Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

Effect of Lactobacillus rhamnosus and Diclofenac with Curcumin for Neuronal Restoration and Repair Against Scopolamine Induced Dementia in Zebrafish (Danio rerio)

Author(s): Sonal Pande* and Chirag Patel

Volume 19, Issue 2, 2023

Published on: 21 June, 2023

Page: [147 - 155] Pages: 9

DOI: 10.2174/1573408019666230508155702

Price: $65

conference banner
Abstract

Background: Clinical studies have already revealed the ubiquitous neuroprotective role of curcumin in neuronal deterioration, but it cannot be used alone due to its truncated bioavailability. Currently, many such approaches are functional, which overcome this issue either by increasing the solubility or absorption. These approaches carry a costlier treatment. One more tactic is present but less focused i.e., by limiting the intestine and liver enzymatic metabolism; by this approach, curcumin will be more available for its beneficial outcome.

Objective: The goal of this study was to evaluate the impact of Lactobacillus rhamnosus and diclofenac on the neuroprotective effects of curcumin against scopolamine-induced dementia.

Methods: Physical parameters involved a novel tank test, T maze test, whereas neurochemical parameters include brain oxidative stress and acetylcholinesterase (Ache) inhibition activity in a zebrafish dementia model.

Results: Our results demonstrated that curcumin with Lactobacillus rhamnosus and diclofenac significantly (p<0.05) reduced anxiety, memory deficits, and brain oxidative stress compared to the alone curcumin- treated group.

Conclusion: This result approves that curcumin with L.rhamnosus and diclofenac have superior activity compared to curcumin alone. However, further clinical studies are needed to validate these findings.

Graphical Abstract

[1]
Kametani F, Hasegawa M. Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer’s Disease. Front Neurosci 2018; 12: 25.
[http://dx.doi.org/10.3389/fnins.2018.00025] [PMID: 29440986]
[2]
Chesser AS, Pritchard SM, Johnson GVW. Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front Neurol 2013; 4: 122.
[http://dx.doi.org/10.3389/fneur.2013.00122] [PMID: 24027553]
[3]
Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000 Res 2018; 7: 1161.
[http://dx.doi.org/10.12688/f1000research.14506.1] [PMID: 30135715]
[4]
Kantipudi SJ, Sathianathan R. The dementia epidemic: Impact, prevention, and challenges for India. Indian J Psychiatry 2018; 60(2): 165-7.
[http://dx.doi.org/10.4103/psychiatry.IndianJPsychiatry_261_18] [PMID: 30166671]
[5]
Tang M, Taghibiglou C. The Mechanisms of Action of Curcumin in Alzheimer’s Disease. J Alzheimers Dis 2017; 58(4): 1003-16.
[http://dx.doi.org/10.3233/JAD-170188] [PMID: 28527218]
[6]
Li HL, Liu C, de Couto G, et al. Curcumin prevents and reverses murine cardiac hypertrophy. J Clin Invest 2008; 118(3): 879-93.
[http://dx.doi.org/10.1172/JCI32865] [PMID: 18292803]
[7]
Gupta SC, Kismali G, Aggarwal BB. Curcumin, a component of turmeric: From farm to pharmacy. Biofactors 2013; 39(1): 2-13.
[http://dx.doi.org/10.1002/biof.1079] [PMID: 23339055]
[8]
Shahbaz SK, Koushki K, Sathyapalan T, Majeed M, Sahebkar A. PLGA-based curcumin delivery system: An interesting therapeutic approach in the treatment of alzheimer’s disease. Curr Neuropharmacol 2022; 20(2): 309-23.
[http://dx.doi.org/10.2174/1570159X19666210823103020] [PMID: 34429054]
[9]
Pluta R. Furmaga-Jabłońska W, Januszewski S, Czuczwar SJ. Post-ischemic brain neurodegeneration in the form of Alzheimer’s disease proteinopathy: Possible therapeutic role of curcumin. Nutrients 2022; 14(2): 248.
[http://dx.doi.org/10.3390/nu14020248] [PMID: 35057429]
[10]
Khurshid B, Rehman AU, Muhammad S, Wadood A, Anwar J. Toward the noninvasive diagnosis of Alzheimer’s disease: Molecular basis for the specificity of curcumin for fibrillar amyloid-β. ACS Omega 2022; 7(25): 22032-8.
[http://dx.doi.org/10.1021/acsomega.2c02995] [PMID: 35785332]
[11]
Dib T, Pan H, Chen S. Recent advances in pectin-based nanoencapsulation for enhancing the bioavailability of bioactive compounds: Curcumin oral bioavailability. Food Rev Int 2022; 1-19.
[http://dx.doi.org/10.1080/87559129.2021.2012796]
[12]
Jiang Z, Gan J, Wang L, Lv C. Binding of curcumin to barley protein Z improves its solubility, stability and bioavailability. Food Chem 2023; 399: 133952.
[http://dx.doi.org/10.1016/j.foodchem.2022.133952] [PMID: 35998492]
[13]
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm 2007; 4(6): 807-18.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[14]
Chhouk K. Wahyudiono, Kanda H, Kawasaki S-I, Goto M. Micronization of curcumin with biodegradable polymer by supercritical anti-solvent using micro swirl mixer. Front Chem Sci Eng 2018; 12(1): 184-93.
[http://dx.doi.org/10.1007/s11705-017-1678-3]
[15]
Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 2014; 46(1): 2-18.
[http://dx.doi.org/10.4143/crt.2014.46.1.2] [PMID: 24520218]
[16]
Abdel-Hafez SM, Hathout RM, Sammour OA. Curcumin-loaded ultradeformable nanovesicles as a potential delivery system for breast cancer therapy. Colloids Surf B Biointerfaces 2018; 167: 63-72.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.051] [PMID: 29626721]
[17]
Xue J, Wang T, Hu Q, Zhou M, Luo Y. Insight into natural biopolymer-emulsified solid lipid nanoparticles for encapsulation of curcumin: Effect of loading methods. Food Hydrocoll 2018; 79: 110-6.
[http://dx.doi.org/10.1016/j.foodhyd.2017.12.018]
[18]
Maleki Dizaj S, Alipour M, Dalir Abdolahinia E, et al. Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytother Res 2022; 36(3): 1156-81.
[http://dx.doi.org/10.1002/ptr.7389] [PMID: 35129230]
[19]
Urošević M, Nikolić L, Gajić I, Nikolić V, Dinić A, Miljković V. Curcumin: Biological activities and modern pharmaceutical forms. Antibiotics (Basel) 2022; 11(2): 135.
[http://dx.doi.org/10.3390/antibiotics11020135] [PMID: 35203738]
[20]
Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 1998; 64(4): 353-6.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[21]
Hoehle SI, Pfeiffer E, Metzler M. Glucuronidation of curcuminoids by human microsomal and recombinant UDP-glucuronosyltransferases. Mol Nutr Food Res 2007; 51(8): 932-8.
[http://dx.doi.org/10.1002/mnfr.200600283] [PMID: 17628876]
[22]
Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. Int J Biochem Cell Biol 2013; 45(6): 1121-32.
[http://dx.doi.org/10.1016/j.biocel.2013.02.019] [PMID: 23500526]
[23]
Uchaipichat V, Mackenzie PI, Guo XH, et al. Human udp-glucuronosyltransferases: isoform selectivity and kinetics of 4-methylumbelliferone and 1-naphthol glucuronidation, effects of organic solvents, and inhibition by diclofenac and probenecid. Drug Metab Dispos 2004; 32(4): 413-23.
[http://dx.doi.org/10.1124/dmd.32.4.413] [PMID: 15039294]
[24]
Kuehl GE, Lampe JW, Potter JD, Bigler J. Glucuronidation of nonsteroidal anti-inflammatory drugs: identifying the enzymes responsible in human liver microsomes. Drug Metab Dispos 2005; 33(7): 1027-35.
[http://dx.doi.org/10.1124/dmd.104.002527] [PMID: 15843492]
[25]
Xie L, Ji X, Zhang Q, Wei Y. Curcumin combined with photodynamic therapy, promising therapies for the treatment of cancer. Biomed Pharmacother 2022; 146: 112567.
[http://dx.doi.org/10.1016/j.biopha.2021.112567] [PMID: 34953392]
[26]
Ye Y, Zhang X, Chen X, et al. The use of widely targeted metabolomics profiling to quantify differences in medicinally important compounds from five Curcuma (Zingiberaceae) species. Ind Crops Prod 2022; 175: 114289.
[http://dx.doi.org/10.1016/j.indcrop.2021.114289]
[27]
Joo J, Kim YW, Wu Z, et al. Screening of non-steroidal anti-inflammatory drugs for inhibitory effects on the activities of six UDP-glucuronosyltransferases (UGT1A1, 1A3, 1A4, 1A6, 1A9 and 2B7) using LC-MS/MS. Biopharm Drug Dispos 2015; 36(4): 258-64.
[http://dx.doi.org/10.1002/bdd.1933] [PMID: 25522350]
[28]
Ozawa H, Imaizumi A, Sumi Y, et al. Curcumin β-D-Glucuronide Plays an Important Role to Keep High Levels of Free-Form Curcumin in the Blood. Biol Pharm Bull 2017; 40(9): 1515-24.
[http://dx.doi.org/10.1248/bpb.b17-00339] [PMID: 28867734]
[29]
Wei B, Liu F, Liu X, et al. Enhancing stability and by-product tolerance of β-glucuronidase based on magnetic cross-linked enzyme aggregates. Colloids Surf B Biointerfaces 2022; 210: 112241.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112241] [PMID: 34847520]
[30]
Mina A, McNeice L, Banukumar S, Vazquez S. Optimisation of Benzodiazepine Immunoassay Using β-Glucuronidase Enzymatic Hydrolysis: A Comparison of Five Different β-Glucuronidase Enzymes. J Biosci Med 2022; 10(1): 7-15.
[31]
Pham PL, Dupont I, Roy D, Lapointe G, Cerning J. Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. Appl Environ Microbiol 2000; 66(6): 2302-10.
[http://dx.doi.org/10.1128/AEM.66.6.2302-2310.2000] [PMID: 10831403]
[32]
Biernat KA, Pellock SJ, Bhatt AP, et al. Structure, function, and inhibition of drug reactivating human gut microbial β-glucuronidases. Sci Rep 2019; 9(1): 825.
[http://dx.doi.org/10.1038/s41598-018-36069-w] [PMID: 30696850]
[33]
Kim Y-H, Kim J-U, Oh S-J, Kim Y-J, Kim M-H, Kim S-H. Technical optimization of culture conditions for the production of exopolysaccharide (EPS) by lactobacillus rhamnosus ATCC 9595. Food Sci Biotechnol 2008; 17(3): 587-93.
[34]
Athari Nik Azm S, Djazayeri A, Safa M, et al. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1–42) injected rats. Appl Physiol Nutr Metab 2018; 43(7): 718-26.
[http://dx.doi.org/10.1139/apnm-2017-0648] [PMID: 29462572]
[35]
Pande S, Patel C, Sarkar D, Acharya S. Lactobacillus rhamnosus UBLR-58 and diclofenac potentiate the anti- alzheimer activity of curcumin in mice. Curr Enzym Inhib 2021; 17(1): 49-56.
[http://dx.doi.org/10.2174/1573408016999200817170821]
[36]
Patel C, Pande S, Acharya S. Potentiation of anti-Alzheimer activity of curcumin by probiotic Lactobacillus rhamnosus UBLR-58 against scopolamine-induced memory impairment in mice. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(10): 1955-62.
[http://dx.doi.org/10.1007/s00210-020-01904-3] [PMID: 32448977]
[37]
Newman M, Ebrahimie E, Lardelli M. Using the zebrafish model for Alzheimer’s disease research. Front Genet 2014; 5: 189.
[http://dx.doi.org/10.3389/fgene.2014.00189] [PMID: 25071820]
[38]
Lekchand Dasriya V, Samtiya M, Dhewa T, et al. Etiology and management of Alzheimer’s disease: Potential role of gut microbiota modulation with probiotics supplementation. J Food Biochem 2022; 46(1): e14043.
[http://dx.doi.org/10.1111/jfbc.14043] [PMID: 34927261]
[39]
Liu C, Guo X, Chang X. Intestinal flora balance therapy based on probiotic support improves cognitive function and symptoms in patients with Alzheimer’s Disease: A systematic review and meta-analysis. Biomed Res Int 2022; 2022.
[http://dx.doi.org/10.1155/2022/4806163]
[40]
Guzen FP, Neta FI, de Souza FES, Batista AL, Pinheiro FI, Cobucci RN. Effects of supplementation with probiotics in experimental models of Alzheimer’s disease: A systematic review of animal experiments. Curr Alzheimer Res 2022; 19(3): 188-201.
[http://dx.doi.org/10.2174/1567205019666220318092003] [PMID: 35306987]
[41]
Sharma N, Khurana N, Muthuraman A. Lower vertebrate and invertebrate models of Alzheimer’s disease – A review. Eur J Pharmacol 2017; 815: 312-23.
[http://dx.doi.org/10.1016/j.ejphar.2017.09.017] [PMID: 28943103]
[42]
Caramillo EM, Echevarria DJ. Alzheimer’s disease in the zebrafish: where can we take it? Behav Pharmacol 2017; 28(2 and 3): 179-86.
[http://dx.doi.org/10.1097/FBP.0000000000000284] [PMID: 28177980]
[43]
Panula P, Sallinen V, Sundvik M, et al. Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases. Zebrafish 2006; 3(2): 235-47.
[http://dx.doi.org/10.1089/zeb.2006.3.235] [PMID: 18248264]
[44]
Cosacak MI, Bhattarai P, De Jager PL, Menon V, Tosto G, Kizil C. Single cell/nucleus transcriptomics comparison in zebrafish and humans reveals common and distinct molecular responses to Alzheimer’s disease. Cells 2022; 11(11): 1807.
[http://dx.doi.org/10.3390/cells11111807] [PMID: 35681503]
[45]
Freeman JL, Kiper K. Use of zebrafish genetic models to study etiology of the amyloid-beta and neurofibrillary tangle pathways in Alzheimer’s disease. Curr Neuropharmacol 2022; 20(3): 524-39.
[http://dx.doi.org/10.2174/1570159X19666210524155944] [PMID: 34030617]
[46]
Nery LR, Eltz NS, Hackman C, et al. Brain intraventricular injection of amyloid-β in zebrafish embryo impairs cognition and increases tau phosphorylation, effects reversed by lithium. PLoS One 2014; 9(9): e105862.
[http://dx.doi.org/10.1371/journal.pone.0105862] [PMID: 25187954]
[47]
Stewart A, Gaikwad S, Kyzar E, Green J, Roth A, Kalueff AV. Modeling anxiety using adult zebrafish: A conceptual review. Neuropharmacology 2012; 62(1): 135-43.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.037] [PMID: 21843537]
[48]
Wang Y, Huang H, Wu Q. Characterization of the zebrafish Ugt repertoire reveals a new class of drug-metabolizing UDP glucuronosyltransferases. Mol Pharmacol 2014; 86(1): 62-75.
[http://dx.doi.org/10.1124/mol.113.091462] [PMID: 24728488]
[49]
Low SE, Amburgey K, Horstick E, et al. TRPM7 is required within zebrafish sensory neurons for the activation of touch-evoked escape behaviors. J Neurosci 2011; 31(32): 11633-44.
[http://dx.doi.org/10.1523/JNEUROSCI.4950-10.2011] [PMID: 21832193]
[50]
Test No 203: Fish, Acute Toxicity Test, OECD Guidelines for the Testing of Chemicals. Paris: OECD Publishing 2019; p. 1-24.
[51]
Gómez-Laplaza LM, Gerlai R. Latent learning in zebrafish (Danio rerio). Behav Brain Res 2010; 208(2): 509-15.
[http://dx.doi.org/10.1016/j.bbr.2009.12.031] [PMID: 20043955]
[52]
Audira G, Sampurna B, Juniardi S, Liang ST, Lai YH, Hsiao CD. A simple setup to perform 3D locomotion tracking in zebrafish by using a single camera. Inventions (Basel) 2018; 3(1): 11.
[http://dx.doi.org/10.3390/inventions3010011]
[53]
Thamaraikani T, Karnam M, Velapandian C. In silico docking of novel phytoalkaloid camalexin in the management of benomyl induced Parkinson’s disease and its in vivo evaluation by zebrafish model. CNS Neurol Disord Drug Targets 2022; 21(4): 343-53.
[http://dx.doi.org/10.2174/1871527320666210903091447] [PMID: 34477539]
[54]
Richetti SK, Blank M, Capiotti KM, et al. Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behav Brain Res 2011; 217(1): 10-5.
[http://dx.doi.org/10.1016/j.bbr.2010.09.027] [PMID: 20888863]
[55]
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95(2): 351-8.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[56]
Rukmini MS, D’Souza B, D’Souza V. Superoxide dismutase and catalase activities and their correlation with malondialdehyde in schizophrenic patients. Indian J Clin Biochem 2004; 19(2): 114-8.
[http://dx.doi.org/10.1007/BF02894268] [PMID: 23105467]
[57]
Weydert CJ, Cullen JJ. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc 2010; 5(1): 51-66.
[http://dx.doi.org/10.1038/nprot.2009.197] [PMID: 20057381]
[58]
Patel B, Sheth D, Vyas A, et al. Amelioration of intracerebroventricular streptozotocin-induced cognitive dysfunction by Ocimum sanctum L. through the modulation of inflammation and GLP-1 levels. Metab Brain Dis 2022; 37(7): 2533-43.
[http://dx.doi.org/10.1007/s11011-022-01056-8] [PMID: 35900690]
[59]
Karlinsky H. Alzheimer’s disease in Down’s syndrome. A review. J Am Geriatr Soc 1986; 34(10): 728-34.
[http://dx.doi.org/10.1111/j.1532-5415.1986.tb04304.x] [PMID: 2944942]
[60]
Glenner GG, Wong CW. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120(3): 885-90.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[61]
Spencer DG Jr, Lal H. Effects of anticholinergic drugs on learning and memory. Drug Dev Res 1983; 3(6): 489-502.
[http://dx.doi.org/10.1002/ddr.430030602]
[62]
Chen KC, Baxter MG, Rodefer JS. Central blockade of muscarinic cholinergic receptors disrupts affective and attentional set-shifting. Eur J Neurosci 2004; 20(4): 1081-8.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03548.x] [PMID: 15305877]
[63]
Tsukada H, Nishiyama S, Fukumoto D, Ohba H, Sato K, Kakiuchi T. Effects of acute acetylcholinesterase inhibition on the cerebral cholinergic neuronal system and cognitive function: Functional imaging of the conscious monkey brain using animal PET in combination with microdialysis. Synapse 2004; 52(1): 1-10.
[http://dx.doi.org/10.1002/syn.10310] [PMID: 14755627]
[64]
Hamilton TJ, Morrill A, Lucas K, et al. Establishing zebrafish as a model to study the anxiolytic effects of scopolamine. Sci Rep 2017; 7(1): 15081.
[http://dx.doi.org/10.1038/s41598-017-15374-w] [PMID: 29118373]
[65]
Huo X, Tian X, Li Y, et al. A highly selective ratiometric fluorescent probe for real-time imaging of β-glucuronidase in living cells and zebrafish. Sens Actuators B Chem 2018; 262: 508-15.
[http://dx.doi.org/10.1016/j.snb.2018.02.047]
[66]
Gao X, Zhang P, Chen J, et al. Necrostatin-1 Relieves Learning and Memory Deficits in a Zebrafish Model of Alzheimer’s Disease Induced by Aluminum. Neurotox Res 2022; 40(1): 198-214.
[http://dx.doi.org/10.1007/s12640-021-00463-6] [PMID: 34982355]
[67]
Barthelson K, Newman M, Lardelli M. Brain transcriptomes of zebrafish and mouse Alzheimer’s disease knock-in models imply early disrupted energy metabolism. Dis Model Mech 2022; 15(1): dmm049187.
[http://dx.doi.org/10.1242/dmm.049187] [PMID: 34842276]
[68]
Todirascu-Ciornea E, El-Nashar HAS, Mostafa NM, et al. Schinus terebinthifolius essential oil attenuates scopolamine-induced memory deficits via cholinergic modulation and antioxidant properties in a zebrafish model. Evidence-Based Complement Altern Med 2019; p. 2019.
[69]
Saleem S, Kannan RR. Zebrafish: An emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery. Cell Death Discov 2018; 4(1): 45.
[http://dx.doi.org/10.1038/s41420-018-0109-7] [PMID: 30302279]
[70]
de Abreu MS, Giacomini ACVV, Sysoev M, et al. Modeling gut-brain interactions in zebrafish. Brain Res Bull 2019; 148: 55-62.
[http://dx.doi.org/10.1016/j.brainresbull.2019.03.003] [PMID: 30890360]
[71]
Bashirzade AA, Zabegalov KN, Volgin AD, et al. Modeling neurodegenerative disorders in zebrafish. Neurosci Biobehav Rev 2022; 138: 104679.
[http://dx.doi.org/10.1016/j.neubiorev.2022.104679] [PMID: 35490912]
[72]
Decker AL, Duncan K. Acetylcholine and the complex interdependence of memory and attention. Curr Opin Behav Sci 2020; 32: 21-8.
[http://dx.doi.org/10.1016/j.cobeha.2020.01.013]
[73]
Záborszky L, Gombkoto P, Varsanyi P, et al. Specific basal forebrain–cortical cholinergic circuits coordinate cognitive operations. J Neurosci 2018; 38(44): 9446-58.
[http://dx.doi.org/10.1523/JNEUROSCI.1676-18.2018] [PMID: 30381436]
[74]
Quinlivan VH, Farber SA. Lipid uptake, metabolism, and transport in the larval zebrafish. Front Endocrinol 2017; 8: 319.
[http://dx.doi.org/10.3389/fendo.2017.00319] [PMID: 29209275]
[75]
Telles-Longui M, Mourelle D, Schöwe NM, et al. α7 nicotinic ACh receptors are necessary for memory recovery and neuroprotection promoted by attention training in amyloid‐β‐infused mice. Br J Pharmacol 2019; 176(17): bph.14744.
[http://dx.doi.org/10.1111/bph.14744] [PMID: 31144293]
[76]
Basaure P, Guardia-Escote L, Cabré M, et al. Learning, memory and the expression of cholinergic components in mice are modulated by the pesticide chlorpyrifos depending upon age at exposure and apolipoprotein E (APOE) genotype. Arch Toxicol 2019; 93(3): 693-707.
[http://dx.doi.org/10.1007/s00204-019-02387-9] [PMID: 30656380]
[77]
Patel C, Shukla P, Pande S, Punamiya R, Ranch K, Boddu SHS. Acute and sub-acute toxicity study of anti-obesity herbal granules in Sprague Dawley rats. Braz J Biol 2024; 84: e264320.
[http://dx.doi.org/10.1590/1519-6984.264320] [PMID: 35946729]
[78]
Chavda VP, Anand K, Patel C, et al. Therapeutic approaches to amyotrophic lateral sclerosis from the lab to the clinic. Curr Drug Metab 2022; 23(3): 200-22.
[http://dx.doi.org/10.2174/1389200223666220310113110] [PMID: 35272595]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy