 4-Aminoquinoline-pyrimidine hybrids: Synthesis, antimalarial activity, heme binding and docking studies. Eur. J. Med. Chem., 2015, 89, 490-502.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.061] [PMID: 25462261]
[65]
Kumar, D.; Khan, S.I.; Ponnan, P.; Rawat, D.S. Triazine–pyrimidine based molecular hybrids: Synthesis, docking studies, and evaluation of antimalarial activity. New J. Chem., 2014, 38(10), 5087-5095.
[http://dx.doi.org/10.1039/C4NJ00978A]
[66]
Kaur, H.; Balzarini, J.; de Kock, C.; Smith, P.J.; Chibale, K.; Singh, K. Synthesis, antiplasmodial activity and mechanistic studies of pyrimidine-5-carbonitrile and quinoline hybrids. Eur. J. Med. Chem., 2015, 101, 52-62.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.024] [PMID: 26114811]
[67]
Marella, A.; Akhter, M.; Shaquiquzzaman, M.; Tanwar, O.; Verma, G.; Alam, M.M. Synthesis, 3D-QSAR and docking studies of pyrimidine nitrile-pyrazoline: A novel class of hybrid antimalarial agents. Med. Chem. Res., 2015, 24(3), 1018-1037.
[http://dx.doi.org/10.1007/s00044-014-1188-5]
[68]
Majeed, J.; Shaharyar, M. Synthesis and in vivo diuretic activity of some novel pyrimidine derivatives. J. Enzyme Inhib. Med. Chem., 2011, 26(6), 819-826.
[http://dx.doi.org/10.3109/14756366.2011.557022] [PMID: 21381888]
[69]
Farghaly, A.M. AboulWafa, O.M.; Elshaier, Y.A.M.; Badawi, W.A.; Haridy, H.H.; Mubarak, H.A.E. Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores. Med. Chem. Res., 2019, 28(3), 360-379.
[http://dx.doi.org/10.1007/s00044-019-02289-6]
[70]
Ismail, M.M.; El-Sayed, N.A.; Rateb, H.S.; Ellithey, M.; Ammar, Y.A. Synthesis and evaluation of some 1,2,3,4-tetrahydropyrimidine-2-thione and condensed pyrimidine derivatives as potential antihypertensive agents. Arzneimittelforschung, 2006, 56(5), 322-327.
[PMID: 16821642]
[71]
Romdhane, A.; Said, A.B.; Cherif, M.; Jannet, H.B. Design, synthesis and anti-acetylcholinesterase evaluation of some new pyrazolo [4, 3-e]-1, 2, 4-triazolo [1, 5-c] pyrimidine derivatives. Med. Chem. Res., 2016, 25(7), 1358-1368.
[http://dx.doi.org/10.1007/s00044-016-1576-0]
[72]
Mahgoub, M.Y.; Elmaghraby, A.M.; Harb, A.A.; Ferreira da Silva, J.L.; Justino, G.C.; Marques, M.M. Synthesis, crystal structure, and biological evaluation of fused thiazolo[3,2-a]pyrimidines as new acetylcholinesterase inhibitors. Molecules, 2019, 24(12), 2306.
[http://dx.doi.org/10.3390/molecules24122306] [PMID: 31234400]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy