Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Integrated Bioinformatics Analysis for the Screening of Hub Genes and Therapeutic Drugs in Hepatocellular Carcinoma

Author(s): Qiuming Su, Wang Li, Xibing Zhang, Ruichao Wu, Kepu Zheng, Tao Zhou, Yun Dong, Yutao He, Duo Wang and Jianghua Ran*

Volume 24, Issue 8, 2023

Published on: 07 October, 2022

Page: [1035 - 1058] Pages: 24

DOI: 10.2174/1389201023666220628113452

Price: $65

Abstract

Background: Liver cancer is a major medical problem because of its high morbidity and mortality. Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Currently, the mechanism of HCC is unclear, and the prognosis is poor with limited treatment.

Objective: The purpose of this study is to identify hub genes and potential therapeutic drugs for HCC.

Methods: We used the GEO2R algorithm to analyze the differential expression of each gene in 4 gene expression profiles (GSE101685, GSE62232, GSE46408, and GSE45627) between HCC and normal hepatic tissues. Next, we screened out the differentially expressed genes (DEGs) by corresponding calculation data according to adjusted P-value < 0.05 and | log fold change (FC) | > 1.0. Subsequently, we used the DAVID software to analyze the DEGs by GO and KEGG enrichment analysis. Then, we carried out the protein-protein interaction (PPI) network analysis of DEGs using the STRING tool, and the PPI network was constructed by Cytoscape software. MCODE plugin was used for module analysis, and the hub genes were screened out by the Cyto- Hubba plugin. Meanwhile, we used The Kaplan-Meier plotter, GEPIA2 and HPA databases to exert survival analysis and verify the expression alternation of hub genes. Furthermore, we used ENCORI, TargetScan, miRDB and miRWalk database to predict the upstream regulated miRNA of hub genes and construct a miRNA-hub genes network by Cytoscape software. Finally, we selected potential therapeutic drugs for HCC through DGIdb databases.

Results: A total of 415 DEGs were screened in HCC, including 196 up-regulated DEGs and 219 down-regulated DEGs. The results of KEGG pathway analysis suggested that the up-regulated DEGs can regulate the cell cycle, and DNA replication signal pathway, while the down-regulated DEGs were associated with metabolic pathways. In this study, we identified 11 hub genes (AURKA, BUB1B, TOP2A, MAD2L1, CCNA2, CCNB1, BUB1, KIF11, CDK1, CCNB2 and TPX2), which were independent risk factors of HCCand all up-regulated DEGs. We verified the expression difference of hub genes through the GEPIA2 and HPA database, which was consistent with the results of GEO data. We found that those hub genes were mutations in HCC according to the cBioPortal database. Finally, we used the DGIdb database to select 32 potential therapeutic targeting drugs for hub genes.

Conclusion: In summary, our study provided a new perspective for researching the molecular mechanism of HCC. Hub genes, miRNAs, and candidate drugs provide a new direction for the early diagnosis and treatment of HCC.

Keywords: hepatocellular carcinoma, differentially expressed genes, functional enrichment analysis, protein-protein interaction, survival analysis, miRNA-hub gene network

Graphical Abstract

[1]
Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet, 2018, 391(10127), 1301-1314.
[http://dx.doi.org/10.1016/S0140-6736(18)30010-2] [PMID: 29307467]
[2]
Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2021, 7(1), 6.
[http://dx.doi.org/10.1038/s41572-020-00240-3] [PMID: 33479224]
[3]
Zhu, Z.X.; Huang, J.W.; Liao, M.H.; Zeng, Y. Treatment strategy for hepatocellular carcinoma in China: Radiofrequency ablation versus liver resection. Jpn. J. Clin. Oncol., 2016, 46(12), 1075-1080.
[http://dx.doi.org/10.1093/jjco/hyw134] [PMID: 27677661]
[4]
Jiang, Y.; Han, Q.J.; Zhang, J. Hepatocellular carcinoma: Mechanisms of progression and immunotherapy. World J. Gastroenterol., 2019, 25(25), 3151-3167.
[http://dx.doi.org/10.3748/wjg.v25.i25.3151] [PMID: 31333308]
[5]
Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(10), 589-604.
[http://dx.doi.org/10.1038/s41575-019-0186-y] [PMID: 31439937]
[6]
Grandhi, M.S.; Kim, A.K.; Ronnekleiv-Kelly, S.M.; Kamel, I.R.; Ghasebeh, M.A.; Pawlik, T.M. Hepatocellular carcinoma: From diagnosis to treatment. Surg. Oncol., 2016, 25(2), 74-85.
[http://dx.doi.org/10.1016/j.suronc.2016.03.002] [PMID: 27312032]
[7]
Yang, J.D.; Heimbach, J.K. New advances in the diagnosis and management of hepatocellular carcinoma. BMJ, 2020, 371, m3544.
[http://dx.doi.org/10.1136/bmj.m3544] [PMID: 33106289]
[8]
Hartke, J.; Johnson, M.; Ghabril, M. The diagnosis and treatment of hepatocellular carcinoma. Semin. Diagn. Pathol., 2017, 34(2), 153-159.
[http://dx.doi.org/10.1053/j.semdp.2016.12.011] [PMID: 28108047]
[9]
Lencioni, R.; Montal, R.; Torres, F.; Park, J.W.; Decaens, T.; Raoul, J.L.; Kudo, M.; Chang, C.; Ríos, J.; Boige, V.; Assenat, E.; Kang, Y.K.; Lim, H.Y.; Walters, I.; Llovet, J.M. Objective response by mRECIST as a predictor and potential surrogate end-point of overall survival in advanced HCC. J. Hepatol., 2017, 66(6), 1166-1172.
[http://dx.doi.org/10.1016/j.jhep.2017.01.012] [PMID: 28131794]
[10]
Tao, Z.; Shi, A.; Li, R.; Wang, Y.; Wang, X.; Zhao, J. Microarray bioinformatics in cancer- A review. J. BUON, 2017, 22(4), 838-843.
[PMID: 29155508]
[11]
Mulder, N.J.; Adebiyi, E.; Adebiyi, M.; Adeyemi, S.; Ahmed, A.; Ahmed, R.; Akanle, B.; Alibi, M.; Armstrong, D.L.; Aron, S.; Ashano, E.; Baichoo, S.; Benkahla, A.; Brown, D.K.; Chimusa, E.R.; Fadlelmola, F.M.; Falola, D.; Fatumo, S.; Ghedira, K.; Ghouila, A.; Hazelhurst, S.; Isewon, I.; Jung, S.; Kassim, S.K.; Kayondo, J.K.; Mbiyavanga, M.; Meintjes, A.; Mohammed, S.; Mosaku, A.; Moussa, A.; Muhammd, M.; Mungloo-Dilmohamud, Z.; Nashiru, O.; Odia, T.; Okafor, A.; Oladipo, O.; Osamor, V.; Oyelade, J.; Sadki, K.; Salifu, S.P.; Soyemi, J.; Panji, S.; Radouani, F.; Souiai, O.; Tastan Bishop, Ö. Development of bioinformatics infrastructure for genomics research. Glob. Heart, 2017, 12(2), 91-98.
[http://dx.doi.org/10.1016/j.gheart.2017.01.005] [PMID: 28302555]
[12]
Guigo, R.; de Hoon, M. Recent advances in functional genome analysis. F1000 Res., 2018, 7, 7.
[http://dx.doi.org/10.12688/f1000research.15274.1] [PMID: 30613379]
[13]
McDermaid, A.; Monier, B.; Zhao, J.; Liu, B.; Ma, Q. Interpretation of differential gene expression results of RNA-seq data: Review and integration. Brief. Bioinform., 2019, 20(6), 2044-2054.
[http://dx.doi.org/10.1093/bib/bby067] [PMID: 30099484]
[14]
Nakagawa, H.; Fujita, M. Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci., 2018, 109(3), 513-522.
[http://dx.doi.org/10.1111/cas.13505] [PMID: 29345757]
[15]
Huang, W.; Skanderup, A.J.; Lee, C.G. Advances in genomic hepatocellular carcinoma research. Gigascience, 2018, 7(11), giy135.
[PMID: 30521023]
[16]
Shibata, T.; Arai, Y.; Totoki, Y. Molecular genomic landscapes of hepatobiliary cancer. Cancer Sci., 2018, 109(5), 1282-1291.
[http://dx.doi.org/10.1111/cas.13582] [PMID: 29573058]
[17]
Wang, M.; Wang, L.; Wu, S.; Zhou, D.; Wang, X. Identification of key genes and prognostic value analysis in hepatocellular carcinoma by integrated bioinformatics analysis. Int. J. Genomics, 2019, 2019, 3518378.
[http://dx.doi.org/10.1155/2019/3518378] [PMID: 31886163]
[18]
Yang, W.; Zhao, X.; Han, Y.; Duan, L.; Lu, X.; Wang, X.; Zhang, Y.; Zhou, W.; Liu, J.; Zhang, H.; Zhao, Q.; Hong, L.; Fan, D. Identification of hub genes and therapeutic drugs in esophageal squamous cell carcinoma based on integrated bioinformatics strategy. Cancer Cell Int., 2019, 19(1), 142.
[http://dx.doi.org/10.1186/s12935-019-0854-6] [PMID: 31139019]
[19]
Shimada, S.; Mogushi, K.; Akiyama, Y.; Furuyama, T.; Watanabe, S.; Ogura, T.; Ogawa, K.; Ono, H.; Mitsunori, Y.; Ban, D.; Kudo, A.; Arii, S.; Tanabe, M.; Wands, J.R.; Tanaka, S. Comprehensive molecular and immunological characterization of hepatocellular carcinoma. EBioMedicine, 2019, 40, 457-470.
[http://dx.doi.org/10.1016/j.ebiom.2018.12.058] [PMID: 30598371]
[20]
Schlachterman, A.; Craft, W.W., Jr; Hilgenfeldt, E.; Mitra, A.; Cabrera, R. Current and future treatments for hepatocellular carcinoma. World J. Gastroenterol., 2015, 21(28), 8478-8491.
[http://dx.doi.org/10.3748/wjg.v21.i28.8478] [PMID: 26229392]
[21]
Piñero, F.; Dirchwolf, M.; Pessôa, M.G. Biomarkers in hepatocellular carcinoma: Diagnosis, prognosis and treatment response assessment. Cells, 2020, 9(6), E1370.
[http://dx.doi.org/10.3390/cells9061370] [PMID: 32492896]
[22]
Xing, X.; Liang, D.; Huang, Y.; Zeng, Y.; Han, X.; Liu, X.; Liu, J. The application of proteomics in different aspects of hepatocellular carcinoma research. J. Proteomics, 2016, 145, 70-80.
[http://dx.doi.org/10.1016/j.jprot.2016.03.050] [PMID: 27072111]
[23]
Zhou, Z.; Li, Y.; Hao, H.; Wang, Y.; Zhou, Z.; Wang, Z.; Chu, X. Screening hub genes as prognostic biomarkers of hepatocellular carcinoma by bioinformatics analysis. Cell Transplant, 2019(1_suppl)(Suppl.), 768-865.
[http://dx.doi.org/ 10.1177/0963689719893950] [PMID: 31822116]
[24]
Liu, J.S.; Huo, C.Y.; Cao, H.H.; Fan, C.L.; Hu, J.Y.; Deng, L.J.; Lu, Z.B.; Yang, H.Y.; Yu, L.Z.; Mo, Z.X.; Yu, Z.L. Aloperine induces apoptosis and G2/M cell cycle arrest in hepatocellular carcinoma cells through the PI3K/Akt signaling pathway. Phytomedicine, 2019, 61, 152843.
[http://dx.doi.org/10.1016/j.phymed.2019.152843] [PMID: 31039533]
[25]
Rebouissou, S.; Nault, J.C. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J. Hepatol., 2020, 72(2), 215-229.
[http://dx.doi.org/10.1016/j.jhep.2019.08.017] [PMID: 31954487]
[26]
Staib, F.; Hussain, S.P.; Hofseth, L.J.; Wang, X.W.; Harris, C.C. TP53 and liver carcinogenesis. Hum. Mutat., 2003, 21(3), 201-216.
[http://dx.doi.org/10.1002/humu.10176] [PMID: 12619106]
[27]
Tommasi, S.; Pinto, R.; Pilato, B.; Paradiso, A. Molecular pathways and related target therapies in liver carcinoma. Curr. Pharm. Des., 2007, 13(32), 3279-3287.
[http://dx.doi.org/10.2174/138161207782360663] [PMID: 18045179]
[28]
De Matteis, S.; Ragusa, A.; Marisi, G.; De Domenico, S.; Casadei Gardini, A.; Bonafè, M.; Giudetti, A.M. Aberrant metabolism in hepatocellular carcinoma provides diagnostic and therapeutic opportunities. Oxid. Med. Cell. Longev., 2018, 2018, 7512159.
[http://dx.doi.org/10.1155/2018/7512159] [PMID: 30524660]
[29]
Nelson, M.E.; Lahiri, S.; Chow, J.D.; Byrne, F.L.; Hargett, S.R.; Breen, D.S.; Olzomer, E.M.; Wu, L.E.; Cooney, G.J.; Turner, N.; James, D.E.; Slack-Davis, J.K.; Lackner, C.; Caldwell, S.H.; Hoehn, K.L. Inhibition of hepatic lipogenesis enhances liver tumorigenesis by increasing antioxidant defence and promoting cell survival. Nat. Commun., 2017, 8(1), 14689.
[http://dx.doi.org/10.1038/ncomms14689] [PMID: 28290443]
[30]
Nath, A.; Li, I.; Roberts, L.R.; Chan, C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci. Rep., 2015, 5(1), 14752.
[http://dx.doi.org/10.1038/srep14752] [PMID: 26424075]
[31]
Ally, A.; Balasundaram, M.; Carlsen, R.; Chuah, E.; Clarke, A.; Dhalla, N.; Holt, R.A.; Jones, S.J.M.; Lee, D.; Ma, Y.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Schein, J.E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Cheung, D.; Wong, T.; Brooks, D.; Robertson, A.G.; Bowlby, R.; Mungall, K.; Sadeghi, S.; Xi, L.; Covington, K.; Shinbrot, E.; Wheeler, D.A.; Gibbs, R.A.; Donehower, L.A.; Wang, L.; Bowen, J.; Gastier-Foster, J.M.; Gerken, M.; Helsel, C.; Leraas, K.M.; Lichtenberg, T.M.; Ramirez, N.C.; Wise, L.; Zmuda, E.; Gabriel, S.B.; Meyerson, M.; Cibulskis, C.; Murray, B.A.; Shih, J.; Beroukhim, R.; Cherniack, A.D.; Schumacher, S.E.; Saksena, G.; Pedamallu, C.S.; Chin, L.; Getz, G.; Noble, M.; Zhang, H.; Heiman, D.; Cho, J.; Gehlenborg, N.; Saksena, G.; Voet, D.; Lin, P.; Frazer, S.; Defreitas, T.; Meier, S.; Lawrence, M.; Kim, J.; Creighton, C.J.; Muzny, D.; Doddapaneni, H.V.; Hu, J.; Wang, M.; Morton, D.; Korchina, V.; Han, Y.; Dinh, H.; Lewis, L.; Bellair, M.; Liu, X.; Santibanez, J.; Glenn, R.; Lee, S.; Hale, W.; Parker, J.S.; Wilkerson, M.D.; Hayes, D.N.; Reynolds, S.M.; Shmulevich, I.; Zhang, W.; Liu, Y.; Iype, L.; Makhlouf, H.; Torbenson, M.S.; Kakar, S.; Yeh, M.M.; Jain, D.; Kleiner, D.E.; Jain, D.; Dhanasekaran, R.; El-Serag, H.B.; Yim, S.Y.; Weinstein, J.N.; Mishra, L.; Zhang, J.; Akbani, R.; Ling, S.; Ju, Z.; Su, X.; Hegde, A.M.; Mills, G.B.; Lu, Y.; Chen, J.; Lee, J-S.; Sohn, B.H.; Shim, J.J.; Tong, P.; Aburatani, H.; Yamamoto, S.; Tatsuno, K.; Li, W.; Xia, Z.; Stransky, N.; Seiser, E.; Innocenti, F.; Gao, J.; Kundra, R.; Zhang, H.; Heins, Z.; Ochoa, A.; Sander, C.; Ladanyi, M.; Shen, R.; Arora, A.; Sanchez-Vega, F.; Schultz, N.; Kasaian, K.; Radenbaugh, A.; Bissig, K-D.; Moore, D.D.; Totoki, Y.; Nakamura, H.; Shibata, T.; Yau, C.; Graim, K.; Stuart, J.; Haussler, D.; Slagle, B.L.; Ojesina, A.I.; Katsonis, P.; Koire, A.; Lichtarge, O.; Hsu, T-K.; Ferguson, M.L.; Demchok, J.A.; Felau, I.; Sheth, M.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Zhang, J.; Hutter, C.M.; Sofia, H.J.; Verhaak, R.G.W.; Zheng, S.; Lang, F.; Chudamani, S.; Liu, J.; Lolla, L.; Wu, Y.; Naresh, R.; Pihl, T.; Sun, C.; Wan, Y.; Benz, C.; Perou, A.H.; Thorne, L.B.; Boice, L.; Huang, M.; Rathmell, W.K.; Noushmehr, H.; Saggioro, F.P.; Tirapelli, D.P.C.; Junior, C.G.C.; Mente, E.D.; Silva, O.C., Jr; Trevisan, F.A.; Kang, K.J.; Ahn, K.S.; Giama, N.H.; Moser, C.D.; Giordano, T.J.; Vinco, M.; Welling, T.H.; Crain, D.; Curley, E.; Gardner, J.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Kelley, R.; Park, J-W.; Chandan, V.S.; Roberts, L.R.; Bathe, O.F.; Hagedorn, C.H.; Auman, J.T.; O’Brien, D.R.; Kocher, J-P.A.; Jones, C.D.; Mieczkowski, P.A.; Perou, C.M.; Skelly, T.; Tan, D.; Veluvolu, U.; Balu, S.; Bodenheimer, T.; Hoyle, A.P.; Jefferys, S.R.; Meng, S.; Mose, L.E.; Shi, Y.; Simons, J.V.; Soloway, M.G.; Roach, J.; Hoadley, K.A.; Baylin, S.B.; Shen, H.; Hinoue, T.; Bootwalla, M.S.; Van Den Berg, D.J.; Weisenberger, D.J.; Lai, P.H.; Holbrook, A.; Berrios, M.; Laird, P.W. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell, 2017, 169(7), 1327-1341.e23.
[http://dx.doi.org/10.1016/j.cell.2017.05.046] [PMID: 28622513]
[32]
Zhou, J.; Han, S.; Qian, W.; Gu, Y.; Li, X.; Yang, K. Metformin induces miR-378 to downregulate the CDK1, leading to suppression of cell proliferation in hepatocellular carcinoma. OncoTargets Ther., 2018, 11, 4451-4459.
[http://dx.doi.org/10.2147/OTT.S167614] [PMID: 30104887]
[33]
Xi, Q.; Huang, M.; Wang, Y.; Zhong, J.; Liu, R.; Xu, G.; Jiang, L.; Wang, J.; Fang, Z.; Yang, S. The expression of CDK1 is associated with proliferation and can be a prognostic factor in epithelial ovarian cancer. Tumour Biol., 2015, 36(7), 4939-4948.
[http://dx.doi.org/10.1007/s13277-015-3141-8] [PMID: 25910705]
[34]
Liu, H.M.; Tan, H.Y.; Lin, Y.; Xu, B.N.; Zhao, W.H.; Xie, Y.A. MicroRNA-1271-5p inhibits cell proliferation and enhances radiosensitivity by targeting CDK1 in hepatocellular carcinoma. J. Biochem., 2020, 167(5), 513-524.
[http://dx.doi.org/10.1093/jb/mvz114] [PMID: 32275316]
[35]
Bayard, Q.; Meunier, L.; Peneau, C.; Renault, V.; Shinde, J.; Nault, J.C.; Mami, I.; Couchy, G.; Amaddeo, G.; Tubacher, E.; Bacq, D.; Meyer, V.; La Bella, T.; Debaillon-Vesque, A.; Bioulac-Sage, P.; Seror, O.; Blanc, J.F.; Calderaro, J.; Deleuze, J.F.; Imbeaud, S.; Zucman-Rossi, J.; Letouzé, E. Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress. Nat. Commun., 2018, 9(1), 5235.
[http://dx.doi.org/10.1038/s41467-018-07552-9] [PMID: 30531861]
[36]
Yang, F.; Gong, J.; Wang, G.; Chen, P.; Yang, L.; Wang, Z. Waltonitone inhibits proliferation of hepatoma cells and tumorigenesis via FXR-miR-22-CCNA2 signaling pathway. Oncotarget, 2016, 7(46), 75165-75175.
[http://dx.doi.org/10.18632/oncotarget.12614] [PMID: 27738335]
[37]
Gan, Y.; Li, Y.; Li, T.; Shu, G.; Yin, G. CCNA2 acts as a novel biomarker in regulating the growth and apoptosis of colorectal cancer. Cancer Manag. Res., 2018, 10, 5113-5124.
[http://dx.doi.org/10.2147/CMAR.S176833] [PMID: 30464611]
[38]
Li, S.; Liu, N.; Piao, J.; Meng, F.; Li, Y. CCNB1 expedites the progression of cervical squamous cell carcinoma via the regulation by FOXM1. OncoTargets Ther., 2020, 13, 12383-12395.
[http://dx.doi.org/10.2147/OTT.S279951] [PMID: 33299327]
[39]
Ding, K.; Li, W.; Zou, Z.; Zou, X.; Wang, C. CCNB1 is a prognostic biomarker for ER+ breast cancer. Med. Hypotheses, 2014, 83(3), 359-364.
[http://dx.doi.org/10.1016/j.mehy.2014.06.013] [PMID: 25044212]
[40]
Gu, J.; Liu, X.; Li, J.; He, Y. MicroRNA-144 inhibits cell proliferation, migration and invasion in human hepatocellular carcinoma by targeting CCNB1. Cancer Cell Int., 2019, 19(1), 15.
[http://dx.doi.org/10.1186/s12935-019-0729-x] [PMID: 30651720]
[41]
Li, J.; Xia, T.; Cao, J.; He, D.; Chen, Z.; Liang, B.; Song, J. RP11-295G20.2 facilitates hepatocellular carcinoma progression via the miR-6884-3p/CCNB1 pathway. Aging (Albany NY), 2020, 12(14), 14918-14932.
[http://dx.doi.org/10.18632/aging.103552] [PMID: 32687483]
[42]
Eyers, P.A.; Erikson, E.; Chen, L.G.; Maller, J.L. A novel mechanism for activation of the protein kinase Aurora A. Curr. Biol., 2003, 13(8), 691-697.
[http://dx.doi.org/10.1016/S0960-9822(03)00166-0] [PMID: 12699628]
[43]
Giet, R.; Prigent, C. Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases. J. Cell Sci., 1999, 112(Pt 21), 3591-3601.
[http://dx.doi.org/10.1242/jcs.112.21.3591] [PMID: 10523496]
[44]
Fu, J.; Bian, M.; Jiang, Q.; Zhang, C. Roles of aurora kinases in mitosis and tumorigenesis. Mol. Cancer Res., 2007, 5(1), 1-10.
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0208] [PMID: 17259342]
[45]
D’Assoro, A.B.; Haddad, T.; Galanis, E. Aurora-A kinase as a promising therapeutic target in cancer. Front. Oncol., 2016, 5, 295.
[http://dx.doi.org/10.3389/fonc.2015.00295] [PMID: 26779440]
[46]
Jeng, Y.M.; Peng, S.Y.; Lin, C.Y.; Hsu, H.C. Overexpression and amplification of Aurora-A in hepatocellular carcinoma. Clin. Cancer Res., 2004, 10(6), 2065-2071.
[http://dx.doi.org/10.1158/1078-0432.CCR-1057-03] [PMID: 15041727]
[47]
Bao, Z.; Lu, L.; Liu, X.; Guo, B.; Zhai, Y.; Li, Y.; Wang, Y.; Xie, B.; Ren, Q.; Cao, P.; Han, Y.; Jia, W.; Chen, M.; Liang, X.; Wang, X.; Zeng, Y.X.; He, F.; Zhang, H.; Cui, Y.; Zhou, G. Association between the functional polymorphism Ile31Phe in the AURKA gene and susceptibility of hepatocellular carcinoma in chronic hepatitis B virus carriers. Oncotarget, 2017, 8(33), 54904-54912.
[http://dx.doi.org/10.18632/oncotarget.18613] [PMID: 28903390]
[48]
Su, Z.L.; Su, C.W.; Huang, Y.L.; Yang, W.Y.; Sampurna, B.P.; Ouchi, T.; Lee, K.L.; Wu, C.S.; Wang, H.D.; Yuh, C.H. A novel AURKA mutant-induced early-onset severe hepatocarcinogenesis greater than wild-type via activating different pathways in zebrafish. Cancers (Basel), 2019, 11(7), e927.
[http://dx.doi.org/10.3390/cancers11070927] [PMID: 31269749]
[49]
Yuan, Y.L.; Yu, H.; Mu, S.M.; Dong, Y.D.; Li, Y. MiR-26a-5p inhibits cell proliferation and enhances doxorubicin sensitivity in HCC cells via targeting AURKA. Technol. Cancer Res. Treat., 2019, 18, 1533033819851833.
[http://dx.doi.org/10.1177/1533033819851833] [PMID: 31570091]
[50]
Liu, L.; Chen, A.; Chen, S.; Song, W.; Yao, Q.; Wang, P.; Zhou, S. CCNB2, NUSAP1 and TK1 are associated with the prognosis and progression of hepatocellular carcinoma, as revealed by co-expression analysis. Exp. Ther. Med., 2020, 19(4), 2679-2689.
[http://dx.doi.org/10.3892/etm.2020.8522] [PMID: 32256749]
[51]
Gao, C.L.; Wang, G.W.; Yang, G.Q.; Yang, H.; Zhuang, L. Karyopherin subunit-α 2 expression accelerates cell cycle progression by upregulating CCNB2 and CDK1 in hepatocellular carcinoma. Oncol. Lett., 2018, 15(3), 2815-2820.
[PMID: 29435009]
[52]
Li, R.; Jiang, X.; Zhang, Y.; Wang, S.; Chen, X.; Yu, X.; Ma, J.; Huang, X. Cyclin B2 overexpression in human hepatocellular carcinoma is associated with poor prognosis. Arch. Med. Res., 2019, 50(1), 10-17.
[http://dx.doi.org/10.1016/j.arcmed.2019.03.003] [PMID: 31101236]
[53]
Visone, V.; Vettone, A.; Serpe, M.; Valenti, A.; Perugino, G.; Rossi, M.; Ciaramella, M. Chromatin structure and dynamics in hot environments: Architectural proteins and DNA topoisomerases of thermophilic archaea. Int. J. Mol. Sci., 2014, 15(9), 17162-17187.
[http://dx.doi.org/10.3390/ijms150917162] [PMID: 25257534]
[54]
Yu, Y.; Ding, S.; Liang, Y.; Zheng, Y.; Li, W.; Yang, L.; Zheng, X.; Jiang, J. Expression of ERCC1, TYMS, TUBB3, RRM1 and TOP2A in patients with esophageal squamous cell carcinoma: A hierarchical clustering analysis. Exp. Ther. Med., 2014, 7(6), 1578-1582.
[http://dx.doi.org/10.3892/etm.2014.1659] [PMID: 24926347]
[55]
Wong, N.; Yeo, W.; Wong, W.L.; Wong, N.L.; Chan, K.Y.; Mo, F.K.; Koh, J.; Chan, S.L.; Chan, A.T.; Lai, P.B.; Ching, A.K.; Tong, J.H.; Ng, H.K.; Johnson, P.J.; To, K.F. TOP2A overexpression in hepatocellular carcinoma correlates with early age onset, shorter patients survival and chemoresistance. Int. J. Cancer, 2009, 124(3), 644-652.
[http://dx.doi.org/10.1002/ijc.23968] [PMID: 19003983]
[56]
Cai, H.; Shao, B.; Zhou, Y.; Chen, Z. High expression of TOP2A in hepatocellular carcinoma is associated with disease progression and poor prognosis. Oncol. Lett., 2020, 20(5), 232.
[http://dx.doi.org/10.3892/ol.2020.12095] [PMID: 32968454]
[57]
Asbaghi, Y.; Thompson, L.L.; Lichtensztejn, Z.; McManus, K.J. KIF11 silencing and inhibition induces chromosome instability that may contribute to cancer. Genes Chromosomes Cancer, 2017, 56(9), 668-680.
[http://dx.doi.org/10.1002/gcc.22471] [PMID: 28510357]
[58]
Liu, J.; Meng, H.; Li, S.; Shen, Y.; Wang, H.; Shan, W.; Qiu, J.; Zhang, J.; Cheng, W. Identification of potential biomarkers in association with progression and prognosis in epithelial ovarian cancer by integrated bioinformatics analysis. Front. Genet., 2019, 10, 1031.
[http://dx.doi.org/10.3389/fgene.2019.01031] [PMID: 31708970]
[59]
Chen, J.; Li, S.; Zhou, S.; Cao, S.; Lou, Y.; Shen, H.; Yin, J.; Li, G. Kinesin superfamily protein expression and its association with progression and prognosis in hepatocellular carcinoma. J. Cancer Res. Ther., 2017, 13(4), 651-659.
[http://dx.doi.org/10.4103/jcrt.JCRT_491_17] [PMID: 28901309]
[60]
Hu, Z.D.; Jiang, Y.; Sun, H.M.; Wang, J.W.; Zhai, L.L.; Yin, Z.Q.; Yan, J. KIF11 promotes proliferation of hepatocellular carcinoma among patients with liver cancers. BioMed Res. Int., 2021, 2021, 2676745.
[http://dx.doi.org/10.1155/2021/2676745] [PMID: 33490265]
[61]
Li, J.; He, X.; Wu, X.; Liu, X.; Huang, Y.; Gong, Y. miR-139-5p inhibits lung adenocarcinoma cell proliferation, migration, and invasion by targeting MAD2L1. Comput. Math. Methods Med., 2020, 2020, 2953598.
[http://dx.doi.org/10.1155/2020/2953598] [PMID: 33204298]
[62]
Li, Y.; Bai, W.; Zhang, J. MiR-200c-5p suppresses proliferation and metastasis of human hepatocellular carcinoma (HCC) via suppressing MAD2L1. Biomed. Pharmacother., 2017, 92, 1038-1044.
[http://dx.doi.org/10.1016/j.biopha.2017.05.092] [PMID: 28609841]
[63]
Hahn, M.M.; Vreede, L.; Bemelmans, S.A.; van der Looij, E.; van Kessel, A.G.; Schackert, H.K.; Ligtenberg, M.J.; Hoogerbrugge, N.; Kuiper, R.P.; de Voer, R.M. Prevalence of germline mutations in the spindle assembly checkpoint gene BUB1B in individuals with early-onset colorectal cancer. Genes Chromosomes Cancer, 2016, 55(11), 855-863.
[http://dx.doi.org/10.1002/gcc.22385] [PMID: 27239782]
[64]
Chen, H.; Lee, J.; Kljavin, N.M.; Haley, B.; Daemen, A.; Johnson, L.; Liang, Y. Requirement for BUB1B/BUBR1 in tumor progression of lung adenocarcinoma. Genes Cancer, 2015, 6(3-4), 106-118.
[http://dx.doi.org/10.18632/genesandcancer.53] [PMID: 26000094]
[65]
Qiu, J.; Zhang, S.; Wang, P.; Wang, H.; Sha, B.; Peng, H.; Ju, Z.; Rao, J.; Lu, L. BUB1B promotes hepatocellular carcinoma progression via activation of the mTORC1 signaling pathway. Cancer Med., 2020, 9(21), 8159-8172.
[http://dx.doi.org/10.1002/cam4.3411] [PMID: 32977361]
[66]
Fu, J.; Zhang, X.; Yan, L.; Shao, Y.; Liu, X.; Chu, Y.; Xu, G.; Xu, X. Identification of the hub gene BUB1B in hepatocellular carcinoma via bioinformatic analysis and in vitro experiments. PeerJ, 2021, 9, e10943.
[http://dx.doi.org/10.7717/peerj.10943] [PMID: 33665036]
[67]
Saeki, A.; Tamura, S.; Ito, N.; Kiso, S.; Matsuda, Y.; Yabuuchi, I.; Kawata, S.; Matsuzawa, Y. Frequent impairment of the spindle assembly checkpoint in hepatocellular carcinoma. Cancer, 2002, 94(7), 2047-2054.
[http://dx.doi.org/10.1002/cncr.10448] [PMID: 11932908]
[68]
Xu, B.; Xu, T.; Liu, H.; Min, Q.; Wang, S.; Song, Q. MiR-490-5p suppresses cell proliferation and invasion by targeting BUB1 in hepatocellular carcinoma cells. Pharmacology, 2017, 100(5-6), 269-282.
[http://dx.doi.org/10.1159/000477667] [PMID: 28810242]
[69]
Neumayer, G.; Belzil, C.; Gruss, O.J.; Nguyen, M.D. TPX2: of spindle assembly, DNA damage response, and cancer. Cell. Mol. Life Sci., 2014, 71(16), 3027-3047.
[http://dx.doi.org/10.1007/s00018-014-1582-7] [PMID: 24556998]
[70]
Hsu, C.W.; Chen, Y.C.; Su, H.H.; Huang, G.J.; Shu, C.W.; Wu, T.T.; Pan, H.W. Targeting TPX2 suppresses the tumorigenesis of hepatocellular carcinoma cells resulting in arrested mitotic phase progression and increased genomic instability. J. Cancer, 2017, 8(8), 1378-1394.
[http://dx.doi.org/10.7150/jca.17478] [PMID: 28638452]
[71]
Liu, Q.; Tu, K.; Zhang, H.; Zheng, X.; Yao, Y.; Liu, Q. TPX2 as a novel prognostic biomarker for hepatocellular carcinoma. Hepatol. Res., 2015, 45(8), 906-918.
[http://dx.doi.org/10.1111/hepr.12428] [PMID: 25263743]
[72]
Huang, D.H.; Jian, J.; Li, S.; Zhang, Y.; Liu, L.Z. TPX2 silencing exerts anti tumor effects on hepatocellular carcinoma by regulating the PI3K/AKT signaling pathway. Int. J. Mol. Med., 2019, 44(6), 2113-2122.
[http://dx.doi.org/10.3892/ijmm.2019.4371] [PMID: 31638175]
[73]
Wang, J.; Liu, Z.; Dou, C.; Han, S.; Li, C.; Tu, K.; Yang, W. miR-491 inhibits the proliferation, invasion and migration of hepatocellular carcinoma cell via down-regulating TPX2 expression. Chinese J. Cell. Mol Immunol., 2016, 32(4), 512-517.
[PMID: 27053618]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy