Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Structure-Based Discovery of Potent Staphylococcus aureus Thymidylate Kinase Inhibitors by Virtual Screening

Author(s): Bakhtawer Qureshi, Ruqaiya Khalil, Maria Saeed, Mohammad Nur-e-Alam, Sarfaraz Ahmed and Zaheer Ul-Haq*

Volume 19, Issue 1, 2023

Published on: 18 July, 2022

Page: [75 - 90] Pages: 16

DOI: 10.2174/1573406418666220407092638

Price: $65

Abstract

Introduction: Multidrug-resistant bacteria are rapidly increasing worldwide, increasing antibiotic resistance. The exploitation, misuse, overuse, and decrease of the therapeutic potential of currently available antibiotics have resulted in the development of resistance against bacteria. As the most common bacterial pathogen in humans, Staphylococcus aureus can cause many adverse health effects. In fighting multidrug-resistant Staphylococcus aureus, scientists have identified an extremely relevant target - SaTMPK. SaTMPK is essential for DNA synthesis, which, in turn, is necessary for the replication and cell division of bacteria.

Objective: To perform multi-stage screening using the ZINC database, followed by molecular docking, ADMET profiling, molecular dynamics simulations, and energy calculations.

Methods: Based on the similar pharmacophoric characteristics of existing SaTMPK crystal structures, a model of interaction-based pharmacophores was developed. We then performed molecular docking studies on the positive hits obtained from the pharmacophore screening. Compounds that exhibited good molecular interactions within the SaTMPK binding sites were further evaluated using in-silico ADMET profiling.

Results: In a multi-stage screening campaign, three compounds were shortlisted that exhibited physicochemical characteristics suitable for human administration.

Conclusion: The findings from this study should contribute to in vitro and in vivo studies for clinical applications.

Keywords: Antibiotic resistance, Staphlococcus aureus, thymidylate kinase, pharmacophore, virtual screening, MD simulation, MM/PBSA.

Graphical Abstract

[1]
Weber, J.T. Community-associated methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis., 2005, 41(s4)(Suppl. 4), S269-S272.
[http://dx.doi.org/10.1086/430788] [PMID: 16032563]
[2]
David, M.Z.; Daum, R.S. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev., 2010, 23(3), 616-687.
[http://dx.doi.org/10.1128/CMR.00081-09] [PMID: 20610826]
[3]
Raygada, J.L.; Levine, D.P. Methicillin-resistant staphylococcus aureus: A growing risk in the hospital and in the community. Am. Health Drug Benefits, 2009, 2(2), 86-95.
[PMID: 25126276]
[4]
Kim, E.S.; Song, J.S.; Lee, H.J.; Choe, P.G.; Park, K.H.; Cho, J.H.; Park, W.B.; Kim, S-H.; Bang, J-H.; Kim, D-M.; Park, K.U.; Shin, S.; Lee, M.S.; Choi, H.J.; Kim, N.J.; Kim, E-C.; Oh, M-D.; Kim, H.B.; Choe, K.W. A survey of community-associated methicillin-resistant Staphylococcus aureus in Korea. J. Antimicrob. Chemother., 2007, 60(5), 1108-1114.
[http://dx.doi.org/10.1093/jac/dkm309] [PMID: 17884831]
[5]
Garcia, A.; Delorme, T.; Nasr, P. Patient age as a factor of antibiotic resistance in methicillin-resistant Staphylococcus aureus. J. Med. Microbiol., 2017, 66(12), 1782-1789.
[http://dx.doi.org/10.1099/jmm.0.000635] [PMID: 29116037]
[6]
Kaur, D.C.; Chate, S.S. Study of antibiotic resistance pattern in methicillin resistant Staphylococcus aureus with special reference to newer antibiotic. J. Glob. Infect. Dis., 2015, 7(2), 78-84.
[http://dx.doi.org/10.4103/0974-777X.157245] [PMID: 26069428]
[7]
Ahmad-Mansour, N.; Loubet, P.; Pouget, C.; Dunyach-Remy, C.; Sotto, A.; Lavigne, J-P.; Molle, V. Staphylococcus aureus toxins: an update on their pathogenic properties and potential treatments. Toxins (Basel), 2021, 13(10), 677.
[http://dx.doi.org/10.3390/toxins13100677] [PMID: 34678970]
[8]
Gatadi, S.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Promising antibacterial agents against multidrug resistant Staphylococcus aureus. Bioorg. Chem., 2019, 92, 103252.
[http://dx.doi.org/10.1016/j.bioorg.2019.103252] [PMID: 31518761]
[9]
Kandeel, M.; Kato, A.; Kitamura, Y.; Kitade, Y. Thymidylate kinase: The lost chemotherapeutic target. Nucleic Acids Symp. Ser., 2009, 53(1), 283-284.
[http://dx.doi.org/10.1093/nass/nrp142] [PMID: 19749371]
[10]
Kotaka, M.; Dhaliwal, B.; Ren, J.; Nichols, C.E.; Angell, R.; Lockyer, M.; Hawkins, A.R.; Stammers, D.K. Structures of S. aureus thymidylate kinase reveal an atypical active site configuration and an intermediate conformational state upon substrate binding. Protein Sci., 2006, 15(4), 774-784.
[http://dx.doi.org/10.1110/ps.052002406] [PMID: 16522804]
[11]
Cui, Q.; Shin, W.S.; Luo, Y.; Tian, J.; Cui, H.; Yin, D. Thymidylate kinase: An old topic brings new perspectives. Curr. Med. Chem., 2013, 20(10), 1286-1305.
[http://dx.doi.org/10.2174/0929867311320100006] [PMID: 23394555]
[12]
Gul, S.; Khalil, R.; Ul-Haq, Z.; Mubarak, M.S. Computational overview of mycobacterial thymidine monophosphate kinase. Curr. Pharm. Des., 2020, 26(15), 1676-1681.
[http://dx.doi.org/10.2174/1381612826666200403114152] [PMID: 32242781]
[13]
Kawatkar, S.P.; Keating, T.A.; Olivier, N.B.; Breen, J.N.; Green, O.M.; Guler, S.Y.; Hentemann, M.F.; Loch, J.T.; McKenzie, A.R.; Newman, J.V.; Otterson, L.G.; Martínez-Botella, G. Antibacterial inhibitors of Gram-positive thymidylate kinase: Structure-activity relationships and chiral preference of a new hydrophobic binding region. J. Med. Chem., 2014, 57(11), 4584-4597.
[http://dx.doi.org/10.1021/jm500463c] [PMID: 24828090]
[14]
Martínez-Botella, G.; Loch, J.T.; Green, O.M.; Kawatkar, S.P.; Olivier, N.B.; Boriack-Sjodin, P.A.; Keating, T.A. Sulfonylpiperidines as novel, antibacterial inhibitors of Gram-positive thymidylate kinase (TMK). Bioorg. Med. Chem. Lett., 2013, 23(1), 169-173.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.128] [PMID: 23206863]
[15]
Zhu, K.; Tao, H.; Song, J.-L.; Jin, L.; Zhang, Y.; Liu, J.; Chen, Z.; Jiang, C.-S.; Luo, C.; Zhang, H. Identification of 5-benzylidene-2-phenylthiazolones as potent PRMT5 inhibitors by virtual screening, structural optimization and biological evaluations. Bioorg. Chem., 2018, 81, 289-298.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.021] [PMID: 30172110]
[16]
Xu, L.; Zhou, S.; Yu, K.; Gao, B.; Jiang, H.; Zhen, X.; Fu, W. Molecular modeling of the 3D structure of 5-HT(1A)R: Discovery of novel 5-HT(1A)R agonists via dynamic pharmacophore-based virtual screening. J. Chem. Inf. Model., 2013, 53(12), 3202-3211.
[http://dx.doi.org/10.1021/ci400481p] [PMID: 24245825]
[17]
Huang, S.; Song, C.; Wang, X.; Zhang, G.; Wang, Y.; Jiang, X.; Sun, Q.; Huang, L.; Xiang, R.; Hu, Y.; Li, L.; Yang, S. Discovery of new SIRT2 inhibitors by utilizing a consensus docking/scoring strategy and structure-activity relationship analysis. J. Chem. Inf. Model., 2017, 57(4), 669-679.
[http://dx.doi.org/10.1021/acs.jcim.6b00714] [PMID: 28301150]
[18]
Macalino, S.J.Y.; Gosu, V.; Hong, S.; Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res., 2015, 38(9), 1686-1701.
[http://dx.doi.org/10.1007/s12272-015-0640-5] [PMID: 26208641]
[19]
Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr. Top. Med. Chem., 2014, 14(16), 1923-1938.
[http://dx.doi.org/10.2174/1568026614666140929124445] [PMID: 25262799]
[20]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[21]
Labute, P. Protonate3D: Assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins, 2009, 75(1), 187-205.
[http://dx.doi.org/10.1002/prot.22234] [PMID: 18814299]
[22]
Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 2010, 78(8), 1950-1958.
[http://dx.doi.org/10.1002/prot.22711] [PMID: 20408171]
[23]
Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of Useful Decoys, Enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem., 2012, 55(14), 6582-6594.
[http://dx.doi.org/10.1021/jm300687e] [PMID: 22716043]
[24]
Irwin, J.J.; Shoichet, B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]
[25]
OEChem, T.K. In: OpenEye Scientific Software; Santa Fe, NM, USA, 2012.
[26]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel; Access and interconvert chemical information; Open Babel Development Team and NextMove Software: Cambridge, UK, 2013.
[27]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[28]
Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T.I. BDDCS, the Rule of 5 and drugability. Adv. Drug Deliv. Rev., 2016, 101, 89-98.
[http://dx.doi.org/10.1016/j.addr.2016.05.007] [PMID: 27182629]
[29]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[30]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[31]
Wolber, G.; Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model., 2005, 45(1), 160-169.
[http://dx.doi.org/10.1021/ci049885e] [PMID: 15667141]
[32]
Triballeau, N.; Acher, F.; Brabet, I.; Pin, J.-P.; Bertrand, H.-O. Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J. Med. Chem., 2005, 48(7), 2534-2547.
[http://dx.doi.org/10.1021/jm049092j] [PMID: 15801843]
[33]
Olivier, N.B. TMK in complex with compound 46, 2-(3-chlorophenoxy)-3-fluoro-4-(1r)-3-methyl-1-[(3s)-3-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2h)-yl)piperidin-1-yl]butylbenzoic acid.Worldwide Protein Data Bank, 2014.
[34]
Trott, O.; Olson, A.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[35]
Ramírez, D.; Caballero, J. Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules, 2018, 23(5), E1038.
[http://dx.doi.org/10.3390/molecules23051038] [PMID: 29710787]
[36]
Da, C.; Kireev, D. Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: Method and benchmark study. J. Chem. Inf. Model., 2014, 54(9), 2555-2561.
[http://dx.doi.org/10.1021/ci500319f] [PMID: 25116840]
[37]
Liang, J-W.; Zhang, T-J.; Li, Z-J.; Chen, Z-X.; Yan, X-L.; Meng, F-H. Predicting potential antitumor targets of aconitum alkaloids by molecular docking and protein–ligand interaction fingerprint. Med. Chem. Res., 2016, 25(6), 1115-1124.
[http://dx.doi.org/10.1007/s00044-016-1553-7]
[38]
Schrödinger. Schrödinger Release 2017-1: QikProp., 2017. Available from: https://www.schrodinger.com/qikprop.
[39]
Anonymous Schrödinger release; Maestro, Schrödinger, LLC: New York, NY, 2018, p. 4.
[40]
Grover, S.; Dhanjal, J.K.; Goyal, S.; Grover, A.; Sundar, D. Computational identification of novel natural inhibitors of glucagon receptor for checking type II diabetes mellitus. BMC Bioinformatics, 2014, 15(S16)(Suppl. 16), S13.
[http://dx.doi.org/10.1186/1471-2105-15-S16-S13] [PMID: 25521597]
[41]
Lindahl, E.; Hess, B.; van der Spoel, D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. Mol. Model. Ann., 2001, 7(8), 306-317.
[42]
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435-447.
[http://dx.doi.org/10.1021/ct700301q] [PMID: 26620784]
[43]
Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An automated force field topology builder (ATB) and repository: Version 1.0. J. Chem. Theory Comput., 2011, 7(12), 4026-4037.
[http://dx.doi.org/10.1021/ct200196m] [PMID: 26598349]
[44]
Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[45]
Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys., 1995, 103(19), 8577-8593.
[http://dx.doi.org/10.1063/1.470117]
[46]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[47]
Kumari, R.; Kumar, R.; Lynn, A. Open Source Drug Discovery Consortium. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[48]
Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol., 2011, 162(6), 1239-1249.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x] [PMID: 21091654]
[49]
Opo, F.A.D.M.; Rahman, M.M.; Ahammad, F.; Ahmed, I.; Bhuiyan, M.A.; Asiri, A.M. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Sci. Rep., 2021, 11(1), 19106.
[http://dx.doi.org/10.1038/s41598-021-97945-6] [PMID: 34548534]
[50]
Meng, X.-Y.; Zhang, H.-X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy