Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

Antioxidant, α-amylase and α-glucosidase Inhibitory Activities of Aqueous and Methanolic Extracts From Athamanta sicula L.

Author(s): Karima Loucif*, Fatima Benchikh, Chawki Ben Souici and Smain Amira

Volume 19, Issue 2, 2023

Published on: 22 June, 2023

Page: [93 - 99] Pages: 7

DOI: 10.2174/1573408018666220804121440

Price: $65

Abstract

Introduction: Oxidative stress plays a major role in developing diabetes complications; therefore, it is possible to use natural antioxidants as therapeutic agents for diabetes.

Aims: This study aimed to find an important source of phenolics from Athamanta sicula L. (A. sicula) and confirm that this plant could be a significant source of medically important natural compounds by confirming its antioxidant, α-amylase and α-glucosidase inhibitory potential.

Methods: Antioxidant property was performed using 2,2′-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, metal chelating, and cupric reducing antioxidant capacity methods. The α-amylase and α- glucosidase inhibitory activities were investigated using an in vitro model. Moreover, polyphenols and flavonoid contents of the tested extracts were carried out.

Results: The methanolic extract exhibited the highest phenolic and flavonoid content compared to the aqueous extract. However, aqueous extract possessed the strongest antioxidant activity (DPPH scavenging, metal chelating, and Cupric ion reducing antioxidant capacities), α-amylase and α-glucosidase inhibitory effects. No correlation between phenolic content and antioxidant and enzyme inhibitory activities of A. sicula L. extracts was observed.

Conclusion: The results showed that this plant could be a significant source of medically important natural compounds.

Keywords: Athamanta sicula L., phenolic content, antioxidant properties, α-amylase inhibitory activity, and α-glucosidase inhibitory activity.

« Previous
Graphical Abstract

[1]
El-Kaissi S, Sherbeeni S. Pharmacological management of type 2 diabetes mellitus: An update. Curr Diabetes Rev 2011; 7(6): 392-405.
[http://dx.doi.org/10.2174/157339911797579160] [PMID: 21846326]
[2]
Li GL, He JY, Zhang A, Wan Y, Wang B, Chen WH. Toward potent α-glucosidase inhibitors based on xanthones: A closer look into the structure-activity correlations. Eur J Med Chem 2011; 46(9): 4050-5.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.003] [PMID: 21708415]
[3]
Xie W, Tanabe G, Akaki J, et al. Isolation, structure identification and SAR studies on thiosugar sulfonium salts, neosalaprinol and neoponkoranol, as potent α-glucosidase inhibitors. Bioorg Med Chem 2011; 19(6): 2015-22.
[http://dx.doi.org/10.1016/j.bmc.2011.01.052] [PMID: 21345683]
[4]
Hasbal G, Yilmaz-Ozden T, Can A. Antioxidant and antiacetylcholinesterase activities of Sorbus torminalis (L.) Crantz (wild service tree) fruits. J Food Drug Anal 2015; 23(1): 57-62.
[http://dx.doi.org/10.1016/j.jfda.2014.06.006] [PMID: 28911446]
[5]
Asano N. Sugar-mimicking glycosidase inhibitors: Bioactivity and application. Cell Mol Life Sci 2009; 66(9): 1479-92.
[http://dx.doi.org/10.1007/s00018-008-8522-3] [PMID: 19132292]
[6]
Standl E, Schnell O. Alpha-glucosidase inhibitors 2012 - cardiovascular considerations and trial evaluation. Diab Vasc Dis Res 2012; 9(3): 163-9.
[http://dx.doi.org/10.1177/1479164112441524] [PMID: 22508699]
[7]
Jung M, Park M, Lee HC, Kang YH, Kang ES, Kim SK. Antidiabetic agents from medicinal plants. Curr Med Chem 2006; 13(10): 1203-18.
[http://dx.doi.org/10.2174/092986706776360860] [PMID: 16719780]
[8]
Jin H, Zhang YJ, Jiang JX, et al. Studies on the extraction of pumpkin components and their biological effects on blood glucose of diabetic mice. Yao Wu Shi Pin Fen Xi 2013; 21(2): 184-9.
[9]
Misbah H, Aziz AA, Aminudin N. Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and fractions. BMC Complement Altern Med 2013; 13(1): 118.
[http://dx.doi.org/10.1186/1472-6882-13-118] [PMID: 23718315]
[10]
Niedowicz DM, Daleke DL. The role of oxidative stress in diabetic complications. Cell Biochem Biophys 2005; 43(2): 289-330.
[http://dx.doi.org/10.1385/CBB:43:2:289] [PMID: 16049352]
[11]
Spadiene A, Savickiene N, Ivanauskas L, et al. Antioxidant effects of Camellia sinensis L. extract in patients with type 2 diabetes. J Food Drug Anal 2014; 22(4): 505-11.
[http://dx.doi.org/10.1016/j.jfda.2014.04.001] [PMID: 28911467]
[12]
Shahidi F. Nutraceuticals, functional foods and dietary supplements in health and disease. Yao Wu Shi Pin Fen Xi 2012; 20(1): 226-30.
[13]
Labed I, Chibani S, Semra Z, et al. Antibacterial activity and chemical composition of essential oil of Athamanta sicula L.(Apiaceae) from Algeria. E-J Chem 2012; 9(2): 796-800.
[http://dx.doi.org/10.1155/2012/963719]
[14]
Stefano VD, Pitonzo R, Schillaci D. Antimicrobial and antiproliferative activity of Athamanta sicula L. (Apiaceae). Pharmacogn Mag 2011; 7(25): 31-4.
[http://dx.doi.org/10.4103/0973-1296.75893] [PMID: 21472076]
[15]
Ferreira A, Proença C, Serralheiro MLM. Araújo MEM. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J Ethnopharmacol 2006; 108(1): 31-7.
[http://dx.doi.org/10.1016/j.jep.2006.04.010] [PMID: 16737790]
[16]
Markham KR. Techniques of flavonoid identification. Academic Press 1982.
[17]
Lemos MF, Lemos MF, Pacheco HP, et al. Seasonal variation affects the composition and antibacterial and antioxidant activities of Thymus vulgaris. Ind Crops Prod 2017; 95: 543-8.
[http://dx.doi.org/10.1016/j.indcrop.2016.11.008]
[18]
Sousa EO, Miranda CM, Nobre CB, Boligon AA, Athayde ML, Costa JG. Phytochemical analysis and antioxidant activities of Lantana camara and Lantana montevidensis extracts. Ind Crops Prod 2015; 70: 7-15.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.010]
[19]
Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1965; 16(3): 144-58.
[20]
Topçu G, Ay M, Bilici A. Sarıkürkcü C, Öztürk M, Ulubelen A. A new flavone from antioxidant extracts of Pistacia terebinthus. Food Chem 2007; 103(3): 816-22.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.028]
[21]
Pacifico S, Galasso S, Piccolella S, et al. Seasonal variation in phenolic composition and antioxidant and anti-inflammatory activities of Calamintha nepeta (L.) Savi. Food Res Int 2015; 69: 121-32.
[http://dx.doi.org/10.1016/j.foodres.2014.12.019]
[22]
Gulcin İ. Antioxidants and antioxidant methods: An updated overview. Arch Toxicol 2020; 94(3): 651-715.
[http://dx.doi.org/10.1007/s00204-020-02689-3] [PMID: 32180036]
[23]
Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958; 181(4617): 1199-200.
[http://dx.doi.org/10.1038/1811199a0]
[24]
Apak R, Güçlü K, Ozyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 2004; 52(26): 7970-81.
[http://dx.doi.org/10.1021/jf048741x] [PMID: 15612784]
[25]
Decker EA, Welch B. Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem 1990; 38(3): 674-7.
[http://dx.doi.org/10.1021/jf00093a019]
[26]
Labed A, Ferhat M, Labed-Zouad I, et al. Compounds from the pods of Astragalus armatus with antioxidant, anticholinesterase, antibacterial and phagocytic activities. Pharm Biol 2016; 54(12): 3026-32.
[http://dx.doi.org/10.1080/13880209.2016.1200632] [PMID: 27431425]
[27]
Oviedo-Solís CI, Cornejo-Manzo S, Murillo-Ortiz BO, Guzmán- Barrón MM, Ramírez-Emiliano J. Strawberry polyphenols decrease oxidative stress in chronic diseases. Gac Med Mex 2018; 154(1): 80-6.
[PMID: 29420521]
[28]
Rauf A, Jehan N. Natural products as a potential enzyme inhibitors from medicinal plants. In: Enzyme Inhibitors and Activators. Rijeka, Croatia: InTech 2017; pp. 165-77.
[29]
Zengin G, Sarikurkcu C, Aktumsek A, Ceylan R, Ceylan O. A comprehensive study on phytochemical characterization of Haplophyllum myrtifolium Boiss. endemic to Turkey and its inhibitory potential against key enzymes involved in Alzheimer, skin diseases and type II diabetes. Ind Crops Prod 2014; 53: 244-51.
[http://dx.doi.org/10.1016/j.indcrop.2013.12.043]
[30]
Lordan S, Smyth TJ, Soler-Vila A, Stanton C, Ross RP. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem 2013; 141(3): 2170-6.
[http://dx.doi.org/10.1016/j.foodchem.2013.04.123] [PMID: 23870944]
[31]
Loucif K, Benabdallah H, Benchikh F, Samin A. Evalution polyphenol contents and antioxidant capacities by DPPH and phenanthroline antioxidant assays from hydromethanolic extract of Athamanta sicula L 2019.
[32]
Loucif K, Benabdallah H, Benchikh F, Mehlous S, Souici CB, Amira S. Total phenolic contents, DPPH radical scavenging and β-carotene bleaching activities of aqueous extract from Ammoides atlantica. J Drug Deliv Ther 2020; 10(3-s): 196-8.
[http://dx.doi.org/10.22270/jddt.v10i3-s.4151]
[33]
Miliauskas G, Venskutonis PR, Van Beek TA. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem 2004; 85(2): 231-7.
[http://dx.doi.org/10.1016/j.foodchem.2003.05.007]
[34]
Loucif K, Benchikh F, Benabdallah H, Ben Souici C, Smain A. Antioxidant activity and polyphenols content of hydromethanolic extract from Athamanta sicula L. Indian J Nov Drug Deliv 2021; 13(3): 149-53.
[35]
Lekouaghet A, Boutefnouchet A, Bensuici C, Gali L, Ghenaiet K, Tichati L. In vitro evaluation of antioxidant and anti-inflammatory activities of the hydroalcoholic extract and its fractions from Leuzea conifera L. roots. S Afr J Bot 2020; 132: 103-7.
[http://dx.doi.org/10.1016/j.sajb.2020.03.042]
[36]
Loucif K, Benabdallah H, Benchikh F, et al. Metal chelating and cupric ion reducing antioxidant capacities of Ammoides atlantica aqueous extract. J Drug Deliv Ther 2020; 10(4-s): 108-11.
[http://dx.doi.org/10.22270/jddt.v10i4-s.4245]
[37]
Angelov G, Boyadzhiev L, Georgieva S. Antioxydant properties of some Bulgarian wines. J Int Sci Publ: Mater Methods Technol 2008; 3: 143-50.
[38]
Bozan B, Tosun G. Özcan D. Study of polyphenol content in the seeds of red grape (Vitis vinifera L.) varieties cultivated in Turkey and their antiradical activity. Food Chem 2008; 109(2): 426-30.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.056] [PMID: 26003368]
[39]
Viuda‐Martos M, Ruiz Navajas Y, Sánchez Zapata E, Fernández‐ López J, Pérez‐Álvarez JA. Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour Fragrance J 2010; 25(1): 13-9.
[http://dx.doi.org/10.1002/ffj.1951]
[40]
Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 2005; 53(10): 4290-302.
[http://dx.doi.org/10.1021/jf0502698] [PMID: 15884874]
[41]
Brown JE, Khodr H, Hider RC, Rice-Evans CA. Structural dependence of flavonoid interactions with Cu2+ ions: Implications for their antioxidant properties. Biochem J 1998; 330(Pt 3): 1173-8.
[http://dx.doi.org/10.1042/bj3301173] [PMID: 9494082]
[42]
Gong L, Feng D, Wang T, Ren Y, Liu Y, Wang J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci Nutr 2020; 8(12): 6320-37.
[http://dx.doi.org/10.1002/fsn3.1987] [PMID: 33312519]
[43]
Yang J, Kim JS, Jeong HJ, et al. Determination of antioxidant and α-glucosidase inhibitory activities and luteolin contents of Chrysanthemum morifolium Ramat extracts. Afr J Biotechnol 2011; 10(82): 19197-202.
[44]
Luyen NT, Hanh TTH, Binh PT, Dang NH, Van Minh C, Dat NT. Inhibitors of α-glucosidase, α-amylase and lipase from Chrysanthemum morifolium. Phytochem Lett 2013; 6(3): 322-5.
[http://dx.doi.org/10.1016/j.phytol.2013.03.015]
[45]
Ben-sassi AB, Amroussi S, Besbes M, Aouni M, Skhiri F. Antioxidant and α-glucosidase activities and phytochemical constituents of Chrysanthoglossum trifurcatum (Desf.). Asian Pac J Trop Med 2018; 11(4): 285.
[http://dx.doi.org/10.4103/1995-7645.231469]
[46]
Cazarolli LH, Zanatta L, Alberton EH, et al. Flavonoids: Cellular and molecular mechanism of action in glucose homeostasis. Mini Rev Med Chem 2008; 8(10): 1032-8.
[http://dx.doi.org/10.2174/138955708785740580] [PMID: 18782055]
[47]
Hanhineva K. Törrönen R, Bondia-Pons I, et al. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 2010; 11(4): 1365-402.
[http://dx.doi.org/10.3390/ijms11041365] [PMID: 20480025]
[48]
Rasouli H, Hosseini-Ghazvini SMB, Adibi H, Khodarahmi R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct 2017; 8(5): 1942-54.
[http://dx.doi.org/10.1039/C7FO00220C] [PMID: 28470323]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy