Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

In vitro Examination of Antioxidant and Anti-cholinesterase Effects of Athamanta sicula L. Aqueous and Methanolic Extracts

Author(s): Karima Loucif*, Hassiba Benabdallah, Fatima Benchikh, Chawki Bensouici and Smain Amira

Volume 19, Issue 2, 2023

Published on: 22 June, 2023

Page: [87 - 92] Pages: 6

DOI: 10.2174/1573408017666220713100342

Price: $65

Abstract

Introduction: Oxidative stress plays a critical role in the pathological process of Alzheimer’s disease (AD). There is a growing interest in natural anti-oxidants and cholinesterase inhibitors from medicinal plants that may aid in the prevention of oxidative injury and treatment of AD. Considering this, Athamanta sicula L. is found to be an important medicinal plant.

Aims: The aim of the current study was to investigate the total phenolic content, antioxidant, and anticholinesterase properties of aqueous (AqE) and methanolic extracts (MethE) from Athamanta sicula L. (A. sicula L.).

Methods: The phenanthroline, ABTS free radical scavenging, and β-carotene bleaching methods were utilized to assess the antioxidant capacity. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory methods were used to determine the anti-cholinesterase effect.

Results: These extracts were found to be rich in phenolic contents. They were capable of scavenging free radicals, inhibiting lipid peroxidation, and reducing agents. A. sicula L. had a remarkable cholinesterase inhibitory effect.

Conclusion: These results support that A. sicula L. could be a new source of anti-oxidant and anticholinesterase natural drugs. Further studies on the isolation and characterization of active principles of anti-oxidant and tyrosinase inhibitory activities are needed.

Keywords: Athamanta sicula L., phenolic compounds, antioxidant potential, cholinesterase, inhibitory activity, acetylcholine.

Graphical Abstract

[1]
Jia P, Sheng R, Zhang J, et al. Design, synthesis and evaluation of galanthamine derivatives as acetylcholinesterase inhibitors. Eur J Med Chem 2009; 44(2): 772-84.
[http://dx.doi.org/10.1016/j.ejmech.2008.04.018]
[2]
Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress. Free Radic Biol Med 2002; 32(11): 1050-60.
[http://dx.doi.org/10.1016/S0891-5849(02)00794-3]
[3]
Parnetti L, Mignini F, Tomassoni D, Traini E, Amenta F. Cholinergic precursors in the treatment of cognitive impairment of vascular origin: Ineffective approaches or need for re-evaluation? J Neurol Sci 2007; 257(1-2): 264-9.
[http://dx.doi.org/10.1016/j.jns.2007.01.043] [PMID: 17331541]
[4]
Mukherjee PK, Kumar V, Mal M, Houghton PJ. Acetylcholinesterase inhibitors from plants. Phytomedicine 2007; 14(4): 289-300.
[http://dx.doi.org/10.1016/j.phymed.2007.02.002]
[5]
Massoulie J, Bon S. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates Ann. Rev Neurosci 1982; 5(1): 57-106.
[http://dx.doi.org/10.1146/annurev.ne.05.030182.000421]
[6]
Bajda M. Więckowska A, Hebda M, Guzior N, Sotriffer CA, Malawska B. Structure-based search for new inhibitors of cholinesterases. Int J Mol Sci 2013; 14(3): 5608-32.
[http://dx.doi.org/10.3390/ijms14035608]
[7]
Bahadori MB, Dinparast L, Valizadeh H, Farimani MM, Ebrahimi SN. Bioactive constituents from roots of Salvia syriaca L Acetylcholinesterase inhibitory activity and molecular docking studies. S Afr J Bot 2016; 106: 1-4.
[http://dx.doi.org/10.1016/j.sajb.2015.12.003]
[8]
Wang JY, Wen LL, Huang YN, Chen YT, Ku MC. Dual effects of antioxidants in neurodegeneration: Direct neuroprotection against oxidative stress and indirect protection via suppression of gliamediated inflammation. Curr Pharm Des 2006; 12(27): 3521-33.
[http://dx.doi.org/10.2174/138161206778343109]
[9]
Zhu X, Su B, Wang X, Smith MA, Perry G. Causes of oxidative stress in Alzheimer disease. Cell Mol Life Sci 2007; 64(17): 2202-10.
[http://dx.doi.org/10.1007/s00018-007-7218-4]
[10]
Morris MC, Beckett LA, Scherr PA, et al. Vitamin E and vitamin C supplement use and risk of incident Alzheimer disease. Alzheimer Dis Assoc Disord 1998; 12(3): 121-6.
[http://dx.doi.org/10.1097/00002093-199809000-00001] [PMID: 9772012]
[11]
Luchsinger JA, Tang MX, Shea S, Mayeux R. Antioxidant vitamin intake and risk of Alzheimer disease. Arch Neurol 2003; 60(2): 203-8.
[http://dx.doi.org/10.1001/archneur.60.2.203]
[12]
Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V, Macreadie I. Dietary polyphenols: A multifactorial strategy to target Alzheimer’s disease. Int J Mol Sci 2019; 20(20): 5090.
[http://dx.doi.org/10.3390/ijms20205090] [PMID: 31615073]
[13]
Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 2004; 74(17): 2157-84.
[http://dx.doi.org/10.1016/j.lfs.2003.09.047]
[14]
Labed I, Chibani S, Semra Z, et al. Antibacterial activity and chemical composition of essential oil of Athamanta sicula L (Apiaceae) from Algeria E-. J Chem 2012; 9(2): 796-800.
[http://dx.doi.org/10.1155/2012/963719]
[15]
Stefano VD, Pitonzo R, Schillaci D. Antimicrobial and antiproliferative activity of Athamanta sicula L. (Apiaceae). Pharmacogn Mag 2011; 7(25): 31-4.
[http://dx.doi.org/10.4103/0973-1296.75893] [PMID: 21472076]
[16]
Ferreira A, Proença C, Serralheiro MLM, Araujo MEM. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal J Ethnopharmacol 2006; 108(1): 31-7.
[http://dx.doi.org/10.1016/j.jep.2006.04.010]
[17]
Markham KR. Techniques of flavonoid identification. Academic press 1982; p. 113.
[18]
Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1965; 16(3): 144-58.
[19]
Topçu G, Ay M, Bilici A. Sarıkürkcü C, Öztürk M, Ulubelen A. A new flavone from antioxidant extracts of Pistacia terebinthus. Food Chem 2007; 103(3): 816-22.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.028]
[20]
Szydłowska-Czerniak A, Dianoczki C, Recseg K, Karlovits G, Szłyk E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta 2008; 76(4): 899-905.
[http://dx.doi.org/10.1016/j.talanta.2008.04.055]
[21]
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999; 26(9-10): 1231-7.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3]
[22]
Marco GJ. A rapid method for evaluation of antioxidants. J Am Oil Chem Soc 1968; 45(9): 594-8.
[http://dx.doi.org/10.1007/BF02668958]
[23]
Ellman GL, Courtney KD, Andres JV, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7(2): 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9]
[24]
Chen Z, Zhong C. Oxidative stress in Alzheimer’s disease. Neurosci Bull 2014; 30(2): 271-81.
[http://dx.doi.org/10.1007/s12264-013-1423-y]
[25]
Benteldjoune M, Boudiar T, Bakhouche A, et al. Antioxidant activity and characterization of flavonoids and phenolic acids of Ammoides atlantica by RP–UHPLC–ESI–QTOF–MSn. Nat Prod Res 2019; 35(10): 1639-43.
[http://dx.doi.org/10.1080/14786419.2019.1619722]
[26]
Tongpoothorn W, Chanthai S, Sriuttha M, Saosang K, Ruangviriyachai C. Bioactive properties and chemical constituents of methanolic extract and its fractions from Jatropha curcas oil. Ind Crops Prod 2012; 36(1): 437-44.
[http://dx.doi.org/10.1016/j.indcrop.2011.10.011]
[27]
Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 2005; 53(10): 4290-302.
[http://dx.doi.org/10.1021/jf0502698]
[28]
Loucif K, Benabdallah H, Benchikh F, Mehlous S, Souici CB, Amira S. Total phenolic contents, dpph radical scavenging and β-carotene bleaching activities of aqueous extract from ammoides atlantica. J Drug Deliv Ther 2020; 10(3-s): 196-8.
[http://dx.doi.org/10.22270/jddt.v10i3-s.4151]
[29]
Farahmandfar R, Asnaashari M, Pourshayegan M, Maghsoudi S, Moniri H. Evaluation of antioxidant properties of lemon verbena (Lippia citriodora) essential oil and its capacity in sunflower oil stabilization during storage time. Food Sci Nutr 2018; 6(4): 983-90.
[http://dx.doi.org/10.1002/fsn3.637]
[30]
Senguttuvan J, Paulsamy S, Karthika K. Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pac J Trop Biomed 2014; 4: S359-67.
[http://dx.doi.org/10.12980/APJTB.4.2014C1030]
[31]
Li HB, Wong CC, Cheng KW, Chen F. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants LWT -. Food Sci Technol 2008; 41(3): 385-90.
[http://dx.doi.org/10.1016/j.lwt.2007.03.011]
[32]
Shahidi F, Naczk M. Phenolics in food and nutraceuticals. CRC press 2003; pp. 144-50.
[http://dx.doi.org/10.1201/9780203508732]
[33]
Fernandes RDP, Trindade MA, Tonin FG, et al. Evaluation of antioxidant capacity of 13 plant extracts by three different methods: Cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. J Food Sci Technol 2016; 53(1): 451-60.
[http://dx.doi.org/10.1007/s13197-015-1994-x]
[34]
Loucif K, Benabdallah H, Benchikh F, et al. Metal chelating and cupric ion reducing antioxidant capacities of ammoides atlantica aqueous extract. J Drug Deliv Ther 2020; 10(4-s): 108-11.
[http://dx.doi.org/10.22270/jddt.v10i4-s.4245]
[35]
Loucif K, Benabdallah H, Benchikh F, Smain A. Evalution polyphenol contents and antioxidant capacities by DPPH and phenanthroline antioxidant assays from different sub-fractions of Amoedeis atlantic. 1 er Séminaire National Biodiversité et valorisation des produits Biologiques dans les régions arides et semis arides. 06-07 Mars 2019; Algeria: El Oued 1.
[36]
Dastmalchi K, Dorman HD, Vuorela H, Hiltunen R. Plants as potential sources for drug development against Alzheimer’s disease. Int J Biomed Pharmaceut Sci 2007; 1(2): 83-104.
[37]
Gali L, Bedjou F. Antioxidant and anticholinesterase effects of the ethanol extract, ethanol extract fractions and total alkaloids from the cultivated Ruta chalepensis. S Afr J Bot 2019; 120: 163-9.
[http://dx.doi.org/10.1016/j.sajb.2018.04.011]
[38]
Roseiro LB, Rauter AP, Serralheiro MLM. Polyphenols as acetylcholinesterase inhibitors: Structural specificity and impact on human disease. Nutr Aging 2012; 1(2): 99-111.
[http://dx.doi.org/10.3233/NUA-2012-0006]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy